UiT Faculty of Science and Technology

THE ARCTIC Department of Computer Science

OUFN',.V;mTAYY Improving Latency in Mobile/Cloud Applications

Robert Pettersen
A dissertation for the degree of Philosophiae Doctor - March 2016

F00T000 00000000 I i i a0 00 0000007007017 KEKIKRIKIRIRTIRIRI KL RL KL KT KT KT AT XTATA I I I I I I I T
NN R R R R RN NN NN AN N N N N NN N A AR RN AR NN RN RN NN NN

NN N N N NN R R R R N N R N RO N N N NN NN NN AN AN NN RN EY

/ 1111111 N 2 I i (NI {
WHHLTEIernrreriieneiniieieieie IIIf/III{/{A{/IIIII}

UPETTETETEE R e ariariaiaddnd J0000000 0000000000 0000700000707 000000070000080000eqqiririniririnri
FIE0TETEEREIEEIEIIererieranredr MMMUMMMMIIMMILIII I ILI I rqrvrgierercneiernerenn i
NN e R R R R R R R R R R R AR R R R R A A A R R A A R A A A A s 1y
QTR0 ETRIRREERERaReraiabrred MMIAIAIRI I IIININIIIII I qrqrqnrqrcrgrgranene e g
PP RPEP R0 barabey sl 00IIIMIIIIININIIEIIIIIIIUEILIIINILILINL UL L |
Hrrieireneieininiininnning JRORTRT IR IRI I I I igieiqrqrqiergrqrqnereneronenenen
"ririinrrnininrnnniinnnn g

Y
~
~
~

35

~

Y

N

NS

Y

S
~
~

33

-

~

-

~Y

i

~

T

T~

oy

~

T

~Y

T

~S

T

~

™~y
~
™
o~
™
~Y
™

S

-~

o~

&

o~

=~
o~

-~

~
-y

-~

w
~

s

Sw
-y

o~

~

-~

N

-~

~

-~

~

o

~L

S

~y

-

N

-

~
~

-~

~y
L

-

-~y
-~y

-

~
L

-

~
~

-

~y
~

T

Aoy
L

e

~

e

~

-

~

—~-

~

I~

L

~
o
o
~
o
o
~
o
~
o
o
~
o
~
o
o
~
o
~
Ny
e
s
e
s
‘v
Ny
o
bl
‘v
N
‘v
Ny
‘w
o
‘v
N
N
N
o
N
3
o
uy
N
~
N
~
N
~
~
‘v
~
Ny
~
™
~
~y
~
e d
~
el
~
~y
~
~y
~
~
~
o
~
N
~
~
N
o
N
o
~
N
~
o
N
~
N
™~
~
-y
o
~
N
~
~n
~
N
~
o
~
-
—

wrurnnnnnn
WU U

YoRRaRRbNer MMM AN A A AT T ey
IQRRARRRNar 00000000000 0000000000 00 000NN AN RNl
VORRaaaRay 2000000000000 000 N0 NARRARARENARINARAQARARIRANIQIRNINIQAINAI NI NNA NN TN NN
IQRRARRANE JRNONRNRARNRNRRNRNRNRNRNRA RN NN AN QAR AN QA0 000 00 0000 0 000 00001
VORRaaaRy JO0N000R0NONQRNARINARANRRARINARAQARARARARARRNIRARARIQANINAINQ NI NNA NN NN NN
IQRRARRAl 2000000000000 00000000000 0 ARARAAARAAAANAAAIIIN AR NNl

QAQAQAONGRANENGNANENERANENENINENENANANENEQANGRENANRNA000000. AL IA AL L AL L L ‘

YORaaNs 2000000000000 0000000 0N ARARARRRARARARARANANARARARARANARARARININAQAOANINNNNANANANNANANINE
ARRANr 20000000000 00000R 000000000 RN ARARARARARARARAIRARARARARARACARARIRARARARARARNGNRANRIGNGNANAI
YONRaY 2000000000000 00000 0RO RANRNANANARIRANARANARANARARARARANARINARAQLRANINNQNNNNNNNANANANNANANANE
IANaNr 20000000 00000R00000000 0000 R RARARNRARARARARARARARARARACARARARACACARACARARACACAGNGNGNENRIGNGN!
YoRNs JR0RUNONRARNNONONINARNANONINARANANANARANANIRNANARANARARANANARARANARNANNNANANONANNORRIN AN NAN
JANNE JRA0200000000000000R0 000000 RARARARARIRARARARARARARARARARARACARARARAGARAGARARNGNGLOZSERLRNGNGI

TARY dQNQRQIEAQNQNANAIONENONANANENONGNANANEANGNANANANEANGNARNANANENENANNQNQINNONONANN 0NN ;;,~§n
O O A A R L A O i L L A A (& < AR
Tar dQRRANORNQINNOAANONGNONONINONINEININGNGNINANGNINGNEINANENGNANINANENGQARVNNINNQNANANNEY e e
A A T Y S
‘ ’JLﬂ"M'Mﬁd‘""@ﬁﬁhﬂ""'ﬂﬁd‘ﬂ"ﬂ‘h"lﬂ""'l’ﬂ""'

7 GRQRQNIRARINANARIRARARARIRIRARARARINIRATARA]
," 250000309030 30 0030 2020 S0 0RO RORO N RENORORE N RARARARARARARARARANARARARAGAQLARIRANAANANRNANANANANANAY

Abstract

Smartphones are becoming comparable to desktop computers in terms of com-
putational power, and offer diverse applications ranging from social media and
gaming, to multimedia and banking. A particular class of mobile applications,
mobile/cloud applications, are tightly coupled with the cloud. While executing
on the mobile device, they communicate frequently with the cloud for crucial
functionality.

Use of cloud-provided services is integral to the operation of mobile/cloud
applications. And while the computational power of the cloud is seldom a
performance concern, the network latency incurred when connecting a mobile
device to the cloud can cause perceptible delays in the application. Users have
a low tolerance for delays, so avoiding user-perceived delays is imperative to
stop users from switching application providers.

This dissertation presents the Jovaku system, which aims to reduce communi-
cation latency between mobile devices and cloud services in a generic way, and
by reusing existing infrastructure. Jovaku consists of a middle tier component
designed to optimize mobile/cloud interactions and a Software Development
Kit (SDK) that allows developers to leverage its capabilities.

The viability of the Jovaku system is substantiated through implementation
of several modern mobile/cloud applications. Picster and Dapper both make
use of Jovaku to reduce communication latency with their respective cloud
services. We also perform an extensive experimental evaluation of Jovaku,
revealing latency reduction by as much as 72% for certain mobile/cloud
applications.

Acknowledgements

This dissertation has been made possible by the relentless support and dedica-
tion of many proponents. First and foremost, I would like to thank my adviser
Professor Dag Johansen, for his advice and feedback on everything from life
choices to computer science research.

My colleagues in the iAD group have provided valuable discussions, endless
arguments, and ideas that has lead the way for my dissertation. I would
like thank Age Kvalnes for teaching me sophisticated programming skills, by
throwing tons and tons of bugs at me, expecting me to fix them. Steffen
V. Valvag for his calm persona and impeccable writing experience, teaching
me to write like an adept. Anders Gjerdrum and Hévard D. Johansen have
provided precious feedback on the dissertation, keeping my trains of thought
on the right track. Erlend H. Graff has been integral to forming the layout of
this dissertation with his inexhaustible EIEX knowledge and continuously high
availability.

I would also like to thank the members of the computer science department
staff, for making my life as a PhD student most pleasant. I would like to
especially thank Ken-Arne Jensen who always seems to have time to hear my
complaints and engage in interesting debates. Jan Fuglesteg and Svein Tore
Jensen have always taken care of my tedious administrative tasks, leaving me
to the interesting research. And of course, the rest of the TK group, Maria W.
Hauglann, Jon Ivar Kristiansen and Kai-Even Nilssen, who provided me with
technical equipment and free access to the Segway.

Lastly, but perhaps most importantly, I would like to thank my parents, Aud
and Jacob, for their unconditional love and support. Without them I would be
suffering from severe starvation.

Contents

Abstract i
Acknowledgements iii
List of Figures vii
List of Tables ix
List of Code Listings xi
List of Abbreviations xiii
1 Introduction 1
1.1 Mobile/Cloud Applications 2
1.2 Middle Tier Components.« o v v v v ... 3
1.3 ThesisStatement 4
1.4 Scope and Limitations 5
1.5 Methodology 6
1.6 ResearchContext. 8
1.7 Summary of Contributions 11
1.8 Outline 12

2 Background and Related Work 15
2.1 Mobile Device Capabilities 16
2.2 Mobile Operating Systems 18
2.2.1 Isolated Execution 19

2.2.2 Application Runtime 21

2.3 Cloud Services e 24
2.4 Developing Mobile/Cloud Applications 27
2.5 Middle Tiers e 29
26 SUMMATY o e e e e e e e e e 31

3 Optimizing Reads from the Cloud 33
3.1 The Domain Name System 35

Vi CONTENTS

3.2 Jovaku Architecture 36
3.3 TheRelay-Node 37
3.4 ClientLibrary 45
3.5 Summary 48

4 Optimizing Writes to the Cloud 49
4.1 Extended Architecture 51
4.2 Message Processor oo e 54
4.3 Execution Environment 61
4.4 ClientLibrary L. 64
45 SUMMmMAary v v v e e e e e e e e e e e e e e e e e 67

5 Applications 69
5.1 Picster e 70
5.2 Dappero e e e e e 77
5.2.1 UserProfile. 79

5.2.2 Connecting with Friends 81

5.2.3 StatusUpdates 82

5.2.4 Making Progress 83

5.2.5 Experiences and lessons learned 85

5.3 Summary Lo e e e e e 88

6 Experimental Evaluation 89
6.1 Experimental Setup 90
6.2 DNScaching, 91
6.2.1 Baseline Performance 94

6.2.2 Jovaku Performance 95

6.2.3 Jovaku with Alternative DNS Configuration. 99

6.3 Blackboxtesting 102
6.4 Satelliteexecution 104
6.5 Relay-node performance 108
6.6 Summary e 110

7 Concluding Remarks 111
7.1 Conclusions 113
7.2 FutureWork 113
Bibliography 115

A Publications 127

List of Figures

1.1

2.1

2.2

2.3
2.4
2.5
2.6

2.7
2.8

2.9

Components included in existing mobile/cloud infrastructure.

A mobile device communicating through a Mobile Network
Operator (MNO) to gain access to the Internet and various
cloudservices.
Relative size comparison of an early smart phone to a modern
smartphone.
Overview of the Android system architecture.
How the Location Manager is used on Android.
Difference between applications running in a VM and docker.
Lifecycle of an Android application from source to running,
both on Dalvikand ART.
Lifecycle of an Windows Phone application.
The Xamarin platform binds native iOS and Android SDKs to
the .NET platform.
Hlustration of a generic cloud video sharing service.

2.10 Example architecture of a mobile/cloud application composed

of cloud modules from the Google Cloud Platform.

2.11 Potential locations a middle tier can be positioned to augment

3.1
3.2

4.1

4.2
4.3

4.4

5.1

functionality of a mobile/cloud application.

Database lookups with and without Jovaku.
Overview of the Jovaku architecture.

How satellite execution is applied to eliminate extraneous
round-trips between a client and the cloud.
An overview of the extended Jovaku architecture.
Layout of a WCF message containing a mobile function with
four database operations.
Layout of the custom message format containing a mobile
function with four database operations.

Overview of the Picster social network architecture.

Vil

16
17
19
20
21

22
23

24
26

28

29

38

39

51

52

59

Vil LIST OF FIGURES

5.2 Domain name hierarchy illustrating an event “TIL_vs TUIL”,

with its description, location and member list. 72
5.3 Creating and locating events in Picster. 73
5.4 Domain name hierarchy illustrating the media tree under the

“TIL_vs TUIL” event. v v v 74
5.5 The Picster application, which stores image metadata in a

cloud database, using Jovaku for caching. 75

5.6 The Picster web application displaying an image from the
TIL vs TUIL event, with the number of likes and a list of

COMIMENES. . .« . v v v v v e v e e e e e e e e e e e e 76
5.7 Handling user profiles in Dapper. 79
5.8 Searching for friends in Dapper. 81
5.9 The feed shows social updates from the user and its closest

friends, and changes to the friend list. 83
6.1 Placement of nodesonworldmap. 92
6.2 Baseline lookup performance for the DynamoDB service in

Ireland using the official Amazon C# SDK. 96
6.3 Distribution of worst-case lookup performance with Jovaku

and local DNSservers. 98
6.4 Distribution of worst-case lookup performance with Jovaku

and Google PublicDNS. 101
6.5 Example communication pattern between mobile device and

cloud assumed to be of a request/reply type. 103
6.6 Summary of cloud interactions during various mobile appli-

cation startup. o .o e e e e e e e e e 104

6.7 Comparison of the default serialization and the custom seri-
alization algorithms, with respect to the size of the resulting
bytearray. 105

6.8 Locations of nodes involved in the experiment. 105

6.9 Observed mean latency when executing a varying number of
cloud database queries with and without satellite execution.

The error bars show the standard deviation. 106
6.10 Distribution of latencies when adding a friend to a social net-
work, with and without satellite execution. 107

6.11 Latency per bag-of-queries when increasing the number of
clients that concurrently submit mobile functions to a relay-
node. e 108
6.12 Average CPU consumption and throughput at the relay-node
when increasing the number of concurrent clients that submit
mobile functions. o oL 109

List of Tables

3.1

5.1
5.2

5.3

6.1

6.2
6.3

6.4

6.5

Layout of the DynamoDB table.

The Profiles table contains profiles for users of Dapper.

The Friends table contains friend relationships and pending
friendrequests.o
The Feed table contains all social updates pertaining to a user.

Machine types used throughout the experimental evaluation,
along with labels used to reference them.
Machines involved in evaluating the effect of DNS caching.

Baseline lookup performance for the DynamoDB service in
Ireland. L
Lookup performance using Jovaku with the DynamoDB ser-
viceinIreland. oL Lo
Lookup performance using Jovaku with the DynamoDB ser-
vice in Ireland and Google PublicDNS.

78
78
78
91
92

95

97

List of Code Listings

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8

4.9

The interface that needs to be implemented to create a DLZ
driver. L
Callbacks provided by BIND, for communicating results from
the DLZ driver back to BIND.
Example DNS update transaction performed with nsupdate
on the jovaku.com domain.
The body of the JSON request for the SOA and NS records.

The header of an HTTP query request to Amazon DynamoDB.

The body of the JSON request for updating the value of the
x.jovaku.com TXT label to “Updated Data Value”.
The C# version of the Jovaku programming API.

Interface that must be implemented by mobile functions.

Excerpt of the API for accessing cloud-side resources from a
mobile function. Lo oL
Interface for initializing the execution server with a specific
underlying implementation.
The APM implementation of the execution server.
The TAP implementation of the execution server.
The WCF implementation of the execution server.
Creating a new application domain, with minimal permissions
and set of trusted assemblies.
Excerpt from the IContext implementation used in the iso-
lated application domains.
The sandbox, isolating loading of untrusted assemblies, and
executionofcode. L.

4.10 Client side interface to utilize Satellite Execution.
4.11 Example implementation of a mobile function that provides a

bag-of-queries abstraction.

4.12 A custom serialization algorithm for a collection type contain-

ing strings. First the number of strings are stored, before the
stringsareadded.

Xi

40
41
43
44
45

46
47

53
53
55
56
57
58
62
62

63
65

66

Xii

5.1

5.2

5.3

5.4

5.5
5.6

LIST OF CODE LISTINGS

The ProfileUpdate mobile function will update a user profile,
or create a new one if the profile does not exist.
The FriendRequest mobile function will insert a new pending
friend request into the Friends table.
The StatusUpdate mobile function will update a user’s status
by posting the new status to relevant feeds.
The RetrieveUpdates mobile function will retrieve social up-
dates and pending friend requests.
The FriendRequest mobile function will accept a friend.

Comparison of posting status updates to Dapper using Jovaku
and using the Facbook API to post updates to Facebook. . . .

80

82

84

85
86

87

List of Abbreviations

API

APK

APM

ART

BIND

CDN

CIL

CPU

DEX

DHCP

DHT

DLZ

DNS

EAP

GPS

HTTP

1/0

Application Programming Interface
Android Application Package
Asynchronous Programming Model
Android Runtime

Berkeley Internet Name Domain
Content Distribution Network
Common Intermediate Language
Central Processing Unit

Dalvik Executable

Dynamic Host Configuration Protocol
Distributed Hash Table
Dynamically Loadable Zone
Domain Name System

Event-Based Asynchronous Pattern
Global Positioning System

Hyper Text Transport Protocol

Input Output

Xiii

XiV LIST OF ABBREVIATIONS

IAAS Infrastructure as a Service

iAD Information Access Disruptions
P Internet Protocol

JAR Java Archive

JIT Just-In-Time

JSON JavaScript Object Notation

JVM Java Virtual Machine

MDIL Machine Dependent Intermediate Language
MNO Mobile Network Operator

NFC Near Field Communication

NS Name Server

ODEX Optimized Dalvik Executable

os Operating System

PAAS Platform as a Service

PDA Personal Digital Assistant

RR Resouce Record

RS Record Set

SDK Software Development Kit

SFI Centre for Research-based Innovation
SGX Software Guard Extensions

SoA Start of Authority

TAP Task Asynchronous Pattern

LIST OF ABBREVIATIONS XV

TCP

TPL

TTL

URI

VM

WCF

WINRT

XML

Transmission Control Protocol

Task Parallel Library

Time To Live

Uniform Resource Identifier

Virtual Machine

Windows Communication Foundation
Windows Runtime

Extensible Markup Language

Introduction

With the advent of the smartphone, our mobile phone is becoming our personal
assistant, providing satellite navigation, fitness measurements, multimedia
players, and an alternative to traditional credit cards for payment in shops.
Smartphones embed a plethora of sensors, run advanced Operating Systems
(0ss), and are becoming comparable to desktop computers in terms of compu-
tational power.

Smartphones have diverse applications, ranging from social media and gaming
to multimedia and banking. For additional feature enrichment, they commonly
communicate with various cloud services. The purpose of these supporting
cloud services is typically to make user environments available across devices,
so that users can move seamlessly from one device to another, or to integrate
external data sources such as news feeds or geographical data. The highly
available and reliable nature of the cloud thus complements the roaming and
transient nature of smartphones.

Over the last years we have seen the cloud [1] evolve from an Infrastructure as a
Service (IAAS) model, providing mostly Virtual Machine (VM) based solutions,
to a more fine grained Platform as a Service (PAAS) model, where developers
can pick and choose ready-to-use cloud modules to build custom cloud services.
These modules include user management and authentication, analytics, and
other frameworks for large scale computations that draw on virtually unlimited
computational power and storage space. As such, development of new cloud
services aimed at supporting mobile applications is greatly simplified.

2 CHAPTER 1 / INTRODUCTION

When mobile applications become tightly coupled with cloud services, a new
class of applications emerges: mobile/cloud applications [2]. These applications
execute on a mobile device, but communicate frequently with the cloud for
crucial functionality. This can include locating peers in a social network,
retrieving status updates, saving state for migration between mobile devices,
or retrieving advertisements. Usually, mobile/cloud applications are inoperable
when the cloud is unavailable, but some have support for offline mode, so
the application can be used with limited functionality on planes or in other
scenarios where the network is unavailable.

1.1 Mobile/Cloud Applications

Use of cloud-provided services is integral to the operation of mobile/cloud
applications. When these services are accessed, the cloud-side execution of
individual service requests is seldom a performance concern; rather, the main
concern is typically the mobile network that is part of the communication path
between the application and the cloud [3]. Even on modern 4G networks,
the latency—as compared to wired networks—might be the cause of user-
perceived delays in the application [4]. Users have a low tolerance for delays,
so this may lead to loss of revenue if the customer chooses another application
provider [5, 6, 7].

Several well-known techniques can be employed to reduce latency from a
device point of view. This includes displaying local animations, hiding latency
through background loading or prefetching, employing parallel connections
on multiple threads, and caching [8, 9, 10]. Most programming languages for
mobile applications provide asynchronous programming abstractions to ease
the implementation of these techniques [11, 12, 13].

There are also techniques for reducing the average end-to-end delay in the
cloud service itself. By utilizing machine learning and adaptive priorities based
on when the request was initiated, the average end-to-end delay can be masked
from being user-perceived [14].

A common motivation for mobile/cloud applications is to simplify the client-side
application logic by leveraging the availability and reliability of the underlying
cloud services. In particular, cloud databases can simplify application logic by
serving as highly available repositories for critical state. For improved scalability
and availability, these databases are commonly NoSQL [15, 16, 17], with limited
support for tabular relations and transactions. This entails a more relaxed
consistency model than a conventional relational database. Queries are issued
through a programmatic interface, rather than a domain-specific, high-level

1.2 / MIDDLE TIER COMPONENTS 3

query language.

Since NoSQL databases typically lack tabular relations, situations arise where
multiple queries have to be executed in a specific order to achieve the same
effect as a single query on a relational database [18, 19, 20]. These dependent
queries require multiple round-trips between the mobile device and the cloud,
exacerbating latency issues. Crucially, these cases are hard to mitigate using
application-level latency-hiding techniques.

The main focus of this dissertation is on architectural techniques for reducing
latency. Specifically, the dissertation focuses on mechanisms for reducing
communication latency between mobile/cloud application components. We
propose to approach this by introducing a middle-tier component that optimizes
interactions between clients and the cloud.

1.2 Middle Tier Components

The concept of introducing a middle-tier component—situated between clients
and the cloud—has previously been explored in several contexts. For example,
code-offloading systems utilize a middle tier to extend the computational
resources of a mobile device [21, 22, 23]. There may also be opportunities to
conserve energy on the mobile device by introducing a middle tier [24, 25].
These systems might reduce the completion time or energy consumption of
certain computations, but they do not aim to reduce the latency of fine-grained
operations. Others have tried to augment applications with annotations on
methods to increase the granularity at which code-offloading occurs [2].

Conversely, a Content Distribution Network (CDN) can be used to move data
closer to the mobile device [26]. CDNs are globally distributed systems of
servers pre-populated with data, which can be consumed with low latency due
to geographical proximity. One drawback of a CDN is that its main utility is for
static content, as a priori knowledge about the distribution is required. When
a database is updated frequently, a CDN provides limited value.

When considering database operations, there are two main categories: reads
and writes. For reads, a middle tier needs to move data closer to the clients
so they can benefit from caching. Generally, writes cannot be cached, but
dependent queries that include writes should often be executed close to the
cloud database. This leads to a challenging scenario of conflicting concerns for
the middle tier: the desire to both move data closer to the client for reading,
and move queries closer to the database for execution.

4 CHAPTER 1 / INTRODUCTION

1.3 Thesis Statement

Considering the variety of mobile/cloud applications that will benefit from a
middle tier that reduces cloud communication latency, the tier should be generic
and easily exploitable across applications. Also, applications with a world-
wide user base should be accommodated, which implies that the tier needs to
span a global infrastructure to cover all possible deployments. Creating a new
infrastructure that meets these two requirements is a complex architectural
challenge, and practically infeasible. Therefore, a tier that exploits existing
infrastructure is highly desirable.

Our intuition is that existing infrastructure can indeed be exploited and adapted
into a generic middle tier that meets these seemingly conflicting requirements.
This could result in a significant reduction in communication latency between
mobile applications and the cloud. In short, the thesis of this dissertation is
that:

A generic middle tier can leverage existing infrastructure
to reduce latency for mobile/cloud applications.

To evaluate this thesis, we first aim to design a middle-tier architecture that
can be reused across mobile/cloud applications to reduce latency. In the spirit
of modular cloud services, the architecture should be straightforward to exploit
for both new and existing mobile/cloud applications.

For further evaluation, we implement an instance of the architecture that
targets actual mobile devices operating on mobile networks. To create a realistic
testbed for the architecture, we target the Windows Phone platform. We develop
several mobile/cloud applications that offer typical services, and use them to
help evaluate potential latency savings from our architecture.

Recognizing the central role of cloud databases, our thesis evaluation will
involve interfacing with existing cloud database services, and access to these
services will serve as our primary use case. Because cloud databases are
accessed through a well defined Application Programming Interface (API),
the usage pattern is similar to any other cloud service that exposes a public
API. Results are therefore likely to be applicable to any cloud service that has
an API.

1.4 [/ SCOPE AND LIMITATIONS 5

a) Local network ¢) Cloud

Figure 1.1: Components included in existing infrastructure for mobile/cloud
applications. a) refers to components in the local network, such as DNS
and DHCP, b) is the communication path between the local network and
the cloud, and c) is components situated in the cloud, such as database or
VMS.

1.4 Scope and Limitations

Throughout this dissertation, we make certain assumptions about the mobile/-
cloud environment and the problem domain, both to focus our attention on the
thesis statement, and to guide our design choices when implementing software
artifacts. We document these assumptions here, and define the scope for our
research by specifying limitations.

* We define existing infrastructure for mobile/cloud applications to include
both components in the local network and components in the cloud.
Figure 1.1 illustrates these components. In the local network (a)) we find
necessary infrastructure to communicate on the Internet, such as Dynamic
Host Configuration Protocol (DHCP) and Domain Name System (DNS).
In the cloud (¢)) we find backend services to support the mobile/cloud
application, such as cloud databases and vMs.

* We focus our attention on reducing latency along the communication
paths (Figure 1.1 b)) between the mobile device and the cloud in mobile/-
cloud applications. Reducing latency either by improving the application
code, or by optimizing the cloud service, will not be considered.

* We adopt the fail-stop failure model [27]. In other words, we make the
common assumptions that (1) processors will halt on failure, rather than
make erroneous state transformations, and (2) processors can detect
when other processors have failed. This allows failures to be detected via
pinging, i.e. by exchanging regular status messages to signify liveness.

* While scalability is an important concern, and can affect latency when

6 CHAPTER 1 / INTRODUCTION

dealing with an increasing amount of clients, we limit our evaluation
to small scale deployments. This is for practical reasons, to allow for
rapid development and deployment, and experimentation in a controlled
environment. Software and configuration changes would take longer to
deploy in large scale environments, and experiments would be harder to
reproduce, diminishing their scientific value.

1.5 Methodology

In traditional sciences, theory and experimentation usually follow each other
closely. The experimental nature of a scientific method usually involves col-
lecting data on natural processes through observation and experimentation.
Theory is applied when observations lead to generalization and the forming
of hypotheses. Experimentation can then be used to verify of falsify those
hypotheses. Progress is made by repeating those patterns, with changing
hypothesis formulations and observations.

Within the natural sciences, where computer science is situated [28], the
hypothetico-deductive model provides an approximative description of the
method of scientific inquiry. The model describes the formulation of a hypoth-
esis, followed by deduction of predictions and the design of experiments that
either may validate or contradict the hypothesis. A validation corroborates the
hypothesis, while contradictions typically lead to discarding or reformulating
the hypothesis. This is an iterative process, where the different steps may be
revisited multiple times.

The field of computer science is commonly divided into three disciplines, which
corresponds to different paradigms for research [29]:

Theory stems from mathematics, and studies objects whose properties and
relationships can be clearly defined and reasoned about using logical
reasoning. A prime example is the study of algorithms; given sufficiently
detailed descriptions, hypotheses about algorithms (such as the hypothe-
sis that a given algorithm will eventually terminate) can be proved using
logical reasoning.

Abstraction stems from experimental science, and constructs models based
on hypotheses or through inductive reasoning about observable objects
or phenomena. The studied objects could be software or hardware
components, or the holistic behavior of a complex computer system.
The model is evaluated by comparing its predictions to experimentally
collected data. Abstraction resembles the scientific disciplines within

1.5 / METHODOLOGY 7

natural sciences like biology, physics and chemistry. Their common goal
is to construct accurate models of the rules and laws that govern the
behavior of observable objects. Accurate models can be used to predict the
behavior in circumstances that have not been observed experimentally.

Design stems from engineering, and use a systematic approach to construct
systems or devices that solve specific problems. A set of requirements de-
scribes the functional and non-functional characteristics of the construct.
Next, the system or device is specified, designed and implemented. Finally,
the construct is tested to verify that it meets the stated requirements.
If not, the process is repeated, refining and improving the end product
with each new iteration.

In practice, these disciplines are intertwined [30], and research typically draws
upon all three paradigms to varying degrees. The work presented in this disser-
tation is not of a theoretical nature, but we draw upon much established theory,
for example regarding the inherent properties and limitations of distributed
systems. We use abstraction to reason about system behavior at a high level
and form hypotheses about how that behavior will be affected by architectural
changes. Through experiments we check if our high-level model correctly
predicted system behavior.

This dissertation focuses on deriving principles underlying the design of
complex distributed software systems in order to improve their design and
behavior. Within such systems research methods are experimental, emphasizing
the construction of actual software artifacts to substantiate conclusions. But
these artifacts are not static once created. Rather, they are the subject of
a process of continuous refinement where experimental insights challenge
assumptions and hypotheses, driving both incremental and radical changes to
the design and implementation of the artifacts.

The artifacts are first designed through the process described above without con-
sidering real world usability to establish a proof-of-concept [31]. Not considering
real world usability removes certain constraints and allows unhindered research
in the field. The proof-of-concept can either lead to further refinement, or even
changing the premise for the concept, allowing for real world usability.

Once a proof-of-concept has been established for the artifacts, evidence for proof-
of-applicability can be gathered through actual real-world implementations.
Collecting reactions and performance metrics from real world adoption yields
evidence of usability, leading to proof-of-usability [32]. However, gathering
evidence for proof-of-usability goes beyond the scope of this dissertation.

Empirical measurements are not only used to substantiate and solidify analysis

8 CHAPTER 1 / INTRODUCTION

and conclusions, but are also integral to a process of continuous refinement
where practical experiences challenge initial assumptions, perhaps leading
to their invalidation or modification. Contributions therefore often consist of
generalizations conveying accumulated experience with the objects under
study, along with meticulously crafted concrete objects and experimental
results that corroborate conclusiveness. Experimental results convey evidence
of performance, leading to proof-of-performance.

The architecture presented in this dissertation is the result of refinements
and accumulation of experience, a concrete implementation demonstrates its
viability and provides a proof-of-concept. Experimental results corroborate its
claimed properties and provide a proof-of-performance. Actual applications
further demonstrate the implementation’s applicability and the efficiency of
the claimed properties, and provide proof-of-applicability.

1.6 Research Context

This dissertation work has primarily been performed in context of the Informa-
tion Access Disruptions (iAD) project, a Centre for Research-based Innovation
(sr1) funded in part by the Research Council of Norway. iAD was hosted
by Microsoft Development Center Norway (2007-2015) and includes multiple
other commercial and academic partners: Accenture, Cornell University, Dublin
City University, BI Norwegian School of Management, and the universities in
Tromsg (UiT), Trondheim (NTNU) and Oslo (UiO). Several other companies
were also to a varying degree affiliated with iAD. The dissertation work relates
to previous scientific work done in the research group, and to place this
dissertation in the correct context a brief overview of the research group
and work done in our group will be surveyed.

The main research focus of iAD was on technologies in support of large-scale
information access applications. The focus is vertical, ranging from low-level
infrastructure software such as 0Ss and VMs to the business implications of po-
tentially disruptive approaches to information access and management.

Controlling a large distributed system requires full cooperation and support
from the OS running on each node involved. Through our work with Os
architectures [33] we gained substantial experience with pervasive monitoring
and scheduling. The new Omni-Kernel architecture ensures that all resource
consumption is measured, attributed to activities utilizing the resources and
permits scheduling decisions on a fine-grained level. The viability of the
architecture is substantiated through an actual implementation [34] and shows
that performance isolation is a viable way to achieve resource control on the

1.6 / RESEARCH CONTEXT 9

lowest level [35].

Taking the step into the cloud, 0Ss become integral to provide the foundation
for cloud services that autonomously adapt their capacity to workloads over
time, allowing consolidation and resource sharing over potentially tens of
thousands of worker nodes. Interference from resource sharing can cause
unpredictable performance when vMs are consolidated on a single machine.
Virtualization has proven consolidation and isolation benefits, but invariably
incurs an overhead. This penalty is notable for latency sensitive tasks, such
as TCP processing. Several approaches have been investigated to improve
the performance of hypervisors serving vMs that require low latency, high
performance TCP connections [36, 37]. Significant performance gains were
experienced running HTTP benchmarks, approaching native performance for
certain workloads.

Above the hypervisors in the vertical architectural stack, we find parallel, dis-
tributed algorithms such as the MapReduce [38] style analytical programming
model. Our experiences from mobile agents [39, 40, 41] and MapReduce-style
distributed data processing [42, 43] have inspired some key aspects of this
work. As in Cogset [44], we promote a functional programming model using
the visitor pattern, where latency-sensitive code has the ability to visit the
backend storage service as desired. In this case, a visitor also resembles a
mobile agent; although restricted to moving back and forth between a client
device and the cloud, it retains the defining ability to carry state. Rusta [45]
draws on insights from our previous work in the area of big data analytics, and
explores decentralized deployment of cloud services, where clients can offload
to the cloud and to other clients.

With Cogset we explored new mechanisms for routing and placement of
data in a MapReduce engine. In contrast to conventional MapReduce engine
designs, Cogset employed predetermined data routing schemes to avoid the
need for temporary copies of intermediate data. This combination of tight
coupling of storage and processing and a functional style of programming
resulted in better data locality, and, as a consequence, significant performance
improvements.

Public cloud offerings providing readily available computation and storage
solutions. Enterprises wanting to exploit these offerings must often invest in
in-house computation resources, or private clouds to address security and
privacy concerns that public clouds are not able to mitigate. Our work with
Balava [46] addresses these issues by federating multiple clouds, both public
and private, where computations involve data with confidentiality constraints.
Cross-cloud deployments of Balava proved to be comparable with native Linux
performance in terms of throughput.

10 CHAPTER 1 / INTRODUCTION

While Balava considers confidentiality and privacy, our work with Suorgi [47]
proposes a new way to structure overlay networks spanning multiple clouds.
Suorgi introduced the concept of meta-code, which extends and augments
existing cloud infrastructure to implement fine-level trust policies, replica-
tion management, auditing and provenance mechanisms. With meta-code
novice users can construct custom private clouds without explicit programming
knowledge. Evaluation with a cloud backup mechanism revealed a significant
improvement in throughput and completion time when backing up to multiple
clouds for redundancy.

As the number of nodes involved in federated cloud overlay networks increases,
intrusion tolerance becomes an issue. We addressed this in our work with
Fireflies [48, 491, which is a scalable protocol for supporting intrusion-tolerant
overlay networks. Fireflies can be used to build intrusion-tolerant Distributed
Hash Tables (DHTs) or overlay routing networks. Evaluation shows that even
with 280 participating nodes, the overhead incurred using Fireflies is low, and
we believe that Fireflies will be able to scale up an order of magnitude without
difficulty.

The number of cloud nodes involved often increases as the number of users using
the cloud service increase. As the number of clients using a service increases,
the attack surface of the service will increase accordingly, as the various clients
might have vulnerable software. Software security patches contain information
about the vulnerabilities, and attackers can reverse engineer these to gain
insight into exploits. Building on Fireflies, we built FirePatch [50], an intrusion-
tolerant dissemination mechanism that combines encryption, replication, and
sandboxing such that the window of opportunity for attackers is minimized.
FirePatch is highly resilient to omission attacks, and allows for an intrusion-
tolerant overlay substrate for disseminating software patches without using
trusted mirrors.

Sports analytics is a growing area of interest, and our collaboration with elite
soccer club Tromsg IL. and the Norwegian national soccer team (men) inspired a
host of interesting work. Bagadus [51, 52] integrates sensor systems, annotations
and video processing to monitor live soccer matches. The system allows
tracking of individual players, and provides stitched panorama video summaries.
Muithu [53, 54] provides coaches with a simple way to annotate live matches,
allowing readily available pre-processed video during half-time to improve
coach feedback to the players. Further, Muithu provides a social network for
the players and the coach to track training and nutrition, optimizing training
based on effort and injuries. The privacy of the players was preserved with our
work with Code capabilities [55], by embedding executable code fragments in
cryptographically protected capabilities to enable flexible discretionary access
control in the cloud.

1.7 / SUMMARY OF CONTRIBUTIONS "

Bagadus and Muithu generate high quality video from multiple angles, and
distribution of the video to fans and spectators will require great bandwidth.
Our work with DAVVI [56, 57] not only allows for multi-quality video distribu-
tion using torrent technology over HTTP, but enables efficient video searching,
personalization and recommendations for interested parties.

The work in this dissertation is an extension to the broad, vertical stack
of previous work in the iAD research group. By exploiting our experiences
from performance isolation to distributed multimedia applications, we address
related performance issues in the context of smart phones connected to mobile
networks communicating with the cloud.

1.7 Summary of Contributions

The major contributions of this dissertation are based on work presented in
the papers [58, 59, 60, 61] outlined in Appendix A.

Here we give an overall summary of these contributions:

Jovaku

Proof-of-concept We have implemented a programming interface, Jovaku,
which allows developers to leverage existing global infrastructure to cache
database lookups close to client devices. Further, we have implemented a
driver for the BIND DN server to take advantage of Amazon DynamoDB
as a backend for storing DNS records, effectively allowing database
lookups through DNS. Not only can this reduce latency for database
lookups, but it can also reduce database cost when cost is a function of
lookup volume, by reducing the number of database accesses.

Proof-of-applicability We developed a mobile ad hoc geosocial network ap-
plication, Picster. Picster is a collaborative image sharing application
for events where users are in close proximity, which utilizes DNS to
store image metadata and user comments for shared images. Picster has
been used during soccer matches at Alfheim stadium, and helped reduce
overall bandwidth consumption while providing low latency access to
images and user comments.

Proof-of-performance We have performed experimental evaluation, measur-
ing the performance of Jovaku from geographically distributed nodes
around the world. Further, we provide a surveyed baseline communi-

12

CHAPTER 1 / INTRODUCTION

cation latency for various mobile networks, geographical locations and
public DNs providers. We reveal interesting side effects of the standard
network stack when dealing with standard HTTP requests. Evaluation
reveals that applications benefit from caching in Jovaku even with hit
rates as low as 5% to 10 %.

Satellite Execution

Proof-of-concept We have extended Jovaku with satellite execution, a generic

cloud execution mechanism that can be instantiated on-demand from
mobile/cloud applications. Satellite execution serializes objects and
moves them for execution in the cloud, enabling low-latency access
to cloud services. This mechanism proved efficient to reduce latency in
key/value databases when executing dependent queries, where several
queries must be executed in-order to complete a logical transaction.

Proof-of-applicability We developed a modern mobile social networking ap-

plication, Dapper. Dapper is a social network that leverages satellite
execution to allow users to create profiles, connect with friends and
share status updates. The application implements the traditional cloud
backend service as mobile functions in the application, and leverages
satellite execution for low latency access to the cloud database. Dapper
has been used by the iAD research group, providing similar functionality
as modern social networking applications.

Proof-of-performance We have performed experimental evaluation, measur-

ing the performance of satellite execution. Further, we provide general
insights into how existing mobile/cloud applications communicate with
the cloud, yielding indications that dependent queries occur in practice.
Looking at a concrete implementation of a social networking application,
we reduced the completion latency from 450 ms to approximately 125 ms
for certain operations.

1.8 Outline

The rest of this dissertation is organized as follows:

Chapter 2 surveys current mobile/cloud platforms and outlines relevant back-

ground information.

Chapter 3 describes the Jovaku architecture, which has potential to save

1.8 / OUTLINE 13

latency when mobile/cloud applications reading static or semi-dynamic
content from the cloud.

Chapter 4 describes the satellite execution extension to Jovaku. Satellite
execution offers a programmatic way to interact with cloud databases to

potentially reduce latency when executing dependent queries.

Chapter 5 presents Picster and Dapper, two mobile/cloud applications lever-
aging Jovaku to reduce communication latency.

Chapter 6 describes experimental evaluation that shows the extent to which
Jovaku can reduce latency for mobile/cloud applications.

Chapter 7 concludes and outlines possible future work.

Background and Related
Work

The first mobile device with a touch screen was created by IBM in 1995, and
had e-mail and Personal Digital Assistant (PDA) features. Since then, many
companies have contributed to shape smartphones as we know them today,
with top models sporting computing resources comparable to those of desktop
computers, and boasting an equally wide range of applications.

The most popular smartphone platforms are currently Android from Google, i0OS
from Apple, and Windows Phone from Microsoft. These platforms all include
a customized Operating System (OS) that provides an isolated execution
platform for mobile applications, and a distribution channel that developers
can use to distribute applications.!

Mobile applications are increasingly dependent on cloud services to enhance
the user experience and to provide necessary infrastructure. For example, cloud
services can be used to save application state, share pictures or social updates,
check for program updates, retrieve ads or to augment the computing power
of mobile devices. This interplay adds architectural complexity, and introduces
new challenges for application developers.

1. Mobile applications are often referred to colloquially as apps; for clarity, we avoid this
shorthand term.

15

16 CHAPTER 2 / BACKGROUND AND RELATED WORK

Il

a) b)

Figure 2.1: A mobile device communicating through a Mobile Network Operator
(MNO) to gain access to the Internet and various cloud services.

This chapter outlines the networking and computational capabilities of modern
smartphones, explains the differences and commonalities of the most prominent
smartphone platforms, and details how mobile applications commonly use and
depend on cloud services in their operation. We review general architectures
for such mobile/cloud applications and describe how they can be designed and
implemented within various programming frameworks.

2.1 Mobile Device Capabilities

Figure 2.1 shows a generic overview of a mobile device and its communica-
tion paths to the cloud. a) is a mobile device that communicates with the
Mobile Network Operator (MNO) in b). Through the MNO, the mobile device

2.1/ MOBILE DEVICE CAPABILITIES 17

Microsoft

hTe
LD

Y

(a) The HTC Dream [62]. (b) The Microsoft Lumia 950 XL [63].

Figure 2.2: Relative size comparison of an early smart phone to a modern smart phone.

can communicate with the cloud in c¢), which hosts a number of different
services.

The MNO offers necessary infrastructure services to enable communication to
and from the mobile device: as a minimum, the Dynamic Host Configuration
Protocol (DHCP) and Domain Name System (DNS) services. DHCP assigns an
Internet Protocol (IP) address to the mobile device, and DNS allows the device
to translate hostnames into IP addresses. These two services are essential
for any device, mobile or stationary, that requires Internet communication.
The MNO can support different communication standards that offer varying
speeds and latencies. The latest commercial standard is called 4G and allows
for theoretical peak speeds up to 1Gbit/s, but most MNOs offer speeds to
consumers in the range of 5Mbit/s to 150 Mbit/s.

Smartphones have improved greatly in terms of computing power and capabil-
ities since their inception. The first smartphone running Android was the HTC
Dream, depicted in Figure 2.2a. The phone was released on October 22, 2008.

18 CHAPTER 2 / BACKGROUND AND RELATED WORK

It was equipped with a 528 MHz Central Processing Unit (CPU), 192 MB RAM
and 256 MB ROM. The display was a 3.2 inch touch screen with a resolution
of 320x480 pixels and 64k colors. In addition, there was a 3.15 megapixel
camera and an accelerometer sensor.

Figure 2.2b depicts Microsoft’s Lumia 950XL, as an example of a modern
smartphone. It is equipped with 2 GHz octa-core CPU, 3 GB RAM and 32 GB
internal flash disk, extendable with a microSD card. The display is a 5.7 inch
touch screen with a resolution of 2560x1440 pixels, with 16M colors. The
camera has a 20 megapixel lens, capable of 4K video recording at a rate of
30 frames/second. The phone is also packed with sensors, including a gyro-
scope, magnetometer, barometer, compass, proximity sensor, 3D-accelerometer,
ambient light sensor, iris scanner, Bluetooth, Global Positioning System (GPS),
and Near Field Communication (NFC). These specifications are comparable to
modern desktop computers, but the variety and complexity of the hardware
impose many new requirements on the OS.

2.2 Mobile Operating Systems

To manage resources efficiently, smartphones have their own 0Ss, of which
Android, iOS, and Windows Phone are the most popular. Figure 2.3 shows an
overview of the Android architecture. Android has a modified Linux kernel
running at the lowest layer, interfacing with the underlying hardware. This
layer hosts drivers for the different hardware sensors and components. While
most of the changes to the Linux kernel pertains to access control for driver
interfaces, some new functionality has also been added. This includes the new
YAFFS2 filesystem for NAND flash drives, a low-memory process killer, and a
new power management system [65].

At the next layer, various libraries offer functionality such as cryptography,
graphics, and media frameworks. There is also a lightweight standard C library
that has a smaller footprint than the GNU C library used in Linux. This layer
also contains hardware abstraction libraries and storage services, such as the
Android frame buffer and sQLite. The frame buffer replaces the X11 graphics
system found in Linux. SQLite acts as the backend for most platform data
storage. Windows Phone and i0S have similar backends, called Isolated Storage
and Core Data, respectively.

Applications running on the Android platform can utilize services offered by the
application layer to enrich the experience. For example, the Notification Man-
ager offers a common mechanism for delivering notifications to the user. The
manager can, for example, delay notifications if the user is in a phone call. On

2.2 / MOBILE OPERATING SYSTEMS 19

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

Activity Window Content View Notification
Manager Manager Providers System Manager

Package Telephony Resource Location XMPP
Manager Manager Manager Manager Service

LIBRARIES ANDROID RUNTIME

Surface Media
Manager Framework

Core

—— Libraries

LiNUX KERNEL

Display Camera Bluetooth Flash Memory Binder (IPC)
Driver Driver Driver Driver Driver

UsB Keypad WiFi Audio Power
Driver Driver Driver Drivers Management

Figure 2.3: Overview of the Android system architecture [64].

the Windows Phone platform, similar functionality is found in the Notification
Service, and iOS applications can use the Core Notification Framework.

Another example is the Android Location Manager, which offers current GPS
coordinates to applications that desire information about the geographical loca-
tion of the mobile device. The purpose of this service is to have a central place
to acquire coordinates, so that the interactions with the actual GpS hardware
is minimized, and the manager can offer cached coordinates if applications
concurrently query for location. Figure 2.4 shows how an Android application
utilizes the Location Manager to retrieve updated GPS coordinates, and which
components are activated as part of servicing the query. On the Windows Phone
platform, the geographical location service is called the Location API, and on
ios it is known as the Core Location Framework.

2.2.1 lIsolated Execution

According to a Nielsen survey [66], an average smartphone user actively used
more than 26 applications every month in Q4 2013. With application areas

20 CHAPTER 2 / BACKGROUND AND RELATED WORK

APPLICATIONS :
Binder IPC

Application

APPLICATION FRAMEWORK

Location Manager Service

\/

GpslLocationProvider

J’ NI

LIBRARIES
GpsLocationProvider

¢ Dynamic load

libgps.so
I

LINUX KERNEL |

A4

Kernel Driver

Figure 2.4: How the Location Manager is used on Android [64].

varying from banking and finance, to social media and games, securing the
information of each application is essential. A game should not be able to access
account information from a bank application, and vice versa.

Isolated execution platforms are used to isolate the execution of application
code from the underlying 0S and from other applications. They ensure that
any failures or anomalies are contained in an isolated environment and do not
affect the performance or correctness of the OS or other applications.

An isolated execution platform can be implemented using both software
and hardware approaches. Hardware techniques will generally promise the
highest level of isolation. Using low level CPU instructions, two-way isolation
between executing code and the OS can be achieved, for example with ARM
TrustZone [67] or, on Intel x86-64 CPUSs, Software Guard Extensions (SGX) [68].
Several academic works investigate the benefits of hardware techniques for
isolation. [69] leverages ARM TrustZone to build a trusted runtime that allow
applications to execute in an environment isolated from the 0s and other
applications. Similarly, [70] utilizes Intel SGX to provide a mutually distrusted
execution environment for unmodified applications.

The most prevalent software approach to isolation on mobile devices is virtu-
alization [71]. A major advantage with virtualization is that the application
developer can disregard the underlying hardware platform, and deploy the

2.2 / MOBILE OPERATING SYSTEMS 21

App 3

Guest OS

Bins/Libs

Bins/Libs

Guest OS

cuestOS N apt
App 1
Bins/Libs Bins/Libs Bins/Libs
Host Operating System Operating System

Infrastructure Infrastructure

App 2 App 3

OE S O8O

(a) Applications running in a VM. (b) Applications running in Docker.

Figure 2.5: Difference between applications running in a vM and Docker [74].

same application on different CPU architectures.

Virtualization can be achieved on several levels of the software stack, ranging
from a full fledged Os running on top of a hypervisor, to process virtualization,
where an application is hosted in isolation inside another process. Figure 2.5a
illustrates a hypervisor, such as VMware [72] or Oracle VirtualBox [73], isolating
the execution of an entire guest OS and its applications. In comparison,
Figure 2.5b shows how Docker [74], a process virtualization engine, isolates
the execution of applications. While the hypervisor approach may offer more
complete isolation, it also carries the additional cost of initializing and hosting
the virtual guest OS.

2.2.2 Application Runtime

Mobile 0Ss generally implement an application runtime that serves as an
isolated execution platform for applications. On Android, a process virtualiza-
tion technique is used, where applications can be implemented in Java and
are executed on top of a Virtual Machine (vM) based on the Java Virtual
Machine (JvM) specification. This way, applications are isolated from the
underlying Android 0S, and need not relate to a variety of concrete machine
architectures.

Windows Phone is based on the Windows kernel, and has an application runtime
called the Windows Runtime (WinRT), where applications are written in C# or

22 CHAPTER 2 / BACKGROUND AND RELATED WORK

Resources &
Native Code

zip
Source e Dex File APK PaCkage
install
Resources & ¥ t I l
Dex File Native Code nsita
) dexopt , dex2oat dex & native code
quickened dex
>
L ELFFile 3
File

! 7) l W | Libraries

Figure 2.6: Lifecycle of an Android application from source to running, both on Dalvik
and ART [76].

another .NET language. Apple’s iOS is based on the FreeBSD XNU kernel, and
features a proprietary Objective-C runtime system. Applications are written in
Objective-C, or in higher-level languages that compile into Objective-C, such
as Swift [75].

The first JvM implementation that was used on Android is called Dalvik. Dalvik
applications are written in Java, and compiled using a regular Java compiler to
bytecode for the JvM. The Java bytecode is then translated to Dalvik bytecode
using a tool called dx. This tool collects all of the Java class files that comprise
an application and converts them into a single Dalvik Executable (DEX) file,
which resembles a Java Archive (JAR) file, but conserves space by coalescing
duplicate strings and constants.

A DEX file can be bundled along with resource files, such as graphics, and
compressed into an Android Application Package (APK) file, which is the
package format used to distribute and install application software on Android.
Upon installation on the mobile device, Dalvik will further optimize the
DEX file by inlining data structures and functions into an optimized version
called Optimized Dalvik Executable (ODEX). When executing the application,
bytecodes are interpreted, but Dalvik will continuously profile the execution
and compile frequently executed segments of bytecode into native machine
code using a Just-In-Time (JIT) compilation technique.

On Android 5.0, Dalvik has been replaced in favor of the new Android Runtime
(ART), which takes the approach of compiling the entire application to native

2.2 / MOBILE OPERATING SYSTEMS 23

C# Source Code

g
73 C# Compiler
a
Intermediate
C# Source Code Language

]

5

T C# Compiler _g MDIL Compiler
>

a 5
vy

Intermediate _g MDIL Code
Language o

=} o

3]

a 3

(4] - v

5 Machine Code 5

£ =

(a) Windows Phone 7 (b) Windows Phone 8

Figure 2.7: Lifecycle of an Windows Phone application [78].

machine code during installation to the mobile device. While this incurs some
additional cost at install time, ART demonstrably improves overall execution
efficiency and reduces power consumption [77].

A similar evolution has occurred on the Windows Phone platform. On Win-
dows Phone 7, the source code was compiled into Common Intermediate
Language (CIL), which is the intermediate format for all .NET languages, and
then converted to binary machine code using JIT compilation every time a
method was invoked. However, JIT compilation can add significant overhead
as it entails both parsing of metadata, code validation, and compilation into
machine code. To make matters worse, the compiled code was discarded when
the application terminated, and thus recreated from scratch every time the
application executed.

This was changed in Windows Phone 8, by using a cloud service to compile the
CIL image of the application into a Machine Dependent Intermediate Language
(MDIL) representation before installing the application on the mobile device.
MDIL is a format that resembles the final machine code, but has placeholder
tokens for platform specific machine code. These placeholders are replaced
during installation on the device to optimize for specific hardware.

With several different mobile 0OsSs, all having different runtimes and employing
different programming languages, developers face challenges when developing
applications that target multiple platforms. Even for simple applications, this

24 CHAPTER 2 / BACKGROUND AND RELATED WORK

Xamarin
NET

Xamarin.Forms

Xamarin.iOs Xamarin.Android

Windows

Android Phone

Figure 2.8: The Xamarin platform binds native iOS and Android SDKs to the .NET
platform [79].

demands more experience from developers, and can escalate costs as a result
of code duplication across languages.

Xamarin [80] is a developer platform that seeks to address this problem by
allowing developers to code native, cross-platform Android, iOS and Windows
Phone applications in C#. It contains ported versions of .NET for iOS and
Android, called Xamarin.iOS and Xamarin.Android, respectively. These exist
to create .NET bindings to the native Software Development Kits (SDKs), so
that the features of the underlying OS can be accessed from C#. Based on
this, Xamarin builds a stack of abstractions that offers a unified way to create
portable applications, as shown in Figure 2.8. This allows developers to create
rich user interfaces and use native features like notifications, graphics, and
animations from a shared C# code base that works for all platforms.

The richness of interfaces and functionality available to a mobile application
simplifies the use of advanced hardware and sensors on the device. But mobile
applications often need more resources than the device can provide, and will
to varying degrees rely on cloud services to provide additional functionality-
enrichment.

2.3 Cloud Services

There exist a plethora of cloud services available for mobile devices. For example,
Google Maps can be used in conjunction with a device’s GPS service to provide a

2.3 / CLOUD SERVICES 25

real world map with indicators where the device is located, perhaps augmented
with some points-of-interests close by. Microsoft offers similar service through
Bing Maps, and Apple has Apple Maps.

Other popular cloud services such as Google Gmail provide e-mail, calendars
and contacts, and will push out notifications for new e-mails received, sched-
ule reminders for calendar events, and keep contacts in-sync across devices.
Microsoft have the same offerings through Outlook and Apple has iCloud.

The mobile device local storage can be expanded by automatically uploading
pictures taken with the camera to a cloud storage service. Google Drive,
Microsoft OneDrive, Apple iCloud, Dropbox, and MEGA are only a few of the
providers that will let you automatically upload photos. All of them offer
an initial free capacity ranging from 1GB to 50 GB of storage, that can be
expanded by paying a fee.

There are also cloud picture services that have an additional social aspect.
These services allow other users to view, share, and comment on uploaded
pictures. Among the most popular offerings we find Instagram, Pinterest, Flickr,
and Photobucket.

YouTube has a similar social service for videos. With 65 hours of new videos
being uploaded every minute [81], YouTube is the largest video sharing network
in the world. Other social networking services can provide features beyond
image and video storage and sharing. Twitter, for example, offers sharing
of short messages, while LinkedIn offers sharing of work experience and
education.

The biggest social network is Facebook, with its 1.3 billion users [82]. Of these,
680 million users access the network from a mobile device. Facebook offers a
compound way for users to interact with each other, with both picture sharing,
status updates, event and group communication, and a platform for developers
to create extensions like games or even stores selling actual products.

These cloud services are architected in different ways, but common building
blocks are storage and computation services. Storage services can range from
block storage to column and object-oriented databases. Mobile applications
use storage services for content, user profiles, authentication, and session state.
Furthermore, cloud services that serve content in one way or another will most
likely utilize geographically distributed storage, as well as advanced caches
and indexes to lower the latency for users requesting content.

Compute resources can be anything from containers hosting scripts, distributed
frameworks for analytical computations, to full-fledged vMs. For example,

26 CHAPTER 2 / BACKGROUND AND RELATED WORK

S [] /D\ e

a) e)

Figure 2.9: Illustration of a generic cloud video sharing service. Videos are uploaded
from a recording capable device at a) to a cloud front-end at b), before they
are stored in a cloud database at ¢). Compute resources will re-encode
the video in various formats at d), before consumers can request a format
suitable for the viewing device at e).

compute resources can be used to produce images scaled and optimized for a
particular mobile device screen size. In a similar fashion, cloud video services
utilize compute resources to scale and re-encode videos to optimize viewing
for the requesting device.

Figure 2.9 illustrates how a generic video sharing service could be architected
as a cloud service by composing other basic services. Video is recorded and
uploaded from a recording device at a) to a front-end in the cloud at b) which
exposes a public Application Programming Interface (API). Internally the cloud
service will store the video in a database at ¢), and instruct compute resources
at d) to re-encode the video in multiple formats for consumers. Consumers at
e) can then in turn access the public API and request a version that fits the

2.4 / DEVELOPING MOBILE/CLOUD APPLICATIONS 27

display capabilities of the requesting device.

Common for most cloud services is that heavy analytical computations are active
under the surface, producing recommendations and deducing trends based
on user activity. These computations can span multiple dedicated datacenters,
running incremental MapReduce [83, 38, 84] jobs to continuously compute
the latest trends and recommendations for the users of the network.

Applications utilizing these services do not have to consider the underlying
complexity, and are instead presented with a well formed RESTful [85] API
allowing usage from different devices all over the world.

Previously, these cloud services consisted of proprietary code running on VM-
based offerings from cloud providers such as Amazon. Designing new cloud
services that could compete with existing services was expensive, not only in
terms of infrastructure cost, but also in terms of development costs and required
experience. To ease development of new cloud services, a class of modular cloud
services is emerging that factors out the most common functionality of cloud
services into more generic and reusable frameworks.

2.4 Developing Mobile/Cloud Applications

Parse [86], Google Cloud Platform [87], and Amazon Web Services [88]
have platforms that offer modular cloud services. These platforms offer a
modularized approach to designing mobile applications that depend on cloud
services. Functionality provided by the modules include user authentication
and session storage, communication and connectivity with other users, and
process management and computations.

Depending on the application, user identification can be needed in varying
degrees. Either to associate data with a specific user, or to facilitate location
of other users in the application. User authentication can either be implicit
by unique device identifiers, or explicit with a username and password. User
authentication on most modular cloud platforms can use new credentials
created in the application, or make use of an existing profile from e.g. a social
network through the OAuth [89] protocol. On the Google Cloud Platform this
functionality is found in the users feature of Google App Engine. Amazon offers
similar functionality through their Amazon Cognito service, and Parse has the
ParseUser class.

Knowing how users actually use an application is important to further improve
the quality and evolution of an application. And as the content grows beyond

28 CHAPTER 2 / BACKGROUND AND RELATED WORK

GOOGLE
CLouD
MESSAGING

APP COMPUTE
cLoup - EW TASK
- [2]
H °:anmms (03 ENGINE &8 QUEUES e ENGINE

- Application Storage Image Storage

CLOUD CLOUD BIG
ﬁ EMEMCAC”E @nnmsrons o STORAGE 2P query

Figure 2.10: Example architecture of a mobile/cloud application composed of cloud
modules from the Google Cloud Platform [87].

users’ ability to easily digest it, filtering of content based on the user’s prefer-
ences and previously digested content might be advantageous. These insights
can be learned through analytical computations. Analytical computations, both
streaming and batch oriented, can be implemented using Google’s Dataflow,
Amagzon Mobile Analytics or ParseAnalytics. These systems allow developers to
seamlessly tap into virtually limitless computational power to analyze trends
and behaviors, and provide users with content recommendations.

The modular cloud platforms also provide modules for sending notifications to
mobile devices, content distribution, and the ability to execute custom code in
the cloud. Usually this custom code is expressed in JavaScript using an SDK
from the provider, and executed in response to a GET request from a mobile
device.

Figure 2.10 illustrates an example mobile/cloud application architecture com-
posed of cloud modules from the Google Cloud Platform. The mobile application
and the corresponding cloud service are typically developed in tandem. The
cloud service executes in the App Engine module, and the platform will auto-
generate a RESTful API and associated client libraries based on annotations
in the service code. The application can in turn utilize the library to access
the service through the Cloud Endpoints. The App Engine uses autoscaling
to handle dynamically changing workloads and Memcache provides a shared,
in-memory cache to speed up access to recently accessed data. Cloud Datastore

2.5 / MIDDLE TIERS 29

provides the application with schemaless object storage with a SQL-like query
language, while Cloud Storage distributes static content like graphics and media.
Notifications can be sent to both Android and IOS devices, using Google Cloud
Messaging and the Apple Push Notification service, respectively.

2.5 Middle Tiers

Mobile/cloud applications have multi-tiered architectures by definition. with
a presentation tier running on the mobile device and logic and data storage
tiers running in the cloud. Depending on the application, the architecture may
have one or more middle tiers positioned on the communication path between
the presentation tier and the logic and data storage tier. Figure 2.11 identifies
three general areas where a middle tier can be positioned to augment the
functionality of the application; a) in the local network, b) between the local
network and the cloud, and c) in the cloud.

ﬁ

(o]
N 4 —

a) Local network b) ¢) Cloud

Figure 2.11: Potential locations a middle tier can be positioned to augment
functionality of a mobile/cloud application. In the local network close to
the mobile device a), on the communication path to the cloud b), or in
the cloud ¢) close to the cloud service.

By placing a middle tier in the same local network as the mobile device, the
middle tier can communicate with the mobile device with low local network
latency. Comet [22] and Cloudlets [21] exploit this low latency communication
to increase the available computational resources for the mobile application
by offloading the whole or parts of an application to execute in a VM on
a local server. In some cases Comet observed a geometric mean speedup of
2.88x for unmodified applications, compared to running directly on the device.
MAUI [24] uses a profiler to dynamically offload code to a local MAUI server
to save energy consumption on mobile devices.

Between the local network and the cloud, Content Distribution Networks

30 CHAPTER 2 / BACKGROUND AND RELATED WORK

(CDNs) [26] can be used to distribute static application content from the
cloud closer to mobile devices. A CDN consists of three main components: a
distribution system, a request routing system and a number of geographically
distributed replica servers. The distribution system replicates data marked for
distribution from the origin to the globally distributed replica servers. The
request routing system redirects requests from clients to a nearby replica to
reduce latency.

Having a middle tier in the cloud will increase the communication latency
for mobile devices compared to a middle tier situated in the local network,
but will significantly reduce latency to cloud services and increase available
computational resources. Since the cloud is globally available, availability can
also improve when mobile devices roam outside the local network.

The motivation for having a middle tier in the cloud can also be to reduce power
consumption on the mobile device, or to increase application performance.
CloneCloud [23] is similar to Comet, but uses cloud resources to host the vM
instead of local servers. Their experiments show that some applications can
achieve as much as a 20 x execution speed-up and a 20 fold decrease in energy
consumption.

Offloading of code from mobile devices to a middle tier can be architected
in different ways. Both Comet and CloneCloud are using a profiler to decide
which parts of the code to offload. Developing an application with explicit
offloading mechanisms can increase opportunities for code offloading, since the
developer will have better insight into what the application seeks to accomplish.
Sapphire [2] has chosen this approach by designing a distributed programming
platform that allows developers to annotate methods in the application that
should be offloaded.

As more and more mobile applications offload execution of code to local servers
or to the cloud, new challenges arises in determining priorities to make timely
responses. These challenges are exacerbated by the varying quality of mobile
networks that handle the communication between the devices and the servers.
Timecard [14] attempts to address these issues by having a machine learning
algorithm adapt its processing time, making a trade-off between response
quality and processing time to keep the end-to-end delay for the request below
a given threshold.

Offloading code from mobile devices to a middle tier can have several benefits.
If the code must access sensitive data, security can be improved by offloading
the code and not having the sensitive data stored on local devices. Consistency
across multiple devices can be achieved by using a centralized cloud service.
Computational resources can be increased by utilizing the elastic nature of

2.6 / SUMMARY 31

the cloud. Power consumption can be decreased by offloading computational
intensive tasks to external servers. And latency can be decreased by having
low-latency access to external resources.

However, there are disadvantages by relying on a middle tier as well. Having an
application depend on external resources for normal functionality, can restrict
the application if the network or cloud provider should be unavailable. Storing
data in the cloud can pose privacy issues where computations involve data with
confidentiality constraints, or governmental compliance or export restrictions.
And depending on external vendors or services can lead to vendor lock-ins,
incurring substantial switching costs.

2.6 Summary

This chapter surveyed modern smart phone architectures, and how cloud ser-
vices are used to enhance the user experience on mobile devices. Applications
run in isolation on mobile devices with limited computational resources, and
communicate with cloud services that draw upon the elastic nature of the
cloud, appearing to have unlimited computational resources. Considering the
roaming nature of mobile devices, with slow network links exhibiting high
communication latencies, the communication path to the cloud could prove to
be the dominant bottleneck. Previous work has investigated how to reduce this
latency by utilizing a middle tier component in various configurations. In the
coming chapters we present our own efforts to create a middle tier component
that reduces communication latency for mobile/cloud applications.

Optimizing Reads from the
Cloud

Cloud database services are convenient building blocks for mobile/cloud appli-
cations. By serving as a highly available and resilient point of contact, a central
cloud database service can greatly simplify the architecture. For example,
devices can locate peers simply by looking up the relevant membership
information in the cloud, and configuration or software updates can be retrieved
from a central location. A generic cloud database service can cover these needs
while guaranteeing both availability and scalability, alleviating any concerns
that the central component should become a bottleneck.

A downside of relying on a cloud database service is that all devices must
communicate directly with the central service, generating load that translates
into increased operational costs. A natural step to reduce both latency, load,
and the associated charges from the cloud service provider would be to employ
caching of data outside the cloud, closer to the client devices. However, this
introduces new architectural complexity, in the form of a separate caching
infrastructure that must be deployed as a middle tier between the devices and
the cloud.

Our overall goal is to build a generic middle tier that exploits existing infrastruc-

ture to reduce latency for mobile/cloud applications. Given the popularity of
cloud database services, and the apparent opportunities for reducing latency

33

34 CHAPTER 3 / OPTIMIZING READS FROM THE CLOUD

through caching of database values, we initially focused on this use case.

It is common practice for cloud services to employ caching systems such as
Memcached [90] and Redis [91] to alleviate database load. These systems are
effective in reducing service latency and financial costs, but operate within the
cloud infrastructure. Content Distribution Networks (CDNs) employ caching
facilities in close proximity to clients [92, 93, 94, 95, 96]. These networks reduce
the demand on centralized servers for distribution of web and, in particular,
multimedia content. The networks operate by routing a client request to a
server holding a copy of the requested content. The content has often been
pushed in advance to the replica server by the provider, to prepare for expected
demand. This pre-copy approach is not suitable for the dynamic nature of
database content.

First we considered the optimal placement of a middle tier that performs
caching. Looking at the architecture of a mobile network in Figure 2.1, we
identified three potential locations: Close to the mobile device, in the Mobile
Network Operator (MNO) infrastructure, and between the MNO and the cloud.
Placing the middle tier close to the mobile device would provide very low latency
lookups, but fewer devices would be able to share the same cache. Conversely,
placing it between the MNO and the cloud would allow more devices to share
the same cache, perhaps leading to a higher hit rate, but potential latency
savings for individual cache hits would decrease.

Placing the middle tier in the MNO infrastructure would provide a good
compromise, with many devices sharing the same cache while still maintaining
low latency access. Deploying new components in the MNO infrastructure
would be both costly and practically infeasible. However, when considering
the range of existing infrastructure, we realized that the Domain Name System
(DNS) was a potential starting point, since it is globally available for all devices
connected to the Internet, and essentially implements a distributed cache. We
therefore decided to investigate if DNS could serve as the foundation for a
generic database caching layer that meets our requirements.

This chapter presents the result: the Jovaku system [58]. By relaying database
operations through the DNS protocol, Jovaku allows results to be cached
temporarily in existing servers close to the clients, with corresponding savings
in latency and reductions in load on the central database service. Since the
DNS service is ubiquitous, and in practice considered to be an integral part
of being connected to the Internet, the availability of this caching layer is
unparalleled. Our approach is generic and reusable across both database
services and applications, and does not require any special devices capabilities
beyond a standard network stack.

3.1/ THE DOMAIN NAME SYSTEM 35

In the rest of this chapter we first outline the basic features of DNS, and
elaborate on why we chose to build on DNS for Jovaku. Then we detail the
overall architecture of Jovaku and the implementation.

3.1 The Domain Name System

DNS is a hierarchical naming system [97] designed for high availability, com-
prising a worldwide network of name servers that communicate with clients
and with each other using the DNS protocol. Its most common use is to associate
human-readable domain names, such as google.com, with numeric 1P addresses
such as 109.105.1609.219.

The domain namespace is partitioned into zones, for which administrative
responsibility has been delegated to separate managers. A zone has one or
more authoritative servers responsible for replying to DNS queries pertaining
to the zone. Queries are usually lookups for specific labels, which are associated
with Resouce Records (RRs) of various types. For example, an 1P address is of
type A for 1Pv4 and AAAA for 1PV6, an MX record identifies a mail server, and a
geographical location can be stored in a LOC record. Arbitrary text values can
be stored using TXT records. A single label can also group multiple RRs into a
Record Set (RS).

Although not intended to be a general purpose database, DNS is used for
more than just resolving Internet names. Spotify, for example, uses DNS
both to locate access points, to prioritize servers, and to store Distributed
Hash Table (DHT) configuration for thousands of servers, serving tens of
millions of users [98]. Another example of innovative DNS applications is
David Leadbeater’s Wikipedia over DNS service [99]. With the service, clients
can issue DNS queries for Wikipedia articles and receive TXT replies with an
excerpt of the contents.

DN also supports updates, although these tend to be rare in the context of
mapping domain names to IP addresses. Updates can overwrite old records or
append new records to record sets. Transactions can be used to perform multi-
ple updates atomically, subject to specified preconditions being satisfied.

Caching plays a central role in DNS. Every record has several associated Time
To Live (TTL) values that specify how long the record can be cached at various
levels of the system. Updates must be sent to an authoritative server for the
zone. Lookups, on the other hand, can be served by any server that has the
relevant records in its cache, subject to TTL constraints. If a server receives a
query that cannot be served from its cache, it will forward the request to one

36 CHAPTER 3 / OPTIMIZING READS FROM THE CLOUD

of the authoritative servers for the zone. There is no cache coherency protocol;
instead, the TTL values determine how long it may potentially take for an
updated value to become visible to all clients.

The appeal of using DNS in our research stems from its maturity. DNS is already
deployed and proven to work on a global scale, with extremely high availability.
By experimenting with DNS, we can thus obtain truly realistic results for a
globally distributed system, for example with regards to latency measurements.
The basic functionality of DNS corresponds well with the features found in a
NoSQL database, and at its core, DNS is a distributed cache. This makes our
overall approach feasible.

Having a weak consistency model, DNS imposes certain limitations. For in-
stance, applications may want to control the contents of their cache by in-
validating cached values. This is not directly supported by the DNS protocol,
which relies on the simple TTL system. However, [100] proposes a proactive
DNS cache update protocol to provide strong consistency for cached DNS
values.

DNS imposes no access restrictions for lookups, so anyone can read data that is
cached in DNS, provided they know or can guess the relevant labels. Sensitive
data must therefore be encrypted by applications before storing it in the
database, although this may arguably be a sensible precaution anyway:.

With Jovaku, there is the concern of disrupting regular name resolution traffic
with application-specific database caching that should have been deemed less
important. Still, the load imposed on DNS by our approach needs not be
excessive, and from an overarching point of view, caching can serve to reduce
the total load on the network as a whole. Another option is to use one DNS
server for regular domain name resolution while another DNS server, such as
Google’s public DNS server, is used for database caching.

In summary, this chapter shows how certain applications can make signifi-
cant performance gains by leveraging the freely available DNS infrastructure.
They are relevant and potentially useful both for improving current DNS
infrastructure, and for building middle tier caching services that are deployed
independently of DNS.

3.2 Jovaku Architecture

Jovaku relays database operations through the DNS protocol, allowing results
to be cached by DNs servers close to the clients. The key space of the database

3.3 / THE RELAY-NODE 37

is mirrored as labels in a specific domain, whose authoritative name server
runs in the cloud, acting as a relay-node. This exposes the database for reading
by any and all DNS resolvers, such as the common dig utility. For example, if
a database mirrors its key space as labels in the jovaku.com domain, resolving
the label x.jovaku.com will yield the database value associated with the key
X.

Figure 3.1 shows how an application will access a cloud database with and
without Jovaku. The baseline behavior is to use an Application Programming
Interface (API) to directly access the database service, as in Figure 3.1a. These
requests are usually sent over HTTP, and will have a constant cost equal to
the round-trip time of the communication path to the cloud that hosts the
database.

With Jovaku, requests are sent over the DNS protocol to the local DNS server,
which will forward lookups to the relay-node if they cannot be served from its
local cache. Lookups that miss the cache thus take a slight detour, as illustrated
in Figure 3.1b. To minimize this detour, the relay-node should be deployed
in the cloud, close to the database service. On the other hand, lookups that
hit the cache will only make a short round-trip to the local DNS server, as in
Figure 3.1c, with a corresponding improvement in latency.

Updates can either be submitted over the DNS protocol, through the relay-
node, or use the API and go directly to the cloud database over HTTP. Barring
routing artifacts that favor one protocol over the other, going through DNS
will generally not improve latency for updates, since there is no potential for a
cache hit. The required access credentials will differ, however. Performing an
update through DNS requires a transaction signature (TSIG) that matches keys
stored at the authoritative name server, while the database API will generally
implement a separate access control mechanism.

As detailed in the next section, our current implementation of this architecture
targets the Amazon DynamoDB [101] cloud database service. However, the
general access pattern is not specific to DynamoDB, and should be the same
for any other underlying database service.

3.3 The Relay-Node

Our implementation targets Amazon DynamoDB, a popular NoSQL cloud
database service, and can potentially be adapted to work with any similar
services. To obtain the lowest possible latency for database operations, we
provisioned an Amazon EC2 instance in the same availability zone as the

38 CHAPTER 3 / OPTIMIZING READS FROM THE CLOUD

(a) Baseline (without Jovaku).

Clo

(b) Cache miss with Jovaku.

&)-
~

(¢) Cache hit with Jovaku.

=) HTTP requests/replies (DynamoDB API)
- = DNS requests/replies

Figure 3.1: Database lookups with and without Jovaku.

3.3 / THE RELAY-NODE 39

DynamoDB service. For our authoritative name server we had the choice
between implementing a new server from scratch or modifying an existing
server to suit our needs.

Since we seek to exploit existing infrastructure in this dissertation, we chose the
latter, and installed the standard Berkeley Internet Name Domain (BIND) [102]
server. BIND is the most widely used name server, and supports Dynamically
Loadable Zone (DLZ) drivers [103]. DLZ drivers are customized extensions for
BIND written in C, that implements specialized resolution of DNS queries for
a zone. The idea was to implement a DLZ driver that handles all interaction
with DynamoDB, and avoid touching the stable code base that implements core
BIND functionality. An overview of the composition of the resulting relay-node
can be seen in Figure 3.2.

Amazon DynamoDB

DLZ Driver

Name Server

Relay Node

Figure 3.2: Overview of the Jovaku architecture.

While Amazon provides official Software Development Kits (SDKs) for the
DynamoDB service in several programming languages, there is no C version
of this SDK. So to enable our DLZ driver to access DynamoDB, we also
implemented a C version of the DynamoDB SDK, according to Amazon’s
specification [104]. Our implementation uses the curl [105] library to drive
HTTP traffic, the jansson [106] library for formatting and parsing requests and
responses in JavaScript Object Notation (JSON) format, and the BeeCrypt [107]
library for generating cryptographic signatures. The resulting DLZ driver with
the required Amazon DynamoDB operations encompasses 1439 source lines
of code.?

We have used TCP tracing to verify externally that our implementation behaves
similarly to Amazon’s official .NET SDK, and has identical performance. For
both implementations, the time to execute a request is dominated by the latency
of the HTTP request. The time needed to construct the request and parse its

1. Determined using David A. Wheeler’s ’SLOCCount’.

40 CHAPTER 3 / OPTIMIZING READS FROM THE CLOUD

reply is insignificant. In a trial with 1000 requests, both implementations
performed withing +3 ms of the latency measured from the test machine to the
Amazon DynamoDB node. Both implementations reuse the same connection
for consecutive HTTP requests.

Code Listing 3.1: The interface that needs to be implemented to create a DLZ driver.

// Initialization and destruction of driver

isc_result_t dlz_create(const char xdlzname, unsigned int argc,
char xargv[], void *xdbdata, ...);

void dlz_destroy(void *dbdata);

// Verify driver belongs to zone
isc_result_t dlz_findzonedb(void *dbdata, const char *name);

// Lookups
isc_result_t dlz_lookup(const char *zone, const char xname,
void *xdbdata);

// Zone transfer

isc_result_t dlz_allowzonexfr(void xdbdata, const char xname,
const char xclient);

isc_result_t dlz_allnodes(const char xzone, void *dbdata,
dns_sdlzallnodes_t *allnodes);

// Dynamic DNS Updates
isc_result_t dlz_configure(dns_view_t *view, void =*dbdata);

isc_boolean_t dlz_ssumatch(const char xsigner, const char *name,
const char xtcpaddr, const char *type, const char xkey,
uint32_t keydatalen, uint8_t xkeydata, void *dbdata);

isc_result_t dlz_newversion(const char *zone, void x*dbdata,
void **xversionp);

void dlz_closeversion(const char *zone, isc_boolean_t commit,
void xdbdata, void *xversionp);

isc_result_t dlz_addrdataset(const char xname, const char xrdatastr,
void *dbdata, void *xversion);

isc_result_t dlz_subrdataset(const char *name, const char xrdatastr,
void *dbdata, void xversion);

isc_result_t dlz_delrdataset(const char *xname, const char xtype,
void *dbdata, void xversion);

DLZ drivers are compiled into dynamically linked libraries that are loaded
at runtime into the name server. BIND specifies a DLZ interface that drivers
must implement; this interface is listed in Code Listing 3.1. When a zone is
configured to use a DLZ driver, queries for that zone are directed to the driver,
through the DLZ interface. To configure BIND to use our DLZ implementation

3.3 / THE RELAY-NODE 41

for the jovaku.com domain, using our DynamoDB table named “dns”, we enter
the following in named.conf:

dlz “jovaku.com” {
database “dlopen dlz_dynamodb.so jovaku.com dns”;

};

This will instruct BIND to load our DLZ implementation and invoke the
dlz_create function with “jovaku.com” and “dns” in the argument list. Our
implementation of dlz_create will initialize curl, set up necessary data struc-
tures and send an initial query to Amazon DynamoDB requesting the Start of
Authority (S0A) record and the associated Name Server (NS) records from the
“dns” table. These records must be supplied with all replies, so caching them at
startup will improve performance. Table 3.1 shows the layout of the DynamoDB
table. The SOA and NS records have an @ prefix to distinguish zone authority
from regular labels.

After the DLZ driver has been initialized, BIND will only invoke it for function-
ality that relates directly to the resolution of labels in the zone specified. The
driver does not concern itself with the management of client connections,
decoding of requests, or formatting of responses. To help the DLz driver
communicate responses back to BIND without relating to the specifics of
the DNS protocol, BIND provides a set of callback functions—as seen in Code
Listing 3.2—that should be used to pass results back.

Code Listing 3.2: Callbacks provided by BIND, for communicating results from the
DLZ driver back to BIND.

typedef void log_t(int level, const char *xfmt, ...);

typedef isc_result_t dns_sdlz_putrr_t(dns_sdlzlookup_t *lookup,
const char xtype, dns_ttl_t ttl, const char xdata);

typedef isc_result_t dns_sdlz_putnamedrr_t(
dns_sdlzallnodes_t xallnodes, const char *name,
const char xtype, dns_ttl_t ttl, const char xdata);

typedef isc_result_t dns_dlz_writeablezone_t(dns_view_t x*view,
const char *zone_name);

When receiving a DNS query, BIND will invoke the dlz_lookup function
with the label being queried along with the zone. The DLz driver will then
issue an Amazon DynamoDB query with two key conditions: (1) the label is
concatenated with the zone to create a hash key that will match the Label

42 CHAPTER 3 / OPTIMIZING READS FROM THE CLOUD

Table 3.1: Layout of the DynamoDB table.

Label Type Data TTL

@.jovaku.com. SOA nsi.jovaku.com. robert.cs.uit.no. 1337 3600

3600 30 3600 10

@.jovaku.com. NS {“ns1.jovaku.com.”, “ns2.jovaku.com.”} 3600
nsi.jovaku.com. A {“54.154.89.61"} 3600
ns2.jovaku.com. A {129.242.19.1537} 3600
x.jovaku.com. TXT {“Some example data”} 10
y.jovaku.com. TXT {“This data will not be cached”} 0
z.jovaku.com. TXT {“Data item1”, “Data item2”} 60

column in our database and (2) a range query over all possible types from
the Type column. The results are passed to BIND using the dns_sdlz_putrr_t
callback. The cached authority section retrieved when initializing the DLZ
driver is also passed back to BIND.

The two functions d1z_allowzonexfr and dlz_allnodez are related to zone
transfer. This functionality has traditionally been used by slave name servers
to obtain an updated copy of the zone file. This has also been used by some
domain registrars that require correctness in the zone information to uphold
pointers to the authoritative name servers [108]. dlz_allowzonexfr returns
success for zones that are managed by the driver to indicate that zone transfers
are allowed. d1z_allnodez will retrieve all entries belonging to the given zone,
and pass them to BIND for transfer.

The remaining functionality of the DLZ driver is related to Dynamic DNS, which
enables updates to DNS data. The dlz_configure function simply queries
the DLZ driver whether dynamic DNS is supported or not. dlz_ssumatch will
present the DLZ driver with both the key and the TCP source address of the
entity that attempts to start a new update transaction, so that authentication
can be performed.

dlz_newversion and dlz_closeversion mark the start and end of a transac-
tion, respectively. Once a new transaction has been started—and authentication
has succeeded—updates to the DNS zone data can be issued through one of

3.3 / THE RELAY-NODE 43

the following functions:

* dlz_addrdataset will either add a new RR to an existing RS, or create
a new RS with one RR.

* dlz_subrdataset will either remove a RR from a RS if there are multiple
RR or remove the entire RS if if contains only one RR.

* dlz_delrdataset will remove the entire RS regardless of how many RRs
it contains.

A DNS update transaction can be performed using the common nsupdate tool.
DN transactions can contain zero or more preconditions, add commands, and
delete commands. Code Listing 3.3 shows an example transaction performed
with nsupdate on the jovaku.com domain. The precondition at line 3 states that
the TXT label key in the jovaku.com domain should be absent. Upon receiving
this transaction, BIND will perform a normal lookup of that label, invoking
dlz_lookup in our DLZ driver. If BIND gets a non-empty answer, the transaction
will terminate. Otherwise, dl1z_ssumatch will be invoked, instrumenting the
driver to perform access control for the label using the TSIG key for the
zone provided at line 2. If the key matches dlz_newversion will be invoked,
signifying that updates will follow. In the example d1z_addrdataset will be
called, instructing the driver to create a new entry in the database with the
label key, a TTL of 40 seconds, and “Some Data” as the value. After the call
has completed dlz_closeversion will be invoked, indicating the end of the
transaction.

Code Listing 3.3: Example DNS update transaction performed with nsupdate on the
jovaku.com domain.

HH

nsupdate

> key jovaku.com TSIG

> prereq nxdomain key.\phdSmallname{}.com TXT

> update add key.\phdSmallname{}.com 40 TXT ‘‘Some Data’’
>

U N wWN =

DynamoDB Interface

Before queries can be sent from the DLZ driver to Amazon DynamoDB, a JSON-
formatted message must be constructed according to the specifications in the
documentation [104]. The query for the SOA and NS records sent at startup
can be seen in Code Listing 3.4. The message contains two directives: (1) the
“TableName” property specifies that the query should be performed in the “dns”

44 CHAPTER 3 / OPTIMIZING READS FROM THE CLOUD

Code Listing 3.4: The body of the JSON request for the SOA and NS records.

{
"TableName": "dns",
"KeyConditions": {
"Label": {
"AttributeValuelList": [
{
"S": "@.jovaku.com."
}
1,
"ComparisonOperator": "EQ"
I
"Type": {
"AttributeValuelList": [
{
"S": "SOA"
I
{
"S": "NS"
}
1,
"ComparisonOperator": "BETWEEN"
}
}
}

table and (2) the “KeyConditions” property specifies two conditions: the label
must be equal to “@.jovaku.com” and the type must be in the range between
SOA and NS.

After the JSON message has been created, the HTTP header—as seen in Code
Listing 3.5—must be constructed. Other than the standard directives for host,
content-type and length, Amazon specifies a target directive—x-amgz-target—
where the API version and query type must be entered. The Authorization
directive contains a signature that is created with a keyed hash function
using a private key associated with the database, hashing the JSON message
and the HTTP headers using the private key associated with the DynamoDB
service.

3.4 / CLIENT LIBRARY 45

Code Listing 3.5: The header of an HTTP query request to Amazon DynamoDB. The
Authorization directive has been truncated for readability.

POST / HTTP/1.1

host: dynamodb.eu-west-1.amazonaws.com

x-amz-date: 201507047102030Z

X-amz-target: DynamoDB_20120810.Query

Authorization: AWS4-HMAC-SHA256 ...Signature=145b1567ab3c5...
content-type: application/x-amz-json-1.0

content-length: ##

connection: Keep-Alive

Updates are performed similarly, but the x-amz-target directive in the HTTP
header is changed to Updateltem. The JSON payload also has a slightly different
layout, and an example update request can be seen in Code Listing 3.6. The
update request will replace the value of the x.jovaku.com TXT label with
“Updated Data Value”.

3.4 Client Library

When Jovaku is deployed as a cache for a database, lookups in the database
can be made using standard name resolution utilities such as dig. However,
we also provide a client library for convenient programmatic access, without
manually constructing DNS requests and parsing replies. This library mimics
the interface of a standard NoSQL database, and currently comes in two flavors:
a Python version, which we use for development and performance testing on
Linux, and a C# version for Windows and Windows Phone, which we use to
develop mobile applications. The Python version also works on Windows, but
relies on spawning nslookup for DN'S lookups, which is inefficient on Windows,
due to the higher overhead for process creation. The C# version of the client
library encompasses 581 source lines of code, and has no dependencies beyond
the standard .NET libraries.

The basic interface of the client library is similar across both languages, and
the C# API is shown in Code Listing 3.7. The library is initialized using the
JovakuFactory.Init method with the zone where the database key space is
mirrored, the dynamic DNS TSIG key used for updates, and optionally a list
of hostnames for DNS servers to use for lookups. If the list of DNS servers is

46 CHAPTER 3 / OPTIMIZING READS FROM THE CLOUD

Code Listing 3.6: The body of the JSON request for updating the value of the
x.jovaku.com TXT label to “Updated Data Value”.

{
"TableName": "dns",
"Key": {
"Label": {
"S": "x.jovaku.com"
}
"Type": {
'Sty MTXT
}
}
"AttributeUpdates": {
"Data": {
"Action": "PUT",
"Value": {
"S": "Updated Data Value"
}
}
}
}

omitted, the system’s default DNS configuration is detected and used. When
the library has been initialized, the database can be accessed through the
IJovaku interface:

* Database lookups are performed with the Lookup method with the key
to look up as the argument. Keys may have multiple associated values, so
the method returns a list of the values associated with the key, along with
their age, which indicates how long they have been kept in the cache.

* New values can be added to keys using the Add method, with a specified
TTL, indicating how long they can be kept in the cache after a lookup. If
the key does not exist, it will be created.

* Individual values can be removed from a key using the Remove method.
If the value that is being removed is the last value associated with the
key, the key is removed from the database.

3.4 / CLIENT LIBRARY 47

Code Listing 3.7: The C# version of the Jovaku programming API.

public interface IJovaku

{ Tuple<List<string>, int> Lookup(string key);
void Add(string key, string value, int ttl);
void Remove(string key, string value);
void Delete(string key);
Tuple<List<string>, int> Refresh(string key);
}
public class JovakuFactory
{ public static IJovaku Init(string zone, string ddns_key,
List<HostName> dnsServers = null) { ... }
}

* Alternatively, a key can be removed using the Delete method, which also
removes all values associated with the key.

* Finally, keys can be refreshed using the Refresh method, forcing a
fresh set of associated values to be retrieved from the database service,
effectively bypassing the local DNS cache.

As noted in Section 3.1, DNS has no built-in mechanisms for purging cached
values. Once a label is cached in a DNS server, the server will not forward
lookups for that label until its TTL expires. Our implementation of the Refresh
method works around this limitation with the cooperation of the relay-node. To
refresh a key, a special prefix is prepended to the key, and a lookup is performed
on that modified key. That key is never cached by the local DNS server, so its
lookup is forwarded to the relay-node, which is the authoritative name server.
The relay-node recognizes and strips away the special key prefix, performs the
database lookup as usual, and returns the result. This takes advantage of a
particular DNS feature that allows replies to include records for other labels
than those that were explicitly requested. Effectively, the library tricks the local
DNS server into forwarding the lookup by adding the special prefix, and this
allows the cache to be updated even if the TTL has not yet expired.

Another added feature that Jovaku provides is the calculation of ages. Every
value returned as part of a DNS reply has a TTL value, which indicates how long

48 CHAPTER 3 / OPTIMIZING READS FROM THE CLOUD

it can be cached. But there is no information about how long a value has been
cached, i.e. how recently the value was retrieved from the authoritative server.
Jovaku implements this by automatically encoding the original TTL value as a
prefix of all values. (Note that this is a value prefix, not a key prefix, as used
in the Refresh implementation.) These original TTL values are extracted by
the client library and used to calculate the age of each value using simple
subtraction. For example, if a value has 100 seconds as its original TTL value,
and the DNS reply indicates that it can be cached for 40 seconds, it can be
concluded that its age is approximately 60 seconds. Through the combination
of ages associated with values and the ability to refresh values as desired,
Jovaku applications are given more control over how the local DNS cache is
utilized.

Beyond the extraction of original TTL values, as described above, our client
library does not interpret values in any way. They are treated as opaque byte
strings. Features such as encryption, compression, and object serialization are
easily and more appropriately handled by a surrounding layer of abstraction.
The role of Jovaku is to optimize access to the database by serving as an
unobtrusive caching layer.

3.5 Summary

Jovaku implements a database caching layer situated as a middle tier between
the cloud and its clients. By building on DNS, Jovaku taps into a global
infrastructure with high availability and excellent geographical coverage. The
key space of the cloud database is mirrored as DNS labels that can be resolved in
the usual way to retrieve database values. A relay-node in the cloud translates
between the DNS protocol and the database API.

This approach has potential to reduce latency when mobile/cloud applications
issue read operations to the cloud, and is based on existing infrastructure.
While the DNS protocol has support for updates, passing write operations
through DNs will not reduce latency, since updates communicate directly to
the authoritative server in the cloud. In the next chapter we will explore
ways to reduce latency in more general scenarios that may include write
operations.

Optimizing Writes to the
Cloud

Use of cloud-provided services is integral to the operation of mobile/cloud
applications. In particular, cloud databases simplify application logic by serving
as highly available repositories for critical state. For improved scalability
and availability, these databases are commonly NoSQL, with limited support
for tabular relations and transactions and with a more relaxed consistency
model than a conventional relational database. Queries are issued through
a programmatic interface, rather than a domain-specific, high-level query
language.

This promotes a usage pattern where multiple, consecutively-issued queries
implement a single logical transaction. For example, an atomic update can
be implemented as a read of the old value, followed by a conditional write of
the new value, with the predicate that the old value remains unchanged. Or
a collection of related records can be retrieved in multiple steps, by manually
following foreign key references, rather than using higher-level features like
joins and subqueries.

When the database is hosted in the cloud, issuing a sequence of dependent
queries entails multiple round-trips of communication, and network latency
becomes an important concern. For example, as detailed in Chapter 6, we
have measured a latency of 50 ms to 350 ms for accessing a specific Amazon

49

50 CHAPTER 4 / OPTIMIZING WRITES TO THE CLOUD

DynamoDB instance from various geographical locations. A study covering 260
global vantage points reports an average round-trip time (RTT) of 74 ms for
accessing Amazon EC2 instances [109]. A sequence of queries issued to the
cloud can thus result in unwanted delays that are perceptible by users.

Caching infrastructure as outlined in Chapter 3 can in some cases help for a
sequence of dependent queries, if some of the keys involved in the queries are
cached. But cache misses will inevitably occur, adding an extra round-trip of
communication to the cloud database for each miss. One way to alleviate this
problem is to move the execution of queries to a middle tier, which is closer
to the cloud database. If the entire sequence of queries can be moved as a
unit, this can eliminate many round trips between the client and the cloud,
substituting them with shorter round trips between the middle tier and the
database.

This idea can be generalized to reduce latency for any cloud service where
a number of dependent requests are issued sequentially. By moving the code
that accesses the cloud service to a middle tier, positioned in close proximity to
the cloud service, the code can execute in an environment with lower latency.
We refer to this concept as satellite execution, and illustrate it in Figure 4.1.
Figure 4.1a shows the baseline scenario, where a client must send multiple
requests over a high latency mobile network to the cloud to fulfill a task. These
can be replaced with a single round-trip as in Figure 4.1b, where code is moved
to the middle tier before multiple requests with intracloud latency are issued
to the cloud service.

This chapter describes our implementation of satellite execution as an extension
of Jovaku. Our approach is to provide a general programming abstraction—
mobile functions—for location-independent code, which has the potential to
either execute locally on a device, or be offloaded to the cloud. As in Chapter 3,
we focus on database cloud services as a use case for prototyping and evaluation.
Using mobile functions, an application that experiences high latency, or needs
to issue a long sequence of database queries, can offload the latency-sensitive
code to the cloud and execute it in close proximity to the database service.
This ensures low-latency database access on demand, while preserving the
programmatic style of database access.

In the rest of this chapter we first outline the extensions to the existing Jovaku
architecture. Then we detail the middle tier implementation and how the client
library was extended to accommodate the middle tier changes.

4.1/ EXTENDED ARCHITECTURE 51

Cloud
Services

(a) Baseline, client communicating directly with cloud services.

Middle
Tier

Cloud
Services

(b) With satellite execution.

<«<——> Single middle tier interaction

<) Multiple cloud service interactions

Figure 4.1: How satellite execution is applied to eliminate extraneous round-trips of
communication between a client and the cloud—by moving code to a
middle tier close to cloud services—potentially reducing overall latency.

4.1 Extended Architecture

As described in Chapter 3, Jovaku employs a cloud-side relay-node to bridge
the Domain Name System (DNS) infrastructure with Amazon’s DynamoDB,
translating DNS requests into database queries. The relay-node was placed in
close proximity to DynamoDB, in the same availability zone, to avoid extra
latency when performing the translations. Since we have similar requirements
for the middle tier in our satellite execution concept, integrating this func-
tionality into Jovaku was an intuitive solution. To realize satellite execution,

52 CHAPTER 4 / OPTIMIZING WRITES TO THE CLOUD

which hinges on offloading latency-sensitive code, we extended the relay-node
with capabilities for hosting and safely executing .NET code. We identified two
main components as necessities for this extension:

An execution environment capable of hosting multiple securely isolated sand-
boxes [110]. Each sandbox must be capable of loading and executing
code on behalf of its clients, without interfering with other sandboxes or
compromising the integrity of the surrounding execution environment.
Sandboxing can also be important when multiple applications offload
code to the same relay-node, since users can assign different levels of
trust to different applications.

A message processor that will receive and process messages sent from clients,
and demultiplex and pass those messages to the execution environment.
There are several feasible approaches to implementing an efficient mes-
sage processor. In addition to latency, throughput will be an important
concern for the message processor, to minimize the cost of operating the
cloud-side relay-node.

An overview of the extended architecture with the new components can be
seen in Figure 4.2.

Amazon DynamoDB

Sandbox Sandbox Sandbox . Sandbox DLZ
#1 #2 #3 #N Driver
Name

Execution Environment
Server

Message Processor

Relay Node

Figure 4.2: An overview of the extended Jovaku architecture where the message
processor and execution environment have been integrated into the relay-
node. The execution environment is capable of hosting several sandboxes
for executing offloaded client code.

To specify offloadable code, we defined the IMobileFunction interface seen in
Code Listing 4.1. Implementations of this interface are called mobile functions,

4.1/ EXTENDED ARCHITECTURE 53

Code Listing 4.1: Interface that must be implemented by mobile functions.

public interface IMobileFunction

{
Task Execute(IContext ctx);

}

as they can be serialized and moved for remote execution on a relay-node. This
form of code mobility is classified as weak mobility [111]. The entry point of
a mobile function is its Execute method, which may be invoked using .NET’s
task-based asynchronous pattern.

Mobile functions contain user-defined code, and are black boxes to Jovaku.
Being implemented in a .NET language, like C#, they enjoy the expressive
power of a general-purpose programming language. However, this power
must be checked in order to provide a reasonable balance between flexibility
and security. Jovaku only invokes mobile functions from sandboxes that are
intended to isolate the environment from unwanted side effects, restricting
the mobile function’s capabilities for actions like file and network 1/0. To
compensate, Jovaku will let mobile functions access safe implementations of
selected operations through the IContext interface, shown in Code Listing 4.2.
Safe operations can involve 1/0, but they are implemented by Jovaku, with
rigorous validation of arguments to minimize the potential for abuse.

Code Listing 4.2: Excerpt of the API for accessing cloud-side resources from a mobile
function.

public interface IContext

{
Task<List<string>> Get(string table, string key);
Task<bool> Put(string table, string key, object value);
Task<bool> Append(string table, string key, object value);

Task<bool> Delete(string table, string key);

Task<AmazonWebServiceResponse> Query(
AmazonWebServiceRequest query);

54 CHAPTER 4 / OPTIMIZING WRITES TO THE CLOUD

To cover all intended use cases, we have tailored our IContext interface for
interactions with generic key/value databases. Common operations such as Get,
Put, Append and Delete are exposed through the interface, allowing interface
developers to support different database systems through a common interface.
Some cloud database systems offer a more elaborate interface to the database,
with multiple keys, scan operations, or batch operations. Amazon DynamoDB
is one of them, and to not reduce the functionality offered by the database,
we extended the interface with the possibility to pass Amazon DynamoDB
query objects directly. Similarly, when applying satellite execution with other
cloud services, the IContext interface would be extended correspondingly, to
expose the relevant functionality. Such functionality is not limited to low level
database services, but could include composite services such as Facebook or
Twitter as well.

The indirection created by the IContext interface also serves to separate
application logic from the particulars of the cloud services that are accessed,
and adds flexibility to deployments. For example, an application can be tested
and run as a client-side process by providing a context object that binds to a
local database.

4.2 Message Processor

From the relay-node’s perspective, satellite execution entails processing a
stream of incoming messages that contain serialized mobile functions. There
must also be a protocol for transferring the .NET assemblies that contain the
associated code. As detailed in Chapter 3, the relay-node is manifested as an
instance in the EC2 computing cluster, where DynamoDB can be accessed with
very low local network latency. The name server, which serves DNS traffic, is
a BIND process with a custom extension implemented in C. Meanwhile, the
message processor and execution environment must interface with .NET code.
Therefore, these two layers in the architecture are implemented in C#, as a
separate process that we refer to as the execution server.

We considered several approaches to implementing the message processor.
One approach would be to use Windows Communication Foundation (WCF),
a .NET framework for building service-oriented applications. Using WCF,
developers can declare interfaces tagged with the ServiceContract attribute
to expose them as a service to be accessed remotely. Specific methods to
include are tagged with the OperationContract attribute, and WCF will
wrap the implementations of these operations and expose them through a
configured set of communication transports, such as HTTP or TCP. WCF hides
the complexity of setting up listen sockets for the different communication

4.2 /| MESSAGE PROCESSOR 55

Code Listing 4.3: Interface for initializing the execution server with a specific
underlying implementation.

public interface IExecutionServer

{
bool StartListen(int port);
bool StopListen();
}
public class ExecutionServerFactory
{
public enum Implementation
{
WCF,
APM,
TAP
}
public static IExecutionServer Init(Implementation type) { ... }
}

transports, generating requests and replies, and managing concurrency. It
also provides client libraries for accessing services asynchronously from other
applications.

A more direct approach would be to manage sockets explicitly, and use a custom
communication protocol to exchange messages over TCP. The main question
in this approach is how to manage concurrency. The .NET framework provides
several asynchronous programming patterns that make use of a managed thread
pool, obviating the need to create separate blocking threads waiting for data on
the client sockets. In earlier versions of .NET, the Event-Based Asynchronous
Pattern (EAP) and Asynchronous Programming Model (APM) were the pre-
ferred ways to maximize concurrency and parallelism. EAP was introduced
in .NET 2.0 and exposes events such as new connections, or data received on
a socket. Handlers can be registered to process these events asynchronously
from a thread pool. APM was introduced later, and centers around callback
methods that are invoked when asynchronous operations complete. Again, a
thread pool will drive the execution of callbacks. Version 4.0 of .NET included
yet another innovation, with the Task Parallel Library (TPL). This introduces
the Task Asynchronous Pattern (TAP), where asynchronous functions return
awaitable tasks, obviating the need for event handlers and callback functions.
TAP is currently the recommended approach to asynchronous programming in
.NET.

56 CHAPTER 4 / OPTIMIZING WRITES TO THE CLOUD

Code Listing 4.4: The APM implementation of the execution server.

class APM_ExecutionServer : IExecutionServer

{
public bool StartListen(int port)
{
tcpListener = new TcplListener(port);
new Thread(Listen).Start();
return true;
}
private void Listen()
{
tcpListener.Start();
while (true)
{
tcpListener.BeginAcceptTcpClient (AcceptCallback, tcpListener);
Wait();
}
}
private void AcceptCallback(IAsyncResult asyncResult)
{
var newClient = tcpListener.EndAcceptTcpClient(asyncResult);
Signal();
HandleClient(newClient);
¥
private void HandleClient(TcpClient client) { ... }
}

Our goal was to reduce latency as much as possible. Hence we were unsure
which abstraction would provide us with the right opportunities to gain the
insights we needed to reduce latency. To not miss any opportunities, we
structured our implementation such that different communication mechanisms
may be compared. Code Listing 4.3 shows the interface we defined for the
execution server, and how the execution server is instantiated. One of several
possible implementation types is passed to the Init method, in order to create
an IExecutionServer instance. We developed concrete implementations of
that interface using both the APM and TAP asynchronous patterns, along with a
WCF implementation, so we could compare the new asynchronous pattern with
the old one, and observe how asynchronous socket programming compares to
WCF.

Both the APM and TAP implementations make use of the TcpListener class
to create a listen socket for incoming connections, but how the socket is used

4.2 / MESSAGE PROCESSOR 57

Code Listing 4.5: The TAP implementation of the execution server.

class TAP_ExecutionServer : IExecutionServer

{
public bool StartListen(int port)
{
tcpListener = new TcplListener(port);
new Thread(Listen).Start();
return true;
}
private async void Listen()
{
tcpListener.Start();
while (true)
{
var newClient = await tcpListener.AcceptTcpClientAsync();
Task.Run(() => HandleClient(newClient));
}
}
private async void HandleClient(TcpClient client) { ... }
}

differs quite significantly. Code Listing 4.4 outlines the message loop for the
APM implementation. After the socket has been created and bound to the listen
port, a thread is dedicated to accepting new connections. The accept thread
enters a loop where it calls BeginAcceptTcpClient with a callback function
that will be invoked from a separate thread (scheduled from a thread pool)
as soon as there are new clients to accept. Only one accept operation can be
in progress, so a condition variable is used to synchronize between the accept
thread and the callback thread. In the callback function, EndAcceptTcpClient
is first invoked on the listen socket, which will return a TcpClient object
representing the newly accepted connection. The condition variable is then
signalled, allowing the accept thread to initiate a new accept operation while
the callback thread continues its execution in the HandleClient method. This
method handles further communication over the client connection through
multiple BeginReceive and BeginSend operations, along with their respective
callback handlers.

The TAP implementation of the execution server, outlined in Code Listing 4.5,
has a more intuitive and linear program structure. This is due to the await
keyword, which allows asynchronous method invocations to be disguised
as blocking operations. When AcceptTcpClientAsync is invoked, a task is
returned that represents a commitment to produce a TcpClient object as soon

58 CHAPTER 4 / OPTIMIZING WRITES TO THE CLOUD

Code Listing 4.6: The WCF implementation of the execution server.

[ServiceContract]
interface IJovaku WCF
{
[OperationContract]
byte[] HandleMobileFunction(byte[] mfData);

[OperationContract]
bool HandleAssembly(byte[] assemblyData);
}
class WCF_ExecutionServer : IExecutionServer
{
public bool StartListen(int port)
{
var uri = string.Format("net.tcp://jovaku.com:{0}/", port);
service = new ServiceHost(typeof(Jovaku WCF), new Uri(uri));
service.Open();
}
}

as a new client has connected. The await keyword triggers a compile-time
transformation of the method where it occurs, so that the result of the task can
be awaited without blocking the calling thread. When a client connects, the
task will complete and a thread from a thread pool will resume execution in
the Listen method. Before initiating a new accept operation, the thread will
schedule a new task that will invoke the HandleClient method, which will
use the newly created TcpClient object for further communication. The imple-
mentation of HandleClient follows the same pattern to drive asynchronous
1/0 with what appears to be blocking operations.

The message loop in the WCF implementation is handled automatically by the
WCF framework, so there is no explicit management of socket and connection
state. The implementation, outlined in Code Listing 4.6, exposes a WCF
service with two methods: HandleMobileFunction for processing individ-
ual mobile functions, and HandleAssembly for handling incoming assemblies.
Clients send mobile functions by serializing them into a byte array that is
passed to HandleMobileFunction. Similarly, they send assemblies by invoking
HandleAssembly with the raw assembly data. The execution server hosts the
WCEF service by creating a ServiceHost object, which binds the WCF service to
a URI that encodes the underlying transport protocol and port number.

The WCF client library provides synchronous and asynchronous method invo-

4.2 / MESSAGE PROCESSOR 59

cation from the client, but there are no easy ways for the server to connect back
to the client because WCF lacks support for hosting services on mobile devices.
In contrast, the APM and TAP implementations manage sockets explicitly, and
mobile devices can create listen sockets to receive connections from the server.
This could be useful in scenarios where the connection is disrupted because
of mobile network coverage issues, or if the client is requesting long running
operations and does not want to wait for completion, but instead have the
server connect back when the result is ready. A socket-based implementation
also enables client-to-client communication, which could be relevant for future
extensions.

Message Formats

Figure 4.3: Layout of a WCF message, captured with WireShark when sending a
mobile function containing four database operations. This message has
a 68 bytes header, 818 bytes of XML payload, and a 79 bytes trailer, for a
total of 965 bytes.

The choice of message processor implementation also affects the way messages
are formatted. WCF handles communication and message formatting under the
hood. To gain insight, we used Wireshark [112] to capture packets from the net-
work for inspection while executing a sample application. Figure 4.3 shows an

6

(@]

CHAPTER 4 / OPTIMIZING WRITES TO THE CLOUD

Port Length

Type
Opts

Binary payload
(Serialized mobile function)

Figure 4.4: Layout of our own message format used in the APM and TAP
implementations, representing the same mobile function as in Figure 4.3.
This message has a 10 bytes header and 245 bytes of binary payload, for
a total of 255 bytes.

example message, which represents one call to HandleMobileFunction.

WCF includes a serialization engine that is used for serializing parameters and
return values into XML data. This XML data constitutes the main payload of the
message. The standard serialization engine can be used instead with various
formats; for example, the standard binary format is more compact and will
reduce the overall message size.

In the socket-based APM and TAP implementations, we designed our own
message format, shown in Figure 4.4. It consists of a header and a payload.
The header has four fields: (1) the type of message, (2) a set of optional flags,
(3) the client’s listen port, and (4) the length of the payload. Depending on
the message type, the payload is either a mobile function serialized in binary
format, or raw data for an assembly.

For long-running mobile functions, the client can specify that the server should
connect back after executing the mobile function by setting one of the optional
flags. When this flag is set, the client can close the connection immediately
after sending the request. The server will connect back to the client’s listen
port as soon as the mobile function completes, and send the reply over the new
connection.

Although WCF comes with its own serialization engine, other engines can
be used interchangeably in the different message loop implementations. The
processing time required to produce serialized objects is generally negligible,
regardless of the underlying engine. However, as message size can affect the
network transfer time, smaller messages are preferred. Smaller messages can
also reduce data transfer costs associated with a mobile plan.

4.3 / EXECUTION ENVIRONMENT 61

Given that the TAP implementation has the most intuitive structure, allows us
to host the message processor on mobile devices, and enables us to use a more
compact message format, we decided to use this as the default implementation.
All our experiments in Chapter 6 therefore use the TAP implementation. We
have not observed any circumstances where the choice of message processor
implementation has a major impact on performance.

4.3 Execution Environment

Incoming messages to Jovaku either contain serialized mobile functions that
should be deserialized and executed, or .NET assemblies that contain the
compiled code for mobile functions. Received assemblies are cached by Jovaku.
Deserialization of a mobile function can fail if its assembly is missing. In that
case, the client is asked to first send the missing assembly, before retrying.
This will be a rare event in practical use, because mobile functions can be
parameterized, reusing the same code across many instances, and because one
assembly can contain the code for multiple mobile functions.

We sandbox the execution of mobile functions using .NET application do-
mains [113], which provide an isolation boundary for security, reliability, and
versioning, and for loading assemblies. Application domains are typically
created by runtime hosts—which are responsible for bootstrapping the common
language runtime before an application is run—but a process can create any
number of application domains within the process to further separate and
isolate execution of code. Jovaku creates a new application domain for each
mobile function assembly.

Each of these application domains is configured with a minimal set of per-
missions that will ensure that execution of code cannot compromise or access
code or data running in other domains. The minimal set will also ensure that
the code received from clients cannot do potentially malicious operations like
accessing and possibly deleting files from the file system, or participate in
bot-nets that deplete network resources.

Code Listing 4.7 shows the code to instantiate new application domains. Aside
from the minimal permission set, which only includes the most basic Execution
ability, the code specifies a list of assemblies containing code that will be fully
trusted by the sandbox. This includes Jovaku’s own assemblies, and the official
DynamoDB Software Development Kit (SDK) from Amazon.

When mobile functions execute, they can use the IContext interface to access
cloud services. Jovaku implements this interface in the SecureContext class.

62 CHAPTER 4 / OPTIMIZING WRITES TO THE CLOUD

Code Listing 4.7: Creating a new application domain, with minimal permissions and
set of trusted assemblies.

private Sandbox CreateSandbox(string name)

{
var pSet = new PermissionSet(PermissionState.None);
pSet.AddPermission(new SecurityPermission(Execution));

var fullTrustAssemblies = new Assembly[]
{
typeof(Sandbox) .Assembly,
typeof(SecureContext).Assembly,
typeof (Amazon.DynamoDBClient).Assembly,
}i

var newAppDomain = AppDomain.CreateDomain(name, pSet,
fullTrustAssemblies);

var instance = Activator.CreateInstanceFrom(newAppDomain,
typeof(Sandbox) .Assembly.ManifestModule.FullyQualifiedName,
typeof (Sandbox) .FullName);

return (Sandbox)instance.Unwrap();

Code Listing 4.8: Excerpt from the IContext implementation used in the isolated
application domains.

class SecureContext : IContext

{
private Amazon.DynamoDBClient _client;
[SocketPermission(Assert, Unrestricted = true)]
[ReflectionPermission(Assert, Unrestricted = true)]
[WebPermission(Assert, Unrestricted = true)]
public async Task<List<string>> Get(

string table, string key) { ... }
}

The various database operations that can be performed are implemented using
Amazon’s SDK, which requires certain additional permissions to work correctly.
Socket and web permissions are needed to create sockets and sending web
requests, and the SDK uses reflection to access protected methods in the
.NET library, to add custom headers to web requests. Since the assembly that
implements SecureContext is fully trusted, these permissions can be elevated

4.3 / EXECUTION ENVIRONMENT 63

Code Listing 4.9: The sandbox, isolating loading of untrusted assemblies, and
execution of code.

class Sandbox : MarshalByRefObject
{
private IContext Context;

private Dictionary<string, Assembly> AssemblyCache;

private Assembly AssemblyResolve(
object sender, ResolveEventArgs args) { ... }

public bool AddAssembly(byte[] rawBytes) { ... }
public byte[] ExecuteFunction(byte[] obj) { ... }

[SecurityPermission(Assert, Flags = SerializationFormatter)]
private IMobileFunction DeserializeFunction(byte[] data) { ... }

[SecurityPermission(Assert, Flags = SerializationFormatter)]
private byte[] SerializeFunction(object graph) { ... }

selectively by marking the relevant methods with special security attributes, as
illustrated in Code Listing 4.8. Therefore, the only way for a mobile function to
access the network, for example, is through one of the methods of the IContext
interface.

The CreateSandbox method returns a proxy object that can be used to commu-
nicate with the new application domain. Calls to the proxy object are implicitly
converted into remote cross-domain calls. The Sandbox class in Code Listing 4.9
implements the internal execution environment of a sandbox, with methods to
inject serialized assemblies and mobile functions into the sandbox. The sandbox
will load the assemblies and put them into the AssemblyCache indexed on the
full name of the assembly. The full name includes versioning information, so
different versions of an assembly can be loaded at the same time.

Upon receiving serialized objects through the ExecuteFunction method, the
sandbox will attempt to deserialize the byte array using the private method
DeserializeFunction. This method is marked with a SecurityPermission
attribute to allow deserialization of objects. We have restricted this permission
to specific methods instead of allowing it for all client code, as the private data
members of an object can potentially be retrieved by serializing it.

64 CHAPTER 4 / OPTIMIZING WRITES TO THE CLOUD

The sandbox also registers as a handler for the AssemblyResolve event, which
is triggered whenever a new assembly must be resolved. Notably, this may
happen during deserialization of mobile functions. The ResolveEventArgs
will then contain the full name of the type that is being deserialized, and the
sandbox can make lookups in the assembly cache to find the correct assembly. If
the sandbox is unable to resolve the assembly required to deserialize the object,
an exception will be thrown to the governing satellite execution environment,
which in turn will inform the client of the missing assembly.

When an object has been deserialized successfully, the sandbox will typecast
it to IMobileFunction and invoke its Execute method. When the Execute
method completes, the mobile function is again serialized into a byte array,
using SerializeFunction, and passed back to the client.

Mobile functions utilizing the IContext interface are similar to remote eval-
uation [114, 115] in many respects, but our implementation allows objects
to be transmitted without accompanying code. By only transferring code
when needed, we implement a form of lazy transfer that can realize further
performance gains when code is rarely modified [116].

4.4 Client Library

To integrate satellite execution into Jovaku, we extended the main IJovaku
interface as shown in Code Listing 4.10. From the client application’s per-
spective, mobile functions are regular objects that may, upon request, be
executed remotely. The ExecuteAt method in Code Listing 4.10 implements
this abstraction by sending the object, in a serialized state, to a relay-node,
where the object is deserialized and its Execute method is invoked. When the
Execute method completes, the object is again serialized and moved back to
the client. As such, mobile functions can simply store any relevant results of
their cloud service interactions internally, and clients will be able to observe
the corresponding state changes when ExecuteAt has completed.

The location argument to ExecuteAt specifies where to execute the mobile
function. GetExecutionEnvironments allows clients to retrieve a list of Uni-
form Resource Identifiers (URIs) to different execution environments. The
implementation will utilize the DNS protocol to locate connection information
to the various execution environments instantiated in the zone that the client
library is initialized with. The scheme of the URI will depend on the transport
mechanism that the relay-node implements. A valid URI for an HTTP-based
relay-node could be http://relay.jovaku.com:8008/Jovaku, while a socket-based
relay-node could have the URI net.tcp://relay.jovaku.com:8008/.

4.4 / CLIENT LIBRARY 65

Code Listing 4.10: Client side interface to utilize Satellite Execution.

public interface IJovaku

{
// Methods from Code Listing 3.7 omitted
List<Uri> GetExecutionEnvironments();
Task<IMobileFunction> ExecuteAt(
IMobileFunction function, Uri location = null);
}

Client applications implement mobile functions as classes implementing the
IMobileFunction interface from Code Listing 4.1. Code Listing 4.11 shows an
example mobile function that implements a simple bag-of-queries. Database
queries may be be added to the bag by invoking AddQuery with the key that
is to be queried for. Internally, the queries are collected in the _queryList
field. Execute issues the queries to the database via the context object by
iterating over the queries added by AddQuery. The results are stored in the
_responselist field, which the client can retrieve by invoking GetResponses.

An object is moved for execution at a relay-node when the client application
invokes the ExecuteAt method, specifying the object and the particular satellite
execution environment. ExecuteAt transfers the object, in a serialized state,
to the relay-node, where the object is deserialized and its Execute method is
invoked inside a sandbox. After the Execute method completes, the object is
moved back to the client, and the ExecuteAt method will return the object in
its deserialized form.

A potential optimization for the bag-of-queries example would be to reset
the list of queries to null once it is no longer needed. This would reduce the
amount of serialized data to return from the relay-node to the client. In general,
mobile functions are free to implement their own serialization mechanisms
via the ISerializable interface, but they can always fall back to the default
serialization protocol, for convenience.

By implementing a custom serialization mechanism, the transfer size can in
some cases be reduced substantially. For example, the default serialization algo-
rithm for the generic collection type List supports heterogeneous lists, where
each item potentially has a different type. In many cases this is superfluous
overhead, since the list is homogeneous and the item type is known in a priori.
The custom serialization algorithm from Code Listing 4.12 is able to more than

66 CHAPTER 4 / OPTIMIZING WRITES TO THE CLOUD

Code Listing 4.11: Example implementation of a mobile function that provides a bag-
of-queries abstraction.

[Serializable]
public class QueryBag : IMobileFunction
{
private List<string> _responselist;
private List<string> _querylList;

public async Task Execute(IContext ctx)

{
foreach (var query in _querylList)
{
var queryResponse = await ctx.Get(query);
if (_responseList == null)
_responseList = new List<string>();
_responseList.AddRange(queryResponse);
}
}
public void AddQuery(string query)
{
if (_queryList == null)
_querylList = new List<string>();
_querylList.Add(query);
}
public List<string> GetResponses()
{
return _responselList;
}

halve the resulting serialized byte array for a list of strings. As our experiments
in Section 6.4 show, a similar optimization in a bag-of-queries with four queries
reduced the resulting byte array from 700 bytes to 247 bytes.

Jovaku provides a location-independent programming abstraction, but pre-
serves a monolithic application structure, which allows the application to be
installed in its entirety on a single device through a regular distribution channel
like an application store. Code is then transferred on demand from the device
to the cloud, as objects move to the cloud to enjoy low-latency execution of
database queries. The decision to visit the cloud or stay on the local device can
be made dynamically, at runtime.

4.5 / SUMMARY 67

Code Listing 4.12: A custom serialization algorithm for a collection type containing
strings. First the number of strings are stored, before the strings
are added.

private void Serializelist(List<string> list, SerializationInfo info)
{

var currentItem = 0;

info.AddValue("Items", list.Count);

foreach (var item in list)

{

info.AddValue(string.Format("Item {0}", currentItem++),
item);

Traditionally, developers design and implement mobile applications in tandem
with the corresponding cloud service. New use cases often lead to alterations
or additions in the cloud service Application Programming Interface (API) to
provide new functionality to the mobile application. To continue support for
existing clients, APIs are often versioned to keep backwards compatibility. A
study shows that developers can be reluctant to adopt new APIs [117], which
leads to longer periods of time where a service provider needs to support old
and deprecated API calls.

With satellite execution, new use cases are realized by introducing new mobile
functions in the mobile application, instead of modifying the existing cloud
service. This way, the mobile/cloud application evolves as a unit, rather than
as two distinct entities. Updates to the functionality is distributed with the
application, and many versions of the application can co-exist without explicit
backwards compatibility in the cloud service.

Satellite execution has the potential to reduce latency for database operations,
but will not provide additional guarantees—such as fault-tolerance—compared
to executing the code directly on the device. It remains a responsibility
of the developer to implement fault-tolerance in mobile functions if that is
required.

4.5 Summary

In this chapter, we outlined an architecture with satellite execution designed
to reduce completion-latency for a sequence of cloud database queries. Queries

68 CHAPTER 4 / OPTIMIZING WRITES TO THE CLOUD

are expressed as objects that interact programmatically with the database.
Through satellite execution the objects are deployed in close proximity to
the targeted cloud database. Figure 4.1 illustrates our approach, showing how
multiple potentially expensive round-trips between a client and the cloud can
be replaced with a single round-trip to the relay-node and multiple low-latency
intracloud interactions with the database.

This approach preserves the advantages of a programmatic database interface;
for example, objects can perform computations, transformations, cryptographic
operations, and any other manipulations of arguments and intermediate results
that may be required when performing a sequence of queries. However, we
have not considered issues with fault tolerance beyond isolating execution of
mobile functions in application domains. Connectivity issues with the mobile
network, garbage collection of orphaned application domains, termination of
endless mobile functions, and redundancy are important issues that need to be
addressed before the system can be used in a production environment.

Applications

This dissertation focuses on deriving principles underlying the design of
complex distributed software systems in order to improve their design and
behaviour. Within such systems research, methods are experimental, empha-
sizing the construction, deployment and experimentation of actual software
artifacts to substantiate conclusions. But these artifacts are not static once
created. Rather, they are subject to a process of continuous refinement where
experimental insights challenge assumptions and hypotheses, driving both
incremental and radical changes to the design and implementation of the
artifacts. The optimizations for mobile cloud interactions presented in this
dissertation are the culmination of accumulated experiences whilst building
and refining two proof-of-applicability prototypes: Picster and Dapper.

This chapter describes the design and implementation of Picster and Dapper.
Both artifacts have undergone several iterations that have affected both their
design and implementation, but the presentation focuses on how the artifacts,
as they appear in their current and last version, have influenced and helped
elicit the core contributions of this dissertation. Where appropriate and when
serving to illustrate pivotal design choices, the design of early versions of the
artifacts is highlighted.

69

70 CHAPTER 5 / APPLICATIONS

5.1 Picster

Jovaku improves read latency from cloud databases by caching data at a Domain
Name System (DNS) server in close proximity to the client. If the cached data
is read by multiple clients, load to the cloud database is potentially further
reduced, and sharing can help clients avoid initial cache miss overheads.

We envision many uses of Jovaku. One particularly good fit is applications
that aim to be globally available, but whose primary function mostly involve
read operations among users in close geographical proximity. Applications that
use geographic services and capabilities to enable additional social dynamics
are often referred to as geosocial networks. Examples of such networks are
Yelp [118] and Around Me [119], which allow users to leave recommenda-
tions, experiences and reviews with the ultimate goal of helping other users
make informed decisions about choosing, for instance, a restaurant or a hair
stylist.

We developed Picster to explore this pattern of global availability and proximity-
based client communication, so as to produce insights and input to the design
of Jovaku. In particular, with Picster our goal was to drive and focus the aspects
of Jovaku revolving around optimized cloud reads.

Picster is a collaborative image sharing, filtering, and ranking application for
ad hoc geosocial networks. The application is centered around events where
people come together and temporarily share common interests by virtue of
their circumstances. For example, the users could be participants at a social
gathering or spectators at a concert or a sports event. The application resembles
iGroups [120], an ad hoc geosocial network from Apple that recognizes a need
to optimize social communication when large groups of users gather in same
spatial locality for a social event.

Traditional social networks use the cloud as a rendezvous point for locating
other users, media sharing, and collaboration. In an ad hoc geosocial appli-
cation, such as Picster or iGroups, rendezvous in the cloud would result in
substantial network traffic from mobile devices to the cloud when videos or
images are exchanged among spectators for viewing, ranking, and commenting.
This is likely to cause unresponsive network connectivity [121].

With Picster, mobile users form an impromptu social network to exchange and
rank pictures and comments. Through real-time collaborative filtering, the best
pictures and most apt commentary is ranked and distributed among the users.
While the social network can extend around the world, a majority of users are
expected to be in geographical proximity to the event that sparked its formation.
Beyond entertaining their participants, we imagine similar applications can be

5.1/ PICSTER 71

Cloud Backend

S| O [Emm—————

Il

ax e

client Local DNS client

1)

<«<——> DNS lookup

<> Device-to-device communication

€= Device-to-cloud communication

Figure 5.1: Picster social network architecture. Clients access the cloud backend
service through the local DNS server. Image metadata and connection
information to other clients is cached in the DNS server, enabling quick
lookups for clients sharing the DNS server. Actual image data is exchanged
directly between devices, reducing network load.

employed by broadcasters to enrich their products with high-quality content
that is generated on the fly by the live audience.

Picster relies on a cloud database to store metadata such as comments, sub-
scriptions, and membership information, and Jovaku is used as a caching layer
to provide efficient and cheap access to the database for the common case
where clients are in close proximity. An overview of the architecture can
be seen in Figure 5.1. Picture data is exchanged directly between devices,
while the metadata in the database is used as a simple and reliable way to
locate and establish connections to peers. The existence of a shared, central
database simplifies the architecture compared to alternatives like symmetric
peer-to-peer architectures. In addition to reducing the load on the cloud
database, Jovaku also mitigates the risk that bandwidth to the cloud becomes

72 CHAPTER 5 / APPLICATIONS

jovaku.com
A 4
events > Event List
A 4
TIL vs TUIL > Description
A 4
media location members
A\ 2 A 4 A 4
GPS Coordinate Member List

Figure 5.2: Domain name hierarchy illustrating an event “TIL vs TUIL’, with its
description, location and member list. Blue nodes illustrate labels, while
yellow nodes describe the values associated with those labels.

a bottleneck [122].

Picster is centered around groups of people participating in the same event.
Events can be searched by name or description, or by using GPS coordinates to
discover nearby events. Creation of an event involves creating new labels
in the domain name hierarchy to the domain hosting the events, in our
case jovaku.com. Figure 5.2 illustrates an example DNS hierarchy of an event
that has been created for the football match between TIL (Tromseg IL) and
TUIL (Tromsdalen IL). The label events.jovaku.com can be queried for TXT
Record Set (RS) to retrieve a list of available events, where TIL vs_TUIL will
be found.

The TIL vs_TUIL.events.jovaku.com label contains a TXT record with descrip-
tion and meta information about the group. The location sub-label contains
GPs coordinates for the event, which enable users to locate events they are
close to, while the members label contains a RS with connection information for
members of the event. A client joins an existing event by adding his connection
information to the RS, and leaves by removing the information.

5.1/ PICSTER

il w223

PICSTER

Create Event

il i 12:29

PICSTER

Join Event

73

Create new event

Name:

Description:

Nearby events

Description of the event

Updated: 35 seconds ago (Refresh)

Start time:
end time:

Search for event

Keyword Search

(a) Create a new event with descrip- (b) Discover nearby events and search
tion and a period when the event for others.
is occurring.

Figure 5.3: Creating and locating events in Picster.

Picster utilizes the Jovaku Software Development Kit (SDK) to perform database
operations through DNS. These operations are exposed to the user through an
intuitive user interface illustrated in Figure 5.3. As shown in Figure 5.3a, a user
can create a new event by providing a name, description and a time span for
event occurrence.

Figure 5.3b illustrates how the user can search and discover nearby events. By
retrieving all events and their location sub-label, Picster can filter events that
are in close proximity to the user. This list of events is cached by the local DNS
server, and because standard DNS replies only contain the remaining time the
values will be cached, the application has no way of determining how long
the values have been cached already. Depending on the original Time To Live
(TTL) value of the label, the user must wait until the cache expires before being
able to acquire updated information.

Figure 5.3b illustrates how the user can search and discover nearby events. By
retrieving all events and their location sub label, Picster can filter events that
are in close proximity to the user. This list of events is cached by the local DNS

74 CHAPTER 5 / APPLICATIONS

A 4
TIL vs_TUIL

A 4

media > Media List
A 4

image1.jpg > Comments

likes replicas
A 4 A 4
Likes Members with replica

Figure 5.4: Domain name hierarchy illustrating the media tree under the
“TIL_vs_TUIL’ event. Blue nodes illustrate labels, while yellow nodes
describe the values associated with those labels.

server. An important design input to Jovaku was derived from this scenario.
Consider that standard DNS replies only describe when a value expires and
not the time at which the value was inserted into the cache. Thus, a returned
value might not be temporally valid, failing to convey e.g. the cancellation of
an event. The problem is addressed by Jovaku through prefixing all values with
the original TTL, enabling an application to determine cache durations and
possibly request refreshes by forcing the local DNS server to omit the cache
and retrieve updated values from the authoritative DNS server if demanded by
the scenario.

After joining an event, members can add new photos to the event, either by
capturing a new photo within Picster, or by browsing to an existing image
on the device. Adding new photos to an event will update the DNS hierarchy
similar to adding an event. Figure 5.4 shows the resulting media sub-tree under
the TIL vs TUIL event after adding an image. The media label contains TXT

5.1/ PICSTER 75

il i 610 |

PICSTER

TIL_vs_TUIL

PICSTER

TIL_vs_TUIL

Add new comment

(a) Media overview and voting (b) Media comments

Figure 5.5: The Picster application, which stores image metadata in a cloud database,
using Jovaku for caching.

RSs with a list of available images for the event, where image1.jpg will be
found. The TXT record for this label contains comments for the image. Below
all images we find two labels, likes and replicas. The label likes contains the
number of likes images have received, and the label replicas contains connection
information to members that host actual image data.

To speed up the dissemination of new images, a rumor-mongering gossip
protocol [123] is used to advertise new content to other members of the event.
The protocol is based on user evaluation of the content. If media content
receives a like from a member, the application will spread information to
a random selection of other members. Thus, liked content will with high
probability continue to spread to all members, and content that is not liked
will eventually disappear.

Figure 5.5a shows how Picster presents new images to users, enabling collabo-
rative filtering by allowing users to like or dislike images. Liking an image will
store it on the device, allowing retrieval from other members. The replicas label
will be updated, and a gossip message will issued to help dissemination. Clicking
an image allows users to see comments from other members, and add new

76 CHAPTER 5 / APPLICATIONS

€« C' | [jovaku.com/groups/TIL_vs_TUIL =

TIL vs TUIL

Soccer match between TIL and TUIL at Alfheim 05.11.2015.

GPS Coordinate: 69.6488006,18.9351356,20z

Iﬁ 14 likes

Comments:
+ Amazing!
+ Sensational Soccer!

@ 2015 - Jovaku

Figure 5.6: The Picster web application displaying an image from the TIL vs TUIL
event, with the number of likes and a list of comments.

comments. Figure 5.5b shows an image and its associated comments.

Picster was developed as part of a broader project that investigates decentralized
deployment of cloud services [45, 46] in the context of sports analytics. As
part of this research, the stadium and players of a premier soccer club have
been equipped with various sensor and video processing technologies. During
matches, coaches interface with the system in real time through mobile

5.2 / DAPPER 77

devices [51, 53] to capture important in-game events.

To involve spectators, we apply Picster to identify events with high enter-
tainment value. To present high quality content at an event, we developed
an ASP.NET application called PicsterWeb, shown in Figure 5.6. PicsterWeb
was designed to run on large presentation screens at events, but can also be
accessed as a normal web page. PicsterWeb can join events as a spectator and
keep track of images that have received likes above a given threshold. The
resulting images are retrieved and stored locally, and can be viewed in a web
browser or presented on a large screen at the event.

5.2 Dapper

Our goal with the Jovaku middle tier is to provide functionality to reduce
latency when a mobile/cloud application communicates with the cloud. The
offered functionality ranges from caching of cloud data in close proximity to a
client, as described in Chapter 3, to moving code from the client to the cloud
through satellite execution, as described in Chapter 4.

Whether the features of Jovaku are straightforward to exploit for mobile/cloud
applications is a question that, following a systems research method, should be
answered through construction of artifacts. The Picster artifact substantiates
that ad hoc geosocial applications can derive benefits from utilizing the Jovaku
caching functionality. We developed the Dapper artifact to investigate and
evaluate Jovaku’s satellite execution concept.

Dapper is a social network application that implements the traditional cloud
backend service as mobile functions in the application. With Dapper, users can
create a profile and post status updates to a feed. Users can also search other
users of the social network and send a request to add them to their friend list.
The functionality of Dapper closely resembles that of the core functionality of
Facebook, albeit in a simpler form. Dapper seeks to validate whether satellite
execution can be used to construct mobile/cloud applications.

Implementing code that interacts with the cloud database as mobile functions
allows Dapper to take advantage of satellite execution in Jovaku. By imple-
menting a local context object, latency saving can be measured for each of the
mobile functions implemented in Dapper.

Dapper uses three database tables: Profiles, Friends and Feed. The Profiles
table contains all user profiles, allowing users to maintain a profile and enable
searches for friends. The Friends table contains a list of all friends and pending

78 CHAPTER 5 / APPLICATIONS

friend requests. The Feed table contains social updates pertaining to a user.
The layout of the database tables can be seen in Tables 5.1, 5.2 and 5.3, and
will be detailed shortly.

Table 5.1: The Profiles table contains profiles for users of Dapper, allowing others to
locate friends by searching for name or description.

Userld Timestamp Name Description
USERI1... 1446905829 Robert Pettersen Research Fellow @ UiT
USER2... 1446903159 }O\ge Kvalnes Associate Professor @ UiT

USER3... 1446901279 Dag Johansen Professor @ UiT

Table 5.2: The Friends table contains friend relationships and pending friend requests.
The table contains one friend relationship and a pending friend request.

Userld Timestamp Friendld Relationship

USER1... 1446905829 USER2... FRIEND

USER2... 1446905829 USER1... FRIEND

USER3... 1446907537 USER1... REQUESTED

USER1... 1446907537 USER3... PENDING

Table 5.3: The Feed table contains all social updates pertaining to a user, which includes
updates from close friends and changes to the friend list in addition to
updates posted by the user itself.

Userld Timestamp Message Origin
USER1... 1446905829 Found a bug! USER2. ..
USERL... 1446904735 Became friends with Age FRIEND
USER1... 1446903159 Brr freezing outside USERL...

USERIL... 1446901279 Winter is coming USERI...

5.2 / DAPPER 79

il w428 il w4221

DapperBook

profile

DapperBook

edit profile

S W Robert Pettersen
Research Fellow @ UiT

N Name
= Robert Pettersen

Description

Research Fellow @ UiT

(a) Viewing a user profile. (b) Editing a user profile.

Figure 5.7: Handling user profiles in Dapper.

5.2.1 User Profile

To uniquely identify users of Dapper, the anonymous identifier obtained from
the UserExtendedProperties class in the Windows Phone SDK is used. This
reduces complexity of the application by removing the need to register new
accounts and authenticating existing users, allowing us to focus on functional
aspects.

The layout of the profile table can be seen in Table 5.1, and contains four fields:
Userld, Timestamp, Name and Description. The UserID field is populated from
the anonymous identifier, but is displayed here in a human readable format for
illustrative purposes. The Name and Description fields are maintained by the
user and will be used to locate other users of the application.

Users view their profile under the profile tab in the application, illustrated
in Figure 5.7a. A list of friends will also be displayed, populated as social
connections are made. Changes to the profile can be made by clicking the
edit button on the bottom of the page, and making changes as necessary. The
edit profile page is shown in Figure 5.7b and is stored by clicking the save
button.

80 CHAPTER 5 / APPLICATIONS

Code Listing 5.1: The ProfileUpdate mobile function will update a user profile, or
create a new one if the profile does not exist.

[Serializable]

public class Profile

{
public string UserId { get; protected set; }
public DateTime Timestamp { get; protected set; }
public string Name { get; set; }
public string Description { get; set; }

}
[Serializable]
public class ProfileUpdate : Profile, IMobileFunction
{
public async Task Execute(IContext ctx)
{
Timestamp = DateTime.Now;
var rawProfile = await ctx.Get("Profiles", UserId);
if (rawProfile == null)
{
await ctx.Put("Profiles", UserId, this);
}
else
{
var profile = ParseProfile(rawProfile);
profile.Timestamp = Timestamp;
if (Description != null)
profile.Description = Description;
if (Name !'= null)
profile.Name = Name;
await ctx.Put("Profiles", UserId, profile);
}
}
private Profile ParseProfile(string data) { ... }
}

The Profile class is used to represent a user profile, and mobile functions that
operate on user profiles inherit this base class to get the required properties.
The ProfileUpdate mobile function seen in Code Listing 5.1, is used both to
create new profiles and update existing ones. If the user does not have a profile,
a new one will be created, and if there is an existing profile, altered fields will
be updated with new values.

5.2 / DAPPER &1

5.2.2 Connecting with Friends

Table 5.2 shows the layout of the Friends table, and contains four fields:
Userld, Timestamp, FriendId and Relationship. The Relationship field describes
the relationship between Userld and Friendld. From the table we observe a
friendship between USER1 and USER2 denoted by the FRIEND relationship, and
a friend request from USER3 to USER1 denoted by REQUESTED and PENDING
relationships.

il Wi 4:28

DapperBook

search
Search: Q|

1 Age Kvalnes

3 Associate Professor @ UiT L

g Dag Johansen

Professor @ UiT L=

Figure 5.8: Searching for friends in Dapper.

Searching for friends in Dapper is performed under the search tab, illustrated
in Figure 5.8. The search is performed by a keyword search spanning the Name
and Description fields in the Profiles table, allowing searches both for name
and description. The list of matches will be presented to the user, which in turn
can choose who to send friend requests to.

Sending a new friend will invoke the FriendRequest mobile function, shown in
Code Listing 5.2. FriendRequest inherits from the Friend class that represents
a social connection, providing the required properties. The mobile function
will create new entries in the Friends table, declaring the request. First a new
entry for the user sending the request will be added, with the relationship
set to REQUESTED. Then an entry for the receiving user is added with the
relationship set to PENDING.

82 CHAPTER 5 / APPLICATIONS

Code Listing 5.2: The FriendRequest mobile function will insert a new pending
friend request into the Friends table.

[Serializable]

public class Friend

{
public string UserId { get; protected set; }
public DateTime Timestamp { get; protected set; }
public string FriendId { get; set; }
public string Relationship { get; set; }

}
[Serializable]
public class FriendRequest : Friend, IMobileFunction
{
public async Task Execute(IContext ctx)
{
Timestamp = DateTime.Now;
Relationship = "REQUESTED";
await ctx.Put("Friends", UserId, this);
Swap(UserId, FriendId);
Relationship = "PENDING";
await ctx.Put("Friends", UserId, this);
}
}

5.2.3 Status Updates

The layout of the Feed table can be seen in Table 5.3, and contains four fields:
Userld, Timestamp, Message and Origin. The Userld field points to the owning
user, Message contains the content and Origin specifies where the message
originated from. The Origin field can either be FRIEND to describe changes to
the friend list, or a user id pointing to the creator of the status message.

The social feed can be found under the feed tab in Dapper, shown in Figure 5.9.
The different types of messages are differentiated with icons, where blue speech
bubbles are the users own updates, green are updates from friends and the
people icon indicates changes to the friend list.

Posting a new status message executes the StatusUpdate mobile function,
shown in Code Listing 5.3. The mobile function starts by posting the status
to the poster’s own feed. Then the friends of the poster is retrieved, and each
friend is subjected to an algorithm to determine whether the status should

5.2 / DAPPER 83

il ¥ 4:28

DapperBook

feed

Updates:
5 Found a bug!

14.10.2015 14:24 - Age Kvalnes

Became friends with Age
+ 12.10.2015 10:24

& Bir freezing outside
10.10.2015 22:19

. Winter is coming
8.10.2015 18:41

Figure 5.9: The feed shows social updates from the user and its closest friends, and
changes to the friend list.

be posted to their feed as well, by invoking IsRelevantFor. Possible elements
that factor into the decision could be number of likes, keywords in the status
message or relationship status. For the moment the algorithm only considers
relationship status.

5.2.4 Making Progress

So far Dapper can create and make changes to a user profile, post status updates
and send friend requests. To retrieve updates and friend requests, Dapper has a
periodic background task that executes the RetrieveUpdates mobile function,
shown in Code Listing 5.4. The mobile function will start by retrieving the feed
for the user, and filter out status messages that are older than the last run. The
remaining status messages are added to a list, and will be merged with the
existing status message list when the mobile function returns.

After new status updates have been retrieved from the database, the friend table
is checked for pending friend requests. If there are any pending friend requests,
the profile of the requesting user is retrieved to give enough information to
aid in deciding whether or not this is a friend. The profile is wrapped in

84 CHAPTER 5 / APPLICATIONS

Code Listing 5.3: The StatusUpdate mobile function will update a user’s status by
posting the new status to relevant feeds.

[Serializable]

public class StatusUpdate : IMobileFunction

{
public string UserId { get; private set; }
public DateTime Timestamp { get; private set; }
public string Message { get; set; }
public string Origin { get; set; }

public async Task Execute(IContext ctx)

{
Timestamp = DateTime.Now;
Origin = Userld;
await ctx.Append("Feed", UserId, this);
var friends = ParseFriends(await ctx.Get("Friends", Userld));
foreach (var friend in friends.Values)
{
if (IsRelevantFor(friend))
await ctx.Append("Feed", friend.FriendId, this);
}
}
Dictionary<string, Friend> ParseFriends(string data) { ... }
bool IsRelevantFor(Friend friend) { ... }

a new PendingFriend object, before adding it to the list of pending friend
requests.

The retrieved profile is cast to the FriendRequest mobile function, seen in
Code Listing 5.5. FriendRequest inherits from the ProfileUpdate class giving
it all the necessary properties to contain the profile. In addition to the profile
fields, the FriendRequest mobile function has a property indicating whether
or not the user has accepted the request.

The PendingFriend object is a mobile function itself, shown in Code Listing 5.5.
If the request is accepted, the mobile function will be executed. The function
will start by retrieving both requests from the Friends table. The Relationship
is changed to FRIEND to indicate a normal friendship, and stored in the
Friends table. The function will then advertise the new friendship to both
users’ feed.

5.2 / DAPPER 85

Code Listing 5.4: The RetrieveUpdates mobile function will retrieve social updates
and pending friend requests.

[Serializable]
public class RetrieveUpdates : IMobileFunction
{
public string UserId { get; private set; }
public List<StatusUpdate> Feed { get; private set; }
public List<PendingFriend> PendingFriends { get; private set; }
public DateTime LastUpdated { get; set; }
public async Task Execute(IContext ctx)
{
// Retrieve previously unseen social updates
var statusUpdates = await ctx.Get("Feed", UserId);
foreach (var update in statusUpdates.
Where(s => s.Timestamp > LastUpdated))
{
Feed.Add(update);
}
// Retrieve pending friend requests
var friendList = await ctx.Get("Friends", UserId);
foreach (var friendRequest in friendList.
Where(f => f.Relationship == "PENDING"))
{
var friendProfile = await ctx.Get("Profiles",
friendRequest.FriendId);
PendingFriends.Add(new PendingFriend
{
UserId = Userld,
fProfile = friendProfile,
s
}
}
}

5.2.5 Experiences and lessons learned

Dapper uses the satellite execution capability in Jovaku to implement a mobile
social networking application. Mobile functions are used to update user profiles,
search for and add friends, and post status updates by moving code from the
application to the cloud. Developing mobile functions for satellite execution
can be compared to developing a cloud side Application Programming Interface
(API) that users of the service can utilize in applications.

86 CHAPTER 5 / APPLICATIONS

Code Listing 5.5: The FriendRequest mobile function will accept a friend.

[Serializable]
public class PendingFriend : IMobileFunction
{
public string UserId { get; set; }
public string Name { get; set; }
public Profile fProfile { get; set; }

public async Task Execute(IContext ctx)

{
// Get user’s friends
var uFriends = ParseFriends(await ctx.Get("Friends",
UserId));
// Get friend’s friends
var fFriends = ParseFriends(await ctx.Get("Friends",
fProfile.UserlId));
// Set the relationships to FRIEND
fFriends[UserId].Relationship = "FRIEND";
uFriends[fProfile.UserId].Relationship = "FRIEND";
// Update friends table
await ctx.Put("Friends", fProfile.UserId, fFriends);
await ctx.Put("Friends", UserId, uFriends);
// Update feeds to advertise the relationship
var statusUpdate = new StatusUpdate { Origin = "FRIEND" };
statusUpdate.Message = string.Format(
"Became friends with {0}", fProfile.Name);
await ctx.Append("Feed", UserId, statusUpdate);
statusUpdate.Message = string.Format(
"Became friends with {0}", Name);
await ctx.Append("Feed", fProfile.UserId, statusUpdate);
}
Dictionary<string, Friend> ParseFriends(string data) { ... }

Using mobile functions in Dapper is similar to how the Facebook API is used
in Android. Code Listing 5.6 compares how mobile functions are used to post
status updates in Dapper, with how the official Android Facebook API is used
to send status updates to Facebook. The main difference lies in where the
logic that handles the request is located. With Jovaku the logic is contained in
mobile functions, while Facebook has the logic in their datacenters.

5.2 / DAPPER 87

Code Listing 5.6: Comparison of posting status updates to Dapper using Jovaku and
using the Facbook API to post updates to Facebook.

// Using satellite execution to post status updates to Dapper
var update = new StatusUpdate();

update.Message = "Hello World!"

await JovakuClient.ExecuteAt(update, RelayNode);

/* handle the result x/

// Using Facebook API to post status updates to Facebook
Bundle param = new Bundle();
param.putString("message", "Hello World!");
/* make the API call x/
new GraphRequest (
AccessToken.getCurrentAccessToken(),
"/me/feed",
param,
HttpMethod.POST,
new GraphRequest.Callback() {
public void onCompleted(GraphResponse response) {
/* handle the result x*/
}
}

) .executeAsync();

When the mobile functions in Dapper evolved during development, we met one
important challenge. When multiple versions of the same code was loaded in
the relay-node at the same time, conflicts occurred when trying to determine the
correct data type. Supporting multiple versions of the same mobile functions is
analogous to API evolution in traditional cloud services. Changing an API that
clients and applications use must be done with care, as developers are often
slow to adopt API changes [124].

There are three overall models for API evolution [125]: The Knot model, Point-
to-point model and Compatible versioning. The Knot is the simplest form
of evolution, where all API consumers are tied to a single version of the
API. Changes in this model creates a massive ripple effect across consumers.
In Point-to-point evolution, every API version is left running in production
and consumers can migrate on their own, when they need to. Compatible
versioning means that all changes to an API must be compatible with the
previous version.

Point-to-point and Compatible versioning both lead to higher maintenance cost
for the API provider, since multiple versions of the API need to be maintained.

88 CHAPTER 5 / APPLICATIONS

By using separate application domains for different versions of an assembly,
the relay-node is able to host multiple versions at the same time. Because
code comes from mobile applications, API evolution and maintenance is
minimized.

Applications running on mobile devices have to explicitly request access to
resources such as networking, contact lists, and file access. The ability to
restrict access to resources similarly when executing code in the cloud is
therefore desirable. Application domains have the ability to restrict access to
resources for code running inside the isolated container. Another side effect of
introducing application domains is increased fault tolerance for the relay-node,
since faults pertaining to one assembly is isolated in the application domain
and will not affect the rest of the relay-node, as described in Section 4.3.

5.3 Summary

In this chapter we present two mobile social network applications, Picster
and Dapper, that both leverage Jovaku to reduce communication latency.
Picster exploits the close proximity to DNS servers to reduce read latency
to data that multiple users in close vicinity access. Dapper reduces write
latency by serializing code and objects for remote execution in the cloud,
obviating the need to do multiple round-trips to complete a task. In the
next chapter, the effectiveness of Jovaku will be evaluated through extensive
experimentation.

Experimental Evaluation

To investigate our thesis that a generic middle tier can leverage existing
infrastructure to reduce latency for mobile/cloud applications, we first designed
and implemented Jovaku, as described in Chapters 3 and 4. This chapter
experimentally evaluates the efficacy of Jovaku, measuring its performance
and usefulness for mobile/cloud applications.

Jovaku can cache cloud database values close to the clients by exploiting the
proximity of Domain Name System (DNS) servers to mobile clients, potentially
reducing latency for lookups in mobile/cloud applications. Jovaku can also
serialize code and data, and request remote execution to reduce latency for
tasks that employ sequences of dependent queries.

To evaluate whether Jovaku can be used to reduce communication latency in
mobile/cloud applications, we seek to answer the following questions:

Question 1. Is DNS a viable placement for a caching middle tier?

Question 2. Can modern mobile/cloud applications benefit from
satellite execution in their operation?

Question 3. Is satellite execution effective for reducing the latency
of dependent queries?

89

90 CHAPTER 6 / EXPERIMENTAL EVALUATION

Affirmative answers to the above questions would experimentally corroborate
the efficacy of Jovaku to reduce communication latency in mobile/cloud
applications. Assuming affirmative answers, an interesting question is then how
well the relay-node scales as the number of clients grows. A fourth question
that we aim to answer in our evaluation is therefore:

Question 4. How does the relay-node scale as the workload in-
creases?

To answer Question 1, we focus in particular on two key performance metrics.
First, we seek to identify the worst case overhead of accessing DynamoDB by
going through Jovaku. Second, we seek to identify the theoretical best case
performance when all requests hit the Jovaku cache. In combination, the worst
case and the best case performance measurements allow us to extrapolate the
cache hit rate required to break even in terms of average request latency from
a given location.

For Question 2, we need to investigate whether existing mobile/cloud ap-
plications make use of dependent queries. Since source code is unavailable
and communication is encrypted, we conduct a black-box examination of
communication patterns and seek to reveal patterns consistent with sequences
of dependent requests.

To answer Question 3, we approximate the savings that could be experienced
in a deployed application by comparing the execution of mobile functions
with a varying number of dependent queries, with and without satellite execu-
tion.

Finally, to answer Question 4 we set up an experiment where an increasing
number of mobile clients attempt to stress the relay-node as much as possible,
by issuing mobile functions in a closed loop. Repeating the experiment with
different resource allocations for the relay-node could reveal scaling properties
of the relay-node.

6.1 Experimental Setup

Jovaku runs on a variety of Microsoft Windows platforms, including Windows
Phone, Windows Store, and the traditional Windows desktop. We use four
different platforms during the experiments: (1) a phone with 2 GB memory
and a quad-core QualComm Snapdragon 8oo 2.2 GHz CPU, (2) a desktop
machine with 64 GB memory and a quad-core Intel Xeon E5-1620 3.7 GHz CPU,

6.2 / DNS CACHING a1

Table 6.1: Machine types used throughout the experimental evaluation, along with
labels used to reference them.

Label CPU type CPU Cores Memory
Mobile Snapdragon 800 2.2GHz 4 2GB
Desktop Intel Xeon E5-1620 3.7 GHz 4 64 GB
EC2 t1.micro 64 bit vCPU 1.85GHz 1 613 MB
EC2 t2.medium 64 bit vCPU 2.5GHz 2 4GB

(3) an Amazon EC2 t1.micro instance equipped with 613 MB memory and a
single-core 1.85 GHz 64 bit vCPU, and (4) an Amazon EC2 t2.medium instance
equipped with 4 GB memory and a dual-core 2.5 GHz 64 bit vCPU.

The phone runs Windows Phone 8.1 and communicates over 4G, whereas the
desktop machine runs Windows 10 and is connected to a 100 Mbit/s LAN. Both
EC2 instances are running Microsoft Windows Server 2012 R2. The phone and
desktop are located in Tromsg, while the EC2 instances are instantiated in
various Amazon availability zones, detailed further in each experiment. An
overview of the machine types involved in the experimental evaluation can
be seen in Table 6.1, along with labels that we will use to reference them
henceforth.

6.2 DNS caching

The effectiveness of caching depends on the ratio of cache hits, which again de-
pends on the access pattern of the application. We envision diverse applications
for Jovaku, that may exhibit many different access patterns. Performance also
depends on how an application is deployed geographically, since this affects
the latency to access both DynamoDB and DNS. Therefore, we use synthetic
workloads in our experiments, and run experiments from multiple locations,
so we could predict performance for a range of cache hit rates and sites across
the world.

We use Amazon’s availability zone in Ireland to host both the relay-node and the
DynamoDB service. Table 6.2 shows the machines used in these experiments,
along with the labels we will use to reference them henceforth. For each
location, the fourth column lists typical ping latency (the average of 1000

92 CHAPTER 6 / EXPERIMENTAL EVALUATION

Table 6.2: Machines involved in evaluating the effectiveness of DNS caching, along
with the latency and hop count to the Amazon DynamoDB located in

Ireland.
Label Location Type Ping Latency # Hops
Norway Tromsg Desktop 64 ms 15
Norway-3G Tromsg Desktop 116 ms 13
Norway-4G Tromsg Desktop 120 ms 18
US West California EC2 t1.micro 155ms 17
Asia Singapore EC2 t1.micro 339ms 20
Australia Sydney EC2 t1.micro 365 ms 12
Relay-node Ireland EC2 t1.micro 4 ms 3
Relay-node#2 Ireland EC2 t2.medium 4ms 3

El;roms@

’

- ‘ ‘}% ST ~
. \~
Ireland * s
)) 5 Singapore
California . \‘o/
.
~
~

Se o
-

Figure 6.1: Placement of nodes on world map. Client locations chosen to exhibit some
variations in routing distance and latency to the DynamoDB service and
relay-node located in Ireland.

6.2 / DNS CACHING 93

pings) and the fifth column lists the number of routing hops to DynamoDB
according to traceroute. We use mostly EC2 instances from Amazon’s various
availability zones, complemented with a desktop machine in Norway. To access
mobile networks, we use a USB dongle to access the 3G network operated by
Netcom, and Wi-Fi tethering to access the 4G network operated by Telenor.
Figure 6.1 shows the various geographical locations of the machines, chosen
to exhibit some variation in routing distance to the DynamoDB service and
relay-node in Ireland.

We focus in particular on two key performance metrics. First, we seek to identify
the worst case overhead of accessing DynamoDB by going through Jovaku. To
this end, we measure the baseline performance of accessing DynamoDB directly,
compared to the performance of using Jovaku with a workload that never hits
the cache. In this worst case scenario, each lookup is a cache miss as depicted
in Figure 3.1b. The lookup must first consult the local DNS server, before it is
forwarded to the authoritative DNS server, which is our relay-node in the cloud,
where it is translated into a database lookup using the DynamoDB Application
Programming Interface (API). We provoke this worst case behavior by setting
the Time To Live (TTL) of the database values to 0. This disallows caching by
local DNs servers, forcing every request to be forwarded to the authoritative
source.

Second, we seek to identify the theoretical best case performance when all
requests hit the Jovaku cache. In this case, every lookup is for a key that has
previously been cached and resides in the local DNS server. Requests only incur
the latency of a local DNS lookup and never go all the way to the cloud. We
induce this behavior by setting the TTL of our database values to 24 hours.
We then prime the local DNS cache by making several lookups for all values.
This is required since we use Virtual Machines (VMs) in various EC2 clusters as
clients, and these vMs are configured to multiplex DNS requests over a large
set of local DN'S servers. A warm up period is thus required to populate all the
DNS caches. In deployments where clients are actual mobile devices around
the world, rather than vMs in a data center, these kinds of DN'S setups would
be rare to encounter.

In combination, the best and worst case performance measurements allow
us to extrapolate the exact cache hit rate required to break even in terms of
average request latency from a given location. Applications whose hit rates are
expected to be above the break-even threshold will thus benefit from using
Jovaku as a caching layer. In addition, every single cache hit also reduces the
load on the cloud database service, and saves money when services are billed
per request, as is the case with DynamoDB. In other words, applications that
are less sensitive to latency may benefit from Jovaku even for cache hit rates
below the break-even threshold.

94 CHAPTER 6 / EXPERIMENTAL EVALUATION

6.2.1 Baseline Performance

Our first set of experiments establishes the baseline performance of accessing
DynamoDB in Ireland. For each client location, we perform 1000 lookups in
sequence and time the end-to-end completion time for each request. We use
Amazon’s official C# Software Development Kit (SDK) to access DynamoDB,
with HTTP as the underlying transport protocol.

Our initial experiments uncovered a subtle parameter that had a very significant
effect on performance. Each lookup is implemented as an HTTP POST request.
Such requests might include a header field, “Expect: 100 continue”, that
instructs the server to reply with a 100 status code before the client will send
the body of the POST request. This results in two rounds of communication
for each request, since the client first sends the header of the request, and
then waits for a reply before sending the body. Alternatively, clients can omit
the “Expect: 100 continue” header field, and send the entire POST request as
one TCP segment. In the common case, this means a POST request can be
completed using just a single round of communication.

The default configuration of the .NET runtime does enable the “Expect: 100
continue” header field, which leads to surprising results. Since Jovaku sends
lookups using the DNS protocol, which is again based on UDP, and only
switches to HTTP for the final hop between the relay-node and the DynamoDB
service, a Jovaku lookup only needs a single round trip of communication
between the client and the cloud. So with the default .NET configuration,
Jovaku outperforms DynamoDB even in the case when all lookups miss the
cache. In short, requests take an apparent detour by going through DNS, but
since they only travel most of that route once instead of twice, the longer route
ends up being faster.

This finding, while interesting, is somewhat tangential to what we set out
to investigate. The DynamoDB service responds to POST requests both with
and without the “Expect: 100 continue” header, so performance-aware clients
can reconfigure .NET to omit it. In the interest of fairness, we adopt this as
our baseline. Another potential pitfall for naive clients is to set up new TCP
connections for each HTTP request. This is unnecessary, as the same TCP
connection can be reused for multiple HTTP requests, and this is what HTTP
libraries such as curl and .NET generally do. To account for this, we exclude the
first request from our measurements in this and all subsequent experiments.
With these optimizations, a lookup will in the common case require only a
single round-trip of communication.

Table 6.3 summarizes our baseline performance measurements, correlating
them with the previously listed ping times. The effect of the “Expect: 100

6.2 / DNS CACHING o5

Table 6.3: Average baseline lookup performance for the DynamoDB service in Ireland.

Label With 100 continue Without 100 continue Ping Latency
Norway 135ms 69 ms 64 ms
Norway-3G 355ms 159 ms 116 ms
Norway-4G 261 ms 134 ms 120 ms
US West 368 ms 166 ms 155 ms
Asia 693 ms 353 ms 339 ms
Australia 712ms 368 ms 365 ms

continue” header field is evident: when including the field, the average time to
perform a lookup is about twice the time needed for a ping request, indicating
that each request usually requires two round-trips of network communication.
Without the field, the baseline lookup performance closely approaches that of
a ping request, indicating that a single round-trip is sufficient. As noted, we
assume that clients concerned with latency will optimize their configurations for
that, so we adopt the latter measurements as the proper baseline performance
for DynamoDB.

The numbers reported in Table 6.3 are averages of 1000 requests. Request
times do not appear to follow a normal distribution; rather, the main bulk of
requests are close to the minimum, while there are some rare outliers that take
longer. We illustrate the distribution of request times by plotting histograms
that show the percentage of requests that fall within each range of completion
times. Figure 6.2 shows these distributions for all our client locations.

6.2.2 Jovaku Performance

In our next set of experiments, we measure lookup times when going through
the Jovaku SDK. In this scenario, lookups are translated into DNS requests
that are sent to the local DNS server. Depending on whether or not the value
is cached, the DNS server either replies immediately, or forwards the request
to the cloud, as illustrated in Figure 3.1. As noted, we measure the cache hit
performance by warming up the DNS cache with long-lived entries, before
measuring a sequence of lookups. We measure the cache miss performance by
looking up values with TTL zero, which are never cached by DNS servers.

CHAPTER 6 / EXPERIMENTAL EVALUATION

Latency (ms)

(e) Asia

96
60 | |
B a
3 S
S 40| =
g g
bS] B
s 201 - S
0 S —— =
100 200 300 400
Latency (ms)
(a) Norway-3G
8 60]
5 5}
: -
g 401 2
[[
S 1S}
X 20 S
0 T I
70 80
Latency (ms)
(c) Norway
60
= 40) S
g g
B]
s 200 <
O I | I
350 360 370

60 -
40 -
20
100 150 200
Latency (ms)
(b) Norway-4G
60 -
40 -
20
O I I I
160 170 180 190
Latency (ms)
(d) US West
80 -
60 |-
40
20
0 T T _J_|\
370 380 390

Latency (ms)

(f) Australia

Figure 6.2: Distribution of baseline lookup performance for the DynamoDB service in
Ireland using the official Amazon C# SDK.

6.2 / DNS CACHING 97

Table 6.4: Average lookup performance using Jovaku with the DynamoDB service in

Ireland.
Label Baseline Hit Miss Overhead Break-even
Norway 69 ms < 1ms 78 ms 13.0% 12.0%
Norway-3G 159 ms 86 ms 168 ms 5.7% 11.0%
Norway-4G 134 ms 52ms 183 ms 36.0% 37.0%
US West 166 ms < 1ms 186 ms 12.0% 10.0%
Asia 353 ms < 1ms 376 ms 6.5% 6.1%
Australia 368 ms < 1ms 385ms 4.6 % 4.4%

Table 6.4 shows the results. For each location, the table lists the baseline
lookup performance, along with the measured latencies for cache hits and
cache misses. As before, the reported numbers are averages of 1000 requests
executed in sequence. We also calculate two additional metrics, listed in the
last two columns.

The Overhead column shows the relative overhead of a cache miss compared
to the baseline lookup time. In the worst case, where every single request
misses the cache, this is the resulting overhead of using Jovaku.

The Break-even column shows how many percent of lookup requests must
hit the cache in order to break even in terms of average request times. This
threshold relates to how the cache hit and cache miss times compare to the
baseline performance. For example, if cache hits take half the time of the
baseline, while cache misses take twice as long, 67 % of requests must hit the
cache in order to break even.

Given the average times for a cache hit Ty;;, a cache miss Ty, and the baseline
latency Thaseline Of a direct lookup, we define the break-even threshold as the
fraction x where:

x - Thit + (1 = x) * Trniss = Thaseline

Or, equivalently:

08

% of requests % of requests

% of requests

CHAPTER 6 / EXPERIMENTAL EVALUATION

% of requests

40
0| |
20 |-
10 | ||
0 e
100 200 300

Latency (ms)

(a) Norway-3G, 0% cache hits

60 -

40

20

|

=

% of requests

O I I I
100 150 200
Latency (ms)

50

(c) Norway, 0% cache hits

60 |-

40 |

20 -

% of requests

I I [
400 450 500

Latency (ms)

I
350

(e) Asia, 0% cache hits

60 |]
40 |
20|
100 200 300

Latency (ms)

(b) Norway-4G, 0% cache hits

30 -

10

bl

160 180 200 220 24
Latency (ms)

(d) US West, 0% cache hits

40 -
30
20 -

10

_W_T_T7—1—L_

I I I
400 450 500
Latency (ms)

I
350

(f) Australia, 0% cache hits

Figure 6.3: Distribution of worst-case lookup performance with Jovaku, where no
results are cached in local DNS servers.

6.2 / DNS CACHING 99

— (Tmiss - Tbaseline)
(Tmiss - Thit)

Intuitively, this means that x is a tipping point. When a fraction x of requests
hit the cache, the average latency will be the same as without any caching.
For higher ratios, the average latency will be better than the baseline, and for
lower ratios, it will be worse.

Our results show that the overhead of a Jovaku cache miss is in the range of
4% to 12 %. Figure 6.3 shows the distribution of request times for cache misses.
We do not include the distribution for cache hits, since they are extremely
fast for the majority of locations. This is because our EC2 nodes are located in
data centers with high speed networks, and these nodes have very low latency
access to their local DNS service.

The mobile networks in Norway are exceptions, with slower access to DNS. On
the 3G network, the overhead of a cache miss is less than 6 %. This means that
caching remains very justifiable, since a hit rate of 11 % would be sufficient to
break even. The 4G network has higher overhead for cache misses, evidently
taking a longer detour when going through DNS. This can be a side effect of
additional hops with WiFi tethering, or poor 4G coverage in Tromsg at the time
of the experiments. For mobile devices in more distant locations from Ireland,
the relative difference between a cache hit and the baseline performance would
likely be much greater, making caching even more attractive.

6.2.3 Jovaku with Alternative DNS Configuration

Given the fast DNS access times for the EC2 nodes in our previous experiments,
it is natural to further explore the performance of Jovaku with alternative
DNS configurations, i.e. when DNS access is more costly. We use EC2 nodes
as a convenient way to experiment with different geographical locations, but
mobile devices cannot reasonably be expected to have as fast access to DNS
as computers in a data center. We therefore run additional experiments using
Google’s Public DNS service, creating more realistic access times for DNS
lookups.

The setup remains the same as in the previous experiment, with the only
difference being that DNS requests are sent to Google’s DNS service instead of
the local DNS service. All of our clients configure the anycast address 8.8.8.8
as their local DNS server, and requests are routed to the geographically closest
Google DNs server through anycast routing.

100 CHAPTER 6 / EXPERIMENTAL EVALUATION

Table 6.5: Average lookup performance using Jovaku with the DynamoDB service in
Ireland and Google Public DNS.

Label Baseline Hit Miss Overhead Break-even
Norway 69 ms 60 ms 110ms 59.0% 82.0%
Norway-3G 159 ms 106 ms 182 ms 14.0% 30.0%
Norway-4G 134 ms 75ms 242 ms 80.0% 65.0%
US West 166 ms 25ms 229ms 38.0% 31.0%
Asia 353 ms 14 ms 371ms 5.1% 5.0%
Australia 368 ms 3ms 442 ms 20.0% 17.0%

Table 6.5 summarizes the results with this configuration. As expected, the DNS
configuration has a very direct effect on cache hit times, since these are directly
determined by the latency to the DNS cache. For our clients in US West, Asia,
and Australia, DNS access times remain modest after switching to Google’s
service. In Norway, Google’s DNS service has a much higher latency, likely due
to poor coverage. This includes the mobile clients, which also are located in
Norway.

A more subtle result is how the DNS configuration impacts cache misses.
Requests that miss the cache are forwarded to the relay-node in the cloud.
This can also change the routing path of the request. For example, our client in
Australia still enjoys very low-latency access to Google Public DNS, and yet its
average latency for a cache miss is much worse when using this DNS service. On
the other hand, while the mobile devices in Norway have relatively high latency
for cache hits, the latency for a cache miss on the 3G network is only 14 %
higher than the baseline, indicating that the actual detour of going through DN'S
is relatively short. As a result, caching remains beneficial in this scenario for
hit rates of 30 % and higher. Figure 6.4 shows the distribution of request times
for cache misses for all of the locations using this DN'S configuration.

Overall, our evaluation shows that many variables affect the performance of
Jovaku, and how beneficial caching will be in any given scenario. One general
observation is that locations far away from the cloud database service, will
benefit more from caching. This is to be expected, since remote locations have a
higher baseline latency and can benefit relatively more from a cache hit.

6.2 / DNS CACHING

20

10 |-

% of requests

Latency (ms)

(a) Norway-3G, 0% cache hits

% of requests
X
S
[

—
o
[

L

I I I
150 200 250 300

0 =

I I
80 100 120
Latency (ms)

(c) Norway, 0% cache hits

% of requests
N W
S oS

[[

—
(@]
[

140

L

[
340 360 380 400 42

Latency (ms)

(e) Asia, 0% cache hits

% of requests

% of requests

% of requests

101
30 -
20 |-
il HIF
oA —
230 240 250
Latency (ms)
(b) Norway-4G, 0% cache hits
40
30 -
20 |-
10 + ‘7
O I I I I
200 220 240 260
Latency (ms)
(d) US West, 0% cache hits
40 -
30 -
20 |-
10 |-
O 1 I I I
420 440 460 480

Latency (ms)

(f) Australia, 0% cache hits

Figure 6.4: Distribution of worst-case lookup performance with Jovaku and Google
Public DNS, where no results are cached in Google’s DNS servers.

102 CHAPTER 6 / EXPERIMENTAL EVALUATION

Another important factor is the latency to the local DNS service, which deter-
mines the cost of a cache hit. In isolation, lower latency to the cache is always
better. However, this does not necessarily imply that data should be cached as
close to the clients as possible. The rate of cache hits might in some applications
depend on how many clients share the same cache, so the ideal placement of
caching nodes is a much more complex problem, in practice.

Finally, the worst-case overhead of a workload where all requests miss the cache
is very important. If this overhead is low, caching will be justifiable for low hit
rates, even if cache hits are relatively costly. Interactive applications may also
be more concerned with bounding the worst case latency than with improving
the average latency, as long as it stays within ranges that are imperceptible to
users. For these applications, Jovaku is attractive for its ability to reduce the
cost of operating the cloud database service, provided the worst-case latency
has a reasonable bound.

Of the combinations we have experimented with, caching proved most benefi-
cial for the clients in Asia and Australia. Due to the high baseline latency of these
locations, the overhead of a cache miss is relatively low. Meanwhile, the savings
in latency for cache hits are largest here, leading to break-even thresholds as
low as 4.4 %. Norway-4G has the worst combination of circumstances when
configured to use Google Public DNS. It has the lowest baseline latency to
access DynamoDB in Ireland, combined with the highest latency to access
Google Public DNS, which results in a break-even threshold as high as 82 %.
However, using the local DNS service, the break-even threshold is only 12 %.
These results gives an affirmative answer to Question 1 of the evaluation, and
we can conclude that DNS is a viable placement for a caching middle tier.

Predicting how a client in any given location might perform would be impossible,
even with much more extensive experiments. But our results do give some
indications, and show that great variations must be expected. One pragmatic
way to address these variations is to make clients adaptive; the baseline latency
of directly accessing the database can be compared on the fly to the latency of
going through DNS. Clients that observe unacceptable delays can try alternative
DNS services or simply revert to the baseline performance. This kind of adaptive
behavior could feasibly be built into the Jovaku client library, although we have
not done so currently.

6.3 Black box testing

To establish the usefulness of satellite execution in Jovaku, we report on a
black-box examination of the cloud communication patterns of some popular

6.3 / BLACK BOX TESTING 103

5
k5
4
24l reply 1 reply 2|
9]
S
g 3r i
&
g2)
S
S 1l request 1 request 2 |
9]
93]
[| | | | | | |

| |
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
— sent — received ‘

Figure 6.5: Example communication pattern between mobile device and cloud
assumed to be of a request/reply type.

mobile/cloud applications. Here we seek to discover patterns consistent with
sequences of dependent requests, with the motivation that satellite execution
can be used in place of such interactions. We configure our mobile device to
communicate through an access point instrumented to capture all ingress and
egress network packets. We then inspect the encrypted TCP streams and dissect
them into SSL packets, looking for what appears to be consecutive request/reply
cloud interactions without intervening user actions. The particular pattern we
looked for is exemplified in Figure 6.5, which shows two interactions assumed
to be of a request/reply type.

Our findings for cloud interactions during startup of four popular applications
are summarized in Figure 6.6. Connections to advertisement networks have
been filtered out, to focus on connections that are related to the functional
operation of the respective application.

We observed that the applications communicate over a number of separate
network connections, ranging from 2 for the social networking application
to 12 for the short messaging application. Most of these connections are to
different services within the same cloud, but some are external, typically in
support of content distribution such as Akamai [126].

The number of assumed request/reply interactions varied across applications
and connections, with the instant- and short messaging applications respectively
having as many as 7 and 6 consecutive interactions. These findings suggest
satellite execution can be effective if applied in these popular applications, and
gives an affirmative answer to Question 2 of the evaluation.

104 CHAPTER 6 / EXPERIMENTAL EVALUATION

13
12 1 M Social networking
11 Instant messaging
101 Short messaging
é 9 Picture exchange
g sl
= 7|
S 6f
S
4 [
3 [
2 [
1 [
LI ‘

1 2 3 4 5 6 7
request/reply

Figure 6.6: Summary of cloud interactions during various mobile application startup.

6.4 Satellite execution

To establish whether satellite execution can reduce communication latency for
mobile/cloud applications, we have to ascertain communication overhead is
minimized, and quantify communication latency when a client issues cloud
database queries directly and when using satellite execution.

We start by measuring the resulting byte arrays from the custom serialization
algorithm listed in Code Listing 4.12, with a varying number of queries. We
then compare it to the byte arrays produced with the default serialization
algorithm. The results can be seen in Figure 6.7. The custom serialization
algorithm produces byte arrays of less than half the size compared to the
default algorithm, when considering 1 to 10 queries. We also observe that the
default algorithm grows at a slower rate than the custom algorithm. Mobile
functions containing a large number of queries, might consider using the default
algorithm, or split the mobile function into several smaller mobile functions,
to obtain a byte array with the least number of bytes.

To quantify communication latency, we use the bag-of-queries implementation
outlined in Code Listing 4.11 to issue queries to the DynamoDB instance located
in Ireland. We use the desktop and mobile platform located in Tromsg to issue
requests, and a EC2 ti.micro instance to host the relay-node located in the
same availability zone as the DynamoDB instance. The locations are illustrated
in Figure 6.8.

6.4 / SATELLITE EXECUTION 105

19000 | | | |
—— Default serialization
= 800 | — Custom serialization
Q
5
)
o 600
N
w
o
.g 400
£ /
3]
v 200
O | | | | | | | |

1 2 3 4 5 6 7 8 9 10
Number of queries

Figure 6.7: Comparison of the default serialization and the custom serialization
algorithms, with respect to the size of the resulting byte array.

Tromsg

Figure 6.8: Locations of nodes involved in the experiment.

106 CHAPTER 6 / EXPERIMENTAL EVALUATION

1,200 ‘

—— desktop

1,000 | | desktop with satellite execution
—— mobile

-+- mobile (normalized)

800 | mobile with satellite execution

600

Latency (ms)

400

200

Number of queries

Figure 6.9: Observed mean latency when executing a varying number of cloud
database queries with and without satellite execution. The error bars
show the standard deviation.

Latency when the bag contained between 1 and 5 queries is shown in Figure 6.9.
Results are the mean latency over 1000 runs. As shown, there are significant
latency savings when the bag contains more than one query. This is because
latency between the relay-node and the database is low, and the round-trip
latency between the client and the cloud—approximately 64 ms for desktop and
105 ms for mobile—overshadows the low cost of serializing and transferring
the query bag.

The DynamoDB library uses the HTTP 100-continue feature when interacting
with the cloud database. Use of this feature adds a communication round-trip
to database interaction, needlessly inflating latency [58]. We therefore used
platform interfaces to disable this HTTP feature on desktop. Similar interfaces
do not exist on Windows Phone, however. The results in Figure 6.9 consequently
include one additional round-trip latency for mobile, compared to desktop. To
better convey the latency difference between mobile and desktop, the figure
also includes results where one round-trip latency has been subtracted from
mobile. Even after this normalization, mobile has significantly higher latency
than desktop, demonstrating the relative importance of our satellite execution
technique for the mobile platform.

6.4 / SATELLITE EXECUTION 107

50 _ 50 ||
2 40 2 40|
S 5
g 30 g 30
B 20 B 20
B} S
10] ’_{7 —‘_‘_!—v—v—!_\ 10]
0 | | | | [0 [[[[[
260 265 270 275 280 285 75 85 95 105 115
Latency (ms) Latency (ms)
(a) Desktop: adding a friend (b) Desktop: adding a friend, with satellite
execution
30 - 30]
g 25 2 25| -
0]]
=) 20 =3 20
S 151 £ 15}
ks ks
< 10 |- < 10 -
51 5
O | I [[0 1 1 1 1
420 440 460 480 100 120 140 160
Latency (ms) Latency (ms)
(c) Mobile: adding a friend (d) Mobile: adding a friend, with satellite
execution

Figure 6.10: Distribution of latencies when adding a friend to a social network, with
and without satellite execution.

The data on popular applications in Figure 6.6 only indicates that latency sav-
ings are possible; determining the degree to which the interaction could exploit
satellite execution would require access to application source code.

To approximate the savings that could be experienced in a deployed application
we reconstruct a scenario where a friend connection is established in the
MSRBooK, a social networking application based on Deuteronomy [127]. The
addition of a friend in this network involves a friend and news feed update
for both concerned parties, for a total of 4 queries. Equivalent queries were
placed in our bag-of-queries and we run the friend-add action 1000 times on
both the desktop and the mobile platform, with and without satellite execution.
Figure 6.10 illustrates latency savings. Savings due to satellite execution are
pronounced; on desktop latency drops from a mean of 266 ms to 85 ms, while

108 CHAPTER 6 / EXPERIMENTAL EVALUATION

450
400
350
300
250
200
150
100

Average latency per bag

5 15 25 35 45 55 65 75 85 95
Number of clients

— EC2 ti.micro —— EC2 t2.medium

Figure 6.11: Latency per bag-of-queries when increasing the number of clients that
concurrently submit mobile functions to a relay-node.

it drops on mobile from a mean of 448 ms to 124 ms.

A latency reduction of 68 % and 72 % respectively, gives an affirmative answer
to Question 3 of the evaluation, proving the effectiveness of satellite execution
for reducing latency. With affirmative answers to Questions 1, 2 and 3, we can
evaluate the relay-node to answer Question 4.

6.5 Relay-node performance

On a mobile device such as a smartphone, a person uses around 24 different
applications every month [66]. Even the modest resource allocations available
to the Amazon t1.micro instance used in our experiments are likely to be ample
for a relay-node dedicated to a single mobile device. But if the relay-node
functionality was a service offered by the cloud database provider, in a fashion
similar to the Parse platform [86], the relay-node would likely be shared among
many mobile devices and its capacity would be an issue. We therefore last
consider an experiment where the relay-node serves an increasing number of
mobile devices.

In the experiment, we configured a thread on the desktop machine in Norway
to repeatedly submit mobile functions to the relay-node, in a closed loop.
Each mobile function was a bag of 4 queries. We then increased the number
of threads, simulating an increase in clients, to ensure high contention for
relay-node resources, in an attempt to reveal the capacity for executing mobile

6.5 / RELAY-NODE PERFORMANCE 109

Bags per second

5 15 25 35 45 55 65 75 85 95
Number of clients

— EC2 t1.micro —— EC2 t2.medium

(a) Average throughput as the number of clients increase.

100

CPU consumption

0 | | | | | | | | |
5 15 25 35 45 55 65 75 85 95

Number of clients

— EC2 t1.micro —— EC2 t2.medium

(b) Average CPU consumption as the number of clients increase.

Figure 6.12: Average CPU consumption and throughput at the relay-node when
increasing the number of concurrent clients that submit mobile functions.

functions.

We repeated the experiment both for the EC2 t1.micro and t2.medium instances.
Results are shown in Figures 6.11 and 6.12. In Figure 6.12a we observe that
the ti.micro instance is capable of completing around 250 bags per second
before throughput levels off. The t2.medium instance peaks at around 700
bags per second. As the number of clients continues to increase, each of them
observes higher latency, as illustrated in Figure 6.11. In Figure 6.12b, we observe

110 CHAPTER 6 / EXPERIMENTAL EVALUATION

a close correlation between throughput and Central Processing Unit (CPU)
consumption for both instance types. This indicates that CPU is the likely
bottleneck that causes throughput to peak.

The experiment does not expose any scalability issues in our relay-node
implementation, with regard to concurrently serving an increasing number
of clients. Throughput levels off and remains stable after it peaks. A single
relay-node can thus be shared among multiple mobile devices, and also across
different applications. These results give an answer to Question 4 of the
evaluation, which seeks to evaluate how the relay-node scales as the workload
increases.

6.6 Summary

Our evaluation involves clients from around the world, on different continents,
accessing an Amazon DynamoDB database hosted in Ireland. We also vary the
DNS configuration, using Google Public DNS as an alternative service. Across
configurations, the experiments show some variations in the cost of handling
cache hits and misses. In general, the benefits of using Jovaku for a given client
depends on its proximity to the DynamoDB service, and its DNS access latency.
Overall, caching is beneficial in the great majority of configurations. Clients
will generally benefit from Jovaku even with cache hit rates as low as 5% to
10 %.

To estimate the potential for satellite execution in real applications, our eval-
uation examines the communication patterns of some popular applications
through a black-box technique. This has yielded indications that dependent
queries occur in practice, since sequences of up to 7 requests were observed
back-to-back over the same connection on startup. Looking at a concrete
implementation of a social networking application from [127], we found specific
examples. For example, a friend request results in 4 dependent queries; when
offloaded to the cloud from a phone using satellite execution, the comple-
tion time of a friend request dropped from 450 ms to approximately 125 ms,
reducing latency by more than 72 %.

The experimental results give affirmative answers to all the questions in our
evaluation, and support our thesis that it is possible to leverage existing infras-
tructure to provide a generic middle tier to reduce latency for mobile/cloud
applications.

Concluding Remarks

We conclude this dissertation by summarizing and restating our findings,
focusing on how they corroborate and affirm our thesis. Based on this, we draw
three main conclusions. Finally, we highlight avenues for improvement and
how these limitations could be addressed in future work.

To recapitulate our starting point for this work, the thesis of this dissertation
is that:

A generic middle tier can leverage existing infrastructure
to reduce latency for mobile/cloud applications.

To evaluate this thesis, we created the Jovaku system. Jovaku consists of a
middle tier component and a Software Development Kit (SDK). The middle tier
is positioned strategically between the mobile device and the cloud, providing
lower latency access to data stored in the cloud. The SDK allows developers
of mobile/cloud applications to make use of existing Domain Name System
(DNS) infrastructure to cache database values close to the mobile device, and
offload code from the application to the cloud for execution on the middle tier
component, with low latency access to other cloud resources.

In Chapter 3 we present the Jovaku architecture that allows developers to
exploit existing DNS infrastructure to cache cloud database values. As the
evaluation in Section 6.2 shows, this architecture proves efficient to reduce
communication latency for applications reading from cloud databases, even

1M

12 CHAPTER 7 / CONCLUDING REMARKS

with hit rates as low as 4.4 %.

In Chapter 4 we present the satellite execution extension to Jovaku. Satellite
execution allows portions of code in mobile/cloud applications to be offloaded
to a relay-node in the cloud, where access to other cloud resources can be
accessed with lower latency. As the evaluation in Section 6.4 shows, this
approach can reduce latency for some applications by as much as 72% on
mobile devices.

The addition of a middle tier like Jovaku has interesting implications for mobile/-
cloud application architectures. The desire to reduce latency for mobile/cloud
applications traditionally tends to encourage a split application architecture.
Parts of the application logic execute on the mobile device, and other parts
execute in the cloud. The split between device and cloud is application-specific
and the operations exposed by the backend are tailored to avoid extraneous
communication rounds.

Many frameworks and platforms aim to ease the development of mobile/cloud
applications that are factored into separate device and cloud components. The
cloud component typically provides a backend-as-a-service solution that offers
backend cloud storage, as well as the ability to deploy application modules that
execute in the cloud. The implication is that processing occurs close to the data.
One common downside of this approach is that the device-specific and cloud-
specific parts of the application are deployed independently, through different
channels. This increases the risk of Application Programming Interface (API)
version incompatibility, when old versions deployed on devices interact with
newer version deployed in the cloud.

With Jovaku, the ability to do caching in the middle tier reduces the demand for
custom backend APIs, as generic cloud database services become more viable as
out-of-the-box backends. Meanwhile, the satellite execution capabilities offer a
way to build modular applications where some code may execute in the cloud,
without mandating two separate deployment channels. In Chapter 5 we present
Picster and Dapper, two modern mobile/cloud proof-of-applicability prototypes
that make use of Jovaku. The applications have been tested in real deployment,
with positive results. This shows that Jovaku is viable beyond laboratory
experimentation, and can be used for constructing modern mobile/cloud
applications.

7.1/ CONCLUSIONS 113

7.1 Conclusions

Based on the work presented in this dissertation, we draw the following three
conclusions:

1. Jovaku allows developers to exploit existing DNS infrastructure to reduce
communication latency for mobile/cloud applications when communicat-
ing with a cloud database.

2. Jovaku allows developers to dynamically offload code from mobile/cloud
applications to the cloud to reduce latency for interacting with cloud
services.

3. Jovaku is viable beyond laboratory experimentation, and can be used to
create modern mobile/cloud applications.

Hence, we conclude that a generic middle tier can leverage existing infrastructure
to reduce latency for mobile/cloud applications, and our main thesis holds.

7.2 Future Work

Our experiments in Section 6.2 revealed interesting performance variations
between the local DNS server, external DNS servers, and using a direct database
connection. Choosing the optimal configuration when dealing with mobile
devices is not straightforward. Variables like mobile coverage, cache hit rate,
and routing distance to the cloud database will invariably change as the mobile
device moves. One way to address this issue is to extend the Jovaku client
library with adaptive behavior. As the mobile device moves, instrumentation
of observed latency could form the basis for choosing the optimal DNS server,
or for choosing to revert back to a direct connection.

As mobile/cloud applications grow more complex, mobile functions will also
tend to grow more complex. Mobile functions can make use of several third-
party libraries to extend the basic functionality, such as encryption, social
network, or cloud storage libraries. As Chapter 4 describes, the responsibility
of making such libraries available to the relay-node lies on the client, which
may create additional round-trips of communication between the client and
relay-node.

These libraries are often published to trusted package management systems,

14 CHAPTER 7 / CONCLUDING REMARKS

such as NuGet!, and are digitally signed. As such, the relay-node can be
extended with means to resolve these dependencies dynamically and retrieve
them from the package management system instead.

In our most recent work, we have built LADY [61], a system that augments
the .NET platform with a highly reliable mechanism for resolving and loading
assemblies and arranges for safe execution of partially trusted code. This system
can be used as an improvement in Jovaku to further reduce communication
latency, by decoupling the mechanism for assembly resolution from the protocol
for offloading mobile functions. Evaluation shows that LADY can dramatically
reduce the latency incurred when missing assemblies must be resolved at the
relay-node.

1. NuGet is a package management system, closely integrated with Microsoft Visual Studio.

Bibliography

[1]

[2]

[3]

[4]

(5]

(6]

[7]

(8]

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the
clouds: A berkeley view of cloud computing,” Tech. Rep. EECS-2009-28,
UC Berkeley Reliable Adaptive Distributed Systems Laboratory, 2009.

I. Zhang, A. Szekeres, D. V. Aken, I. Ackerman, S. D. Gribble,
A. Krishnamurthy, and H. M. Levy, “Customizable and extensible
deployment for mobile/cloud applications,” in 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14), (Broomfield,
CO), pp. 97-112, USENIX Association, 10 2014.

H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: architecture, applications, and approaches,” Wireless
Communications and Mobile Computing, vol. 13, no. 18, pp. 1587-1611,
2013.

X. Jin and Y.-K. Kwok, “Cloud assisted p2p media streaming for
bandwidth constrained mobile subscribers,” in Parallel and Distributed
Systems (ICPADS), 2010 IEEE 16th International Conference on, pp. 800—
805, IEEE, 2010.

James Hamilton, “The cost of latency.” http://perspectives.mvdirona.
com/2009/10/the-cost-of-latency/.

Jake Brutlag, “Speed Matters.” http://googleresearch.blogspot.no/
2009/06/speed-matters.html.

E. Schurman and J. Brutlag, “The user and business impact of server
delays, additional bytes, and http chunking in web search,” in Velocity
Web Performance and Operations Conference, 2009.

A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry, and W.-D. Weber,

Comparative evaluation of latency reducing and tolerating techniques,
vol. 19. ACM, 1991.

115

http://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
http://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
http://googleresearch.blogspot.no/2009/06/speed-matters.html
http://googleresearch.blogspot.no/2009/06/speed-matters.html

116

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

BIBLIOGRAPHY

T. M. Kroeger, D. D. Long, and J. C. Mogul, “Exploring the bounds of web
latency reduction from caching and prefetching.,” in USENIX Symposium
on Internet Technologies and Systems, pp. 13—22, 1997.

L. Fan, P. Cao, W. Lin, and Q. Jacobson, “Web prefetching between low-
bandwidth clients and proxies: potential and performance,” in ACM
SIGMETRICS Performance Evaluation Review, vol. 27, pp. 178-187, ACM,

1999.

N. Benton, L. Cardelli, and C. Fournet, “Modern concurrency abstractions
for c#,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 26, no. 5, pp. 769—-804, 2004.

R. Hu, N. Yoshida, and K. Honda, “Session-based distributed
programming in java,” in ECOOP 2008-Object-Oriented Programming,
Pp. 516-541, Springer, 2008.

J. Diaz, C. Munoz-Caro, and A. Nino, “A survey of parallel programming
models and tools in the multi and many-core era,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 23, no. 8, pp. 1369-1386,
2012.

L. Ravindranath, J. Padhye, R. Mahajan, and H. Balakrishnan, “Timecard:
Controlling user-perceived delays in server-based mobile applications,”
in Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP '13, (New York, NY, USA), pp. 85-100, ACM,
2013.

R. Escriva, B. Wong, and E. G. Sirer, “Hyperdex: a distributed, searchable
key-value store,” in Proceedings of the ACM SIGCOMM 2012 conference
on Applications, technologies, architectures, and protocols for computer
communication, SIGCOMM ’12, (New York, NY, USA), pp. 25-36, ACM,
2012.

J. Pokorny, “Nosql databases: a step to database scalability in web
environment,” International Journal of Web Information Systems, vol. 9,
no. 1, pp. 69-82, 2013.

A. B. M. Moniruzzaman and S. A. Hossain, “Nosql database: New era
of databases for big data analytics - classification, characteristics and
comparison,” CoRR, vol. abs/1307.0191, 2013.

R. Hecht and S. Jablonski, “Nosql evaluation: A use case oriented survey,”
2011.

BIBLIOGRAPHY 117

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

K. Kaur and R. Rani, “Modeling and querying data in nosql databases,”
in Big Data, 2013 IEEE International Conference on, pp. 1~7, IEEE, 2013.

S. Lombardo, E. Di Nitto, and D. Ardagna, “Issues in handling complex
data structures with nosql databases,” in Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), 2012 14th International
Symposium on, pp. 443—448, IEEE, 2012.

M. Satyanarayanan, “Cloudlets: at the leading edge of cloud-mobile
convergence,” in Proceedings of the oth international ACM SIGSOFT
conference on Quality of software architectures, pp. 1—2, ACM, 2013.

M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen, “Comet:
code offload by migrating execution transparently,” in Proceedings of the
10th USENIX conference on Operating Systems Design and Implementation,
OSDI'12, (Berkeley, CA, USA), pp. 93-106, USENIX Association, 2012.

B.-G. Chun, S. Thm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proceedings of
the 6th conference on Computer systems, EuroSys ’11, (New York, NY,
USA), pp. 301-314, ACM, 2011.

E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on Mobile
systems, applications, and services, MobiSys ’10, (New York, NY, USA),
PP- 49-62, ACM, 2010.

E. Tilevich and Y.-W. Kwon, “Cloud-based execution to improve mobile
application energy efficiency,” Computer, vol. 47, pp. 75—77, Jan. 2014.

G. Peng, “CDN: content distribution network,” CoRR, vol. cs.NI/0411069,
2004.

F. B. Schneider, “Byzantine generals in action: implementing fail-stop
processors,” ACM Transactions on Computer Systems, vol. 2, n0. 2, pp. 145—
154, 1984.

P. J. Denning, “Is computer science science?,” Communications of the
ACM, vol. 48, no. 4, pp. 27-31, 2005.

D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, P. R. Young,
and P. J. Denning, “Computing as a discipline,” Communications of the
ACM, vol. 32, no. 1, pp. 9—23, 1989.

118

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

BIBLIOGRAPHY

D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, and P. R.
Young, “Computing as a discipline,” Communications of the ACM, vol. 32,
no. 1, pp. 9—23, ACM, 1989.

D. Parnas and P. Clements, “A rational design process: How and why to
fake it,” Software Engineering, IEEE Transactions on, vol. SE-12, pp. 251
257, 2 1986.

D. E. Avison and J. Pries-Heje, Research in information systems: A
handbook for research supervisors and their students. Gulf Professional
Publishing, 2005.

A. Kvalnes, D. Johansen, R. van Renesse, F. Schneider, and S. Valvag,
“Omni-kernel: An operating system architecture for pervasive monitoring
and scheduling,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 26, pp. 2849—2862, Oct 2015.

A. Kvalnes, D. Johansen, R. v. Renesse, and A. Audun, “Vortex: an
event-driven multiprocessor operating system supporting performance
isolation,” tech. rep., University of Tromsg, 2003.

A. Kvalnes, R. v. Renesse, and D. Johansen, “Performance isolation and
adaption in the vortex kernel,” tech. rep., Universitetet i Tromsg, 2003.

A. Nordal, A. Kvalnes, and D. Johansen, “Paravirtualizing tcp,” in
Proceedings of the 6th international workshop on Virtualization
Technologies in Distributed Computing Date, pp. 3—10, ACM, 2012.

A. @. Nordal, A. Kvalnes, R. Pettersen, and D. Johansen, “Streaming as
a hypervisor service,” in Proceedings of the 7th international workshop
on Virtualization technologies in distributed computing, pp. 33—40, ACM,
2013.

J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proceedings of the 6th symposium on Operating Systems
Design and Implementation, OSDI '04, pp. 137-150, USENIX Association,
2004.

D. Johansen, K. J. Lauvset, R. van Renesse, F. B. Schneider, N. P. Sudmann,
and K. Jacobsen, “A TACOMA retrospective,” Software - Practice and
Experience, vol. 32, pp. 605-619, 2001.

D. Johansen, K. Marzullo, and K. J. Lauvset, “An approach towards an
agent computing environment,” in ICDCS’99 Workshop on Middleware,

BIBLIOGRAPHY 119

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

1999.

D. Johansen, “Mobile agents: Right concept, wrong approach,” in In 5th
IEEE International Conference on Mobile Data Management (MDM 2004,
pp. 300-301, IEEE Computer Society, 2004.

S. V. Valvag and D. Johansen, “Oivos: Simple and efficient distributed
data processing,” in Proceedings of the 1oth IEEE International Conference
on High Performance Computing and Communications, HPCC’08, pp. 113—
122, IEEE Computer Society, 2008.

S. V. Valvag and D. Johansen, “Update maps - a new abstraction for
high-throughput batch processing,” in Proceedings of the 2009 IEEE
International Conference on Networking, Architecture, and Storage, NAS
'09, pp. 431—438, IEEE Computer Society, 2009.

S. V. Valvag, D. Johansen, and A. Kvalnes, “Cogset: A high performance
MapReduce engine,” Concurrency and Computation: Practice and
Experience, vol. 25, no. 1, pp. 223, 2013.

S. V. Valvag, D. Johansen, and A. Kvalnes, “Position paper: Elastic
processing and storage at the edge of the cloud,” in Proceedings of the
2013 International Workshop on Hot Topics in Cloud Services, HotTopiCS
13, (New York, NY, USA), pp. 43-50, ACM, 2013.

A. Nordal, A. Kvalnes, J. Hurley, and D. Johansen, “Balava: Federating
private and public clouds,” in Services (SERVICES), 2011 IEEE World
Congress on, pp. 569 —577, july 2011.

D. Johansen and J. Hurley, “Overlay cloud networking through meta-
code,” in Computer Software and Applications Conference Workshops
(COMPSACW), 2011 IEEE 35th Annual, pp. 273-278, IEEE, 2011.

H. Johansen, A. Allavena, and R. Van Renesse, “Fireflies: scalable support
for intrusion-tolerant network overlays,” in ACM SIGOPS Operating
Systems Review, vol. 40, pp. 3—-13, ACM, 2006.

H. D. Johansen, R. V. Renesse, Y. Vigfusson, and D. Johansen, “Fireflies:
a secure and scalable membership and gossip service,” ACM Transactions
on Computer Systems (TOCS), vol. 33, no. 2, p. 5, 2015.

H. Johansen, D. Johansen, and R. van Renesse, “Firepatch: secure and
time-critical dissemination of software patches,” in Proceedings of the
22nd IFIP International Information Security Conference, pp. 373—384,

120

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

BIBLIOGRAPHY

IFIP, May 2007.

H. K. Stensland, V. R. Gaddam, M. Tennge, E. Helgedagsrud, M. Neess,
H. K. Alstad, A. Mortensen, R. Langseth, S. Ljgdal, O. Landsverk,
C. Griwodz, P. Halvorsen, M. Stenhaug, and D. Johansen, “Bagadus:
An integrated real-time system for soccer analytics,” To appear in
ACM Transactions on Multimedia Computing, Communications and
Applications, 2014.

P. Halvorsen, S. Szegrov, A. Mortensen, D. K. C. Kristensen, A. Eichhorn,
M. Stenhaug, S. Dahl, H. K. Stensland, V. R. Gaddam, C. Griwodz, and
D. Johansen, “Bagadus: An integrated system for arena sports analytics
- a soccer case study.,” in Proceedings of the 4th ACM International
Conference on Multimedia Systems (MMSys), (Oslo, Norway), ACM, To
appear March 2013.

D. Johansen, M. Stenhaug, R. Hansen, A. Christensen, and P.-M.
Hogmo, “Muithu: Smaller footprint, potentially larger imprint,” in Digital
Information Management (ICDIM), 2012 Seventh International Conference
on, pp. 205 —214, aug. 2012.

M. Stenhaug, Y. Yang, C. Gurrin, and D. Johansen, “Muithu: A touch-
based annotation interface for activity logging in the norwegian premier
league,” in MultiMedia Modeling, pp. 365-368, Springer, 2014.

R. van Renesse, H. Johansen, N. Naigaonkar, and D. Johansen, “Secure
abstraction with code capabilities,” arXiv preprint arXiv:1210.5443, 2012.

D. Johansen, H. Johansen, T. Aarflot, J. Hurley, A. Kvalnes, C. Gurrin,
S. Zav, B. Olstad, E. Aaberg, T. Endestad, et al., “Davvi: A prototype for
the next generation multimedia entertainment platform,” in Proceedings
of the 17th ACM international conference on Multimedia, pp. 989—990,
ACM, 2009.

D. Johansen, P. Halvorsen, H. Johansen, H. Riiser, C. Gurrin, B. Olstad,
C. Griwodz, A. Kvalnes, J. Hurley, and T. Kupka, “Search-based
composition, streaming and playback of video archive content,”
Multimedia Tools and Applications, vol. 61, no. 2, pp. 419—445, 2012.

R. Pettersen, S. V. Valvag, A. Kvalnes, and D. Johansen, ‘Jovaku: Globally
distributed caching for cloud database services using DNS,” in IEEE
International Conference on Mobile Cloud Computing, Services, and
Engineering, pp. 127-135, 2014.

BIBLIOGRAPHY 121

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

R. Pettersen, S. V. Valvag, A. Kvalnes, and D. Johansen, “Cloud-side
execution of database queries for mobile applications,” in CLOSER 2015 :
Proceedings of the sth International Conference on Cloud Computing and
Services Science, pp. 586—-594, 2015.

R. Pettersen, S. V. Valvag, A. Kvalnes, and D. Johansen, “Using satellite
execution to reduce latency for mobile/cloud applications,” in Cloud
Computing and Services Science, vol. 581, pp. 279—298, Springer, 2015.

S. V. Valvag, R. Pettersen, H. Johansen, and D. Johansen, “Lady: Dynamic
resolution of assemblies for extensible and distributed .net applications,”
in CLOSER 2016 : Proceedings of the 6th International Conference on Cloud
Computing and Services Science, To be presented in 2016.

Wikipedia, “HTC Dream.” https://en.wikipedia.org/wiki/HTC_Dream.

Forbes, “Microsoft’s Upcoming Lumia 950 and 950 XL Windows
10 Flagship Smartphones Pictured In Latest Leaks.” http:
//www.forbes.com/sites/marcochiappetta/2015/08/28/microsofts-
upcoming- lumia-950-and-950-x1-windows-10- flagship-smartphones-
pictured-in-latest-leaks/.

“Android Anatomy and Physiology.” http://androidteam.googlecode.
com/files/Anatomy-Physiology-of-an-Android.pdf.

H. T. Al-Rayes, “Studying main differences between android & linux
operating systems,” International Journal of Electrical & Computer
Sciences IJECS-IJENS, vol. 12, no. 05, 2012.

Nielsen, “Smartphones: So many apps, so much time.” http:
//www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-
apps--so-much-time.html.

“ARM TrustZone.” http://www.arm.com/products/processors/
technologies/trustzone/.

“Intel Software Guard Extensions (SGX).” https://software.intel.com/
en-us/isa-extensions/intel- sgx.

N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using arm trustzone to build
a trusted language runtime for mobile applications,” in Proceedings of the
19th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, (New York, NY, USA),
pp- 67-80, ACM, 2014.

https://en.wikipedia.org/wiki/HTC_Dream
http://www.forbes.com/sites/marcochiappetta/2015/08/28/microsofts-upcoming-lumia-950-and-950-xl-windows-10-flagship-smartphones-pictured-in-latest-leaks/
http://www.forbes.com/sites/marcochiappetta/2015/08/28/microsofts-upcoming-lumia-950-and-950-xl-windows-10-flagship-smartphones-pictured-in-latest-leaks/
http://www.forbes.com/sites/marcochiappetta/2015/08/28/microsofts-upcoming-lumia-950-and-950-xl-windows-10-flagship-smartphones-pictured-in-latest-leaks/
http://www.forbes.com/sites/marcochiappetta/2015/08/28/microsofts-upcoming-lumia-950-and-950-xl-windows-10-flagship-smartphones-pictured-in-latest-leaks/
http://androidteam.googlecode.com/files/Anatomy-Physiology-of-an-Android.pdf
http://androidteam.googlecode.com/files/Anatomy-Physiology-of-an-Android.pdf
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps--so-much-time.html
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps--so-much-time.html
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps--so-much-time.html
http://www.arm.com/products/processors/technologies/trustzone/
http://www.arm.com/products/processors/technologies/trustzone/
https://software.intel.com/en-us/isa-extensions/intel-sgx
https://software.intel.com/en-us/isa-extensions/intel-sgx

122

[70]

[71]

[72]
[73]
[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

BIBLIOGRAPHY

A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an
untrusted cloud with haven,” in 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), (Broomfield, CO), pp. 267—
283, USENIX Association, Oct. 2014.

H.-S. Oh, B.-J. Kim, H.-K. Choi, and S.-M. Moon, “Evaluation of android
dalvik virtual machine,” in Proceedings of the 1oth International Workshop
on Java Technologies for Real-time and Embedded Systems, JTRES ’12,
(New York, NY, USA), pp. 115-124, ACM, 2012.

“VM Ware.” http://www.vmware.com.
“Oracle Virtual Box.” http://www.virtualbox.org.
“Docker.” http://www.docker.com.

A. Inc., “Swift. A modern programming language that is safe, fast, and
interactive..” https://developer.apple.com/swift/.

Anandtech, “A Closer Look at Android RunTime (ART) in An-
droid L.” http://anandtech.com/show/8231/a-closer-look-at-android-
runtime-art-in-android- 1.

“Android 5.0 Lollipop, thoroughly reviewed.” http://arstechnica.com/
gadgets/2014/11/android-5-0- lollipop-thoroughly- reviewed.

Deepti Prakash, “Compile in the Cloud with WP8.” http:
//blogs.msdn.com/b/msgulfcommunity/archive/2013/03/16/compile-
in-the-cloud-with-wp8.aspx.

D. Hermes, “Mobile development using xamarin,” in Xamarin Mobile
Application Development, pp. 1-8, Springer, 2015.

“Xamarin.” http://www.xamarin.com.

Statistic Brain, “Youtube Statistics,” 2015. http://www.statisticbrain.
com/youtube-statistics/.

Statistic Brain, “Facebook Statistics,” 2015. http://www.statisticbrain.
com/facebook-statistics/.

P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquin, “Incoop:
Mapreduce for incremental computations,” in Proceedings of the 2nd
ACM Symposium on Cloud Computing, p. 7, ACM, 2011.

http://www.vmware.com
http://www.virtualbox.org
http://www.docker.com
https://developer.apple.com/swift/
http://anandtech.com/show/8231/a-closer-look-at-android-runtime-art-in-android-l
http://anandtech.com/show/8231/a-closer-look-at-android-runtime-art-in-android-l
http://arstechnica.com/gadgets/2014/11/android-5-0-lollipop-thoroughly-reviewed
http://arstechnica.com/gadgets/2014/11/android-5-0-lollipop-thoroughly-reviewed
http://blogs.msdn.com/b/msgulfcommunity/archive/2013/03/16/compile-in-the-cloud-with-wp8.aspx
http://blogs.msdn.com/b/msgulfcommunity/archive/2013/03/16/compile-in-the-cloud-with-wp8.aspx
http://blogs.msdn.com/b/msgulfcommunity/archive/2013/03/16/compile-in-the-cloud-with-wp8.aspx
http://www.xamarin.com
http://www.statisticbrain.com/youtube-statistics/
http://www.statisticbrain.com/youtube-statistics/
http://www.statisticbrain.com/facebook-statistics/
http://www.statisticbrain.com/facebook-statistics/

BIBLIOGRAPHY 123

[84]

[85]

[86]
[87]
[88]

[89]

[90]
[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

J. Dean and S. Ghemawat, “MapReduce: A flexible data processing tool,”
Communications of the ACM, vol. 53, no. 1, pp. 72-77, ACM, 2010.

R. T. Fielding and R. N. Taylor, “Principled design of the modern web
architecture,” in Proceedings of the 22Nd International Conference on
Software Engineering, ICSE ’00, (New York, NY, USA), pp. 407-416, ACM,
2000.

Parse. http://www.parse.com.

“Google Cloud Platform.” https://cloud.google.com/.

“Amazon Web Services.” https://aws.amazon.com/.

B. Leiba, “Oauth web authorization protocol,” IEEE Internet Computing,
vol. 16, no. 1, p. 74, 2012.

“Memcached.” http://www.memcached.org/.
“Redis.” http://redis.io.

G. Pierre and M. van Steen, “Globule: a collaborative content delivery
network,” Communications Magazine, vol. 44, no. 8, pp. 127-133, 2006.

“Akamai Technologies.” http://www.akamai.com/html/technology/
index.html.

“Limelight Networks.” http://www.limelightnetworks.com/platform/
cdn/.

“Rapid Edge Content Delivery Network.” http://www.rapidedgecdn.
com/.

“Amazon CloudFront.” http://aws.amazon.com/cloudfront/.

P. Mockapetris and K. J. Dunlap, Development of the domain name system,
vol. 18. ACM, 1988.

Spotify LABS, “In praise of boring technology.” https://labs.spotify.
com/2013/02/25/in-praise-of-boring-technology/.

David Leadbeater, “Wikipedia over DNS,” 2009. https://dgl.cx/
wikipedia-dns.

http://www.parse.com
https://cloud.google.com/
https://aws.amazon.com/
http://www.memcached.org/
http://redis.io
http://www.akamai.com/html/technology/index.html
http://www.akamai.com/html/technology/index.html
http://www.limelightnetworks.com/platform/cdn/
http://www.limelightnetworks.com/platform/cdn/
http://www.rapidedgecdn.com/
http://www.rapidedgecdn.com/
http://aws.amazon.com/cloudfront/
https://labs.spotify.com/2013/02/25/in-praise-of-boring-technology/
https://labs.spotify.com/2013/02/25/in-praise-of-boring-technology/
https://dgl.cx/wikipedia-dns
https://dgl.cx/wikipedia-dns

124

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

BIBLIOGRAPHY

X. Chen, H. Wang, S. Ren, and X. Zhang, “Maintaining strong cache
consistency for the domain name system,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 19, pp. 1057-1071, Aug 2007.

S. Sivasubramanian, “Amazon dynamodb: a seamlessly scalable non-
relational database service,” in Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pp. 729—730, ACM,
2012.

“ISC Bind.” https://www.isc.org/downloads/bind/.

“Bind DLZ.” http://bind-dlz.sourceforge.net/.

“The Amazon DynamoDB APL.” http://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/API.html.

“libCurl library.” http://curl.haxx.se/libcurl/.
“Jansson JSON Library.” http://www.digip.org/jansson/.

“BeeCrypt Cryptography Library.” http://sourceforge.net/projects/
beecrypt/.

“Norid DNS Checker.” http://dnscheck.norid.no/.

A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: comparing public
cloud providers,” in ACM SIGCOMM, pp. 1-14, 2010.

I. Goldberg, D. Wagner, R. Thomas, E. A. Brewer, et al., “A secure
environment for untrusted helper applications: Confining the wily
hacker,” in Proceedings of the 6th conference on USENIX Security
Symposium, Focusing on Applications of Cryptography, vol. 6, pp. 1-1,
1996.

A. Fuggetta, G. Picco, and G. Vigna, “Understanding code mobility,”
Software Engineering, IEEE Transactions on, vol. 24, pp. 342—361, 5 1998.

“Wireshark network protocol analyzer.” https://www.wireshark.org/.

Microsoft, “Application Domains,” 2015. http://msdn.microsoft.com/en-
us/library/cxk374d9%28v=vs.90%29.aspx.

J. W. Stamos and D. K. Gifford, “Remote evaluation,” ACM Transactions
on Programming Languages and Systems, vol. 12, pp. 537-564, 10 ACM,

https://www.isc.org/downloads/bind/
http://bind-dlz.sourceforge.net/
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/API.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/API.html
http://curl.haxx.se/libcurl/
http://www.digip.org/jansson/
http://sourceforge.net/projects/beecrypt/
http://sourceforge.net/projects/beecrypt/
http://dnscheck.norid.no/
https://www.wireshark.org/
http://msdn.microsoft.com/en-us/library/cxk374d9%28v=vs.90%29.aspx
http://msdn.microsoft.com/en-us/library/cxk374d9%28v=vs.90%29.aspx

BIBLIOGRAPHY 125

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

1990.
J. W. Stamos, “Remote evaluation.,” tech. rep., DTIC Document, 1986.

E. Zayas, “Attacking the process migration bottleneck,” ACM SIGOPS
Operating Systems Review, vol. 21, no. 5, pp. 13—24, 1987.

T. McDonnell, B. Ray, and M. Kim, “An empirical study of api stability and
adoption in the android ecosystem,” in Software Maintenance (ICSM),
2013 29th IEEE International Conference on, pp. 70-79, Sept 2013.

“Yelp.” http://www.yelp.com.
“Around Me.” http://www.aroundme.com.

“iGroups: Apple’s New iPhone Social App in Development.”
http://www.patentlyapple.com/patently-apple/2010/03/igroups-
apples-new-iphone-social-app-in-development.html.

M. Rogowsky, “Why don’t cell phones work at music festivals?.” https:
//www.quora.com/Why-dont-cell-phones-work-at-music-festivals.

N. Cohen, “Hong kong protests propel firechat phone-to-phone app,”
The New York Times, 2014.

A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry, “Epidemic algorithms for replicated database
maintenance,” in Proceedings of the sixth annual ACM Symposium on
Principles of distributed computing, pp. 1-12, ACM, 1987.

T. McDonnell, B. Ray, and M. Kim, “An empirical study of api stability and
adoption in the android ecosystem,” in Software Maintenance (ICSM),
2013 29th IEEE International Conference on, pp. 70—79, IEEE, 2013.

J.-J. Dubray, “Understanding the Cost of Versioning an APIL”
http://www.ebpml.org/blog2/index.php/2013/11/25/understanding-
the-costs-of-versioning.

E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: A platform
for high-performance internet applications,” SIGOPS Oper. Syst. Rev.,
vol. 44, pp. 2-19, Aug. 2010.

J. J. Levandoski, D. B. Lomet, M. F. Mokbel, and K. Zhao,
“Deuteronomy: Transaction support for cloud data.,” in CIDR, pp. 123-133,

http://www.yelp.com
http://www.aroundme.com
http://www.patentlyapple.com/patently-apple/2010/03/igroups-apples-new-iphone-social-app-in-development.html
http://www.patentlyapple.com/patently-apple/2010/03/igroups-apples-new-iphone-social-app-in-development.html
https://www.quora.com/Why-dont-cell-phones-work-at-music-festivals
https://www.quora.com/Why-dont-cell-phones-work-at-music-festivals
http://www.ebpml.org/blog2/index.php/2013/11/25/understanding-the-costs-of-versioning
http://www.ebpml.org/blog2/index.php/2013/11/25/understanding-the-costs-of-versioning

126 BIBLIOGRAPHY

www.cidrdb.org, 2011.

Publications

This dissertation is based on the work presented in the following four publica-
tions:

Publication |

R. Pettersen, S. V. Valvag, A. Kvalnes, and D. Johansen, ‘Jovaku: Globally dis-
tributed caching for cloud database services using DNS”, in IEEE International
Conference on Mobile Cloud Computing, Services, and Engineering, pp. 127—135,
2014.

In this paper we present Jovaku, a generic caching layer for cloud database
services that can induce significant performance improvements and cost savings.
Jovaku demonstrates the viability of a truly global caching infrastructure by
building on the existing DNS infrastructure. Database operations are relayed
through the DNS protocol, allowing results to be cached in DNS servers
close to client devices. This greatly simplifies deployment, and offers supreme
availability, allowing devices anywhere to benefit from database caching. The
evaluation shows that the latency to access Amazon DynamoDB is significantly
reduced for requests that hit the cache, and that applications can benefit from
caching with hit rates as low as 5%. The system is described in detail in
Chapter 3.

127

128 APPENDIX A / PUBLICATIONS

Publication Il and Ill

R. Pettersen, S. V. Valvag, A. Kvalnes, and D. Johansen, “Cloud-side execution
of database queries for mobile applications”, in CLOSER 2015 : Proceedings of
the sth International Conference on Cloud Computing and Services Science, pp.
586-—-594, 2015.

In this paper we demonstrate a practical way to reduce latency for mobile
.NET applications that interact with cloud database services. We provide
a programming abstraction for location-independent code, which has the
potential to execute either locally or at a satellite execution environment in the
cloud, in close proximity to the database service. This preserves a programmatic
style of database access, and maintains a simple deployment model, but allows
applications to offload latency-sensitive code to the cloud. The evaluation shows
that this approach can significantly improve the response time for applications
that execute dependent queries, and that the required cloud-side resources are
modest. The system is described in detail in Chapter 4.

In addition to being accepted at the conference with a 15 % acceptance rate,
the paper appeared on a short list of papers nominated for best paper award.
The paper was also among 14 papers of the 146 accepted papers selected for
revised publishing in Springer’s Cloud Computing and Services Science.

R. Pettersen, S. V. Valvag, A. Kvalnes, and D. Johansen, “Using satellite execution
to reduce latency for mobile/cloud applications”, in Cloud Computing and
Services Science, pp. 279—298, Springer, 2015.

Publication IV

S. V. Valvag, R. Pettersen,H. Johansen, and D. Johansen, “Lady: Dynamic reso-
lution of assemblies for extensible and distributed .net applications”, in CLOSER
2016 : Proceedings of the 6th International Conference on Cloud Computing and
Services Science, To be presented in Rome, April 237, 2016.

In this paper we describe LADY, a system that augments the .NET platform with
a highly reliable mechanism for resolving and loading assemblies and arranges
for safe execution of partially trusted code. This system can be used as an
improvement in Jovaku to further reduce communication latency, by decoupling
the mechanism for assembly resolution from the protocol for offloading mobile
functions. Evaluation shows that LADY can dramatically reduce the latency
incurred when missing assemblies must be resolved at the relay-node.

129

Other Publications

During the course of the study for this dissertation, the author has also
contributed to the following publication, which are related but not part of
this dissertation:

A. @. Nordal, A. Kvalnes, R. Pettersen, and D. Johansen, “Streaming as a hyper-
visor service”, in Proceedings of the 7th international workshop on Virtualization
technologies in distributed computing, pp. 33—40, ACM, 2013.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Code Listings
	List of Abbreviations
	1 Introduction
	1.1 Mobile/Cloud Applications
	1.2 Middle Tier Components
	1.3 Thesis Statement
	1.4 Scope and Limitations
	1.5 Methodology
	1.6 Research Context
	1.7 Summary of Contributions
	1.8 Outline

	2 Background and Related Work
	2.1 Mobile Device Capabilities
	2.2 Mobile Operating Systems
	2.2.1 Isolated Execution
	2.2.2 Application Runtime

	2.3 Cloud Services
	2.4 Developing Mobile/Cloud Applications
	2.5 Middle Tiers
	2.6 Summary

	3 Optimizing Reads from the Cloud
	3.1 The Domain Name System
	3.2 Jovaku Architecture
	3.3 The Relay-Node
	3.4 Client Library
	3.5 Summary

	4 Optimizing Writes to the Cloud
	4.1 Extended Architecture
	4.2 Message Processor
	4.3 Execution Environment
	4.4 Client Library
	4.5 Summary

	5 Applications
	5.1 Picster
	5.2 Dapper
	5.2.1 User Profile
	5.2.2 Connecting with Friends
	5.2.3 Status Updates
	5.2.4 Making Progress
	5.2.5 Experiences and lessons learned

	5.3 Summary

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 dns caching
	6.2.1 Baseline Performance
	6.2.2 Jovaku Performance
	6.2.3 Jovaku with Alternative dns Configuration

	6.3 Black box testing
	6.4 Satellite execution
	6.5 Relay-node performance
	6.6 Summary

	7 Concluding Remarks
	7.1 Conclusions
	7.2 Future Work

	Bibliography
	A Publications

