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Abstract 

Dissemination of vancomycin-resistant Enterococcus faecium (VREfm) with similar pulsed-

field gel electrophoresis patterns in three Swedish hospitals between 2007 and 2011 prompted 

molecular characterization to reveal the possible origins and features of the strain. A 

representative subset of collected isolates (VREfm (n=18) and vancomycin-susceptible 

Enterococcus faecium (VSEfm) (n=2)) reflecting the spread in time and location was 

subjected to Multi Locus Sequence Typing, antibiotic resistance testing, virulence gene 

screening, characterization of mobile genetic units carrying the resistance gene and their 

ability to transfer. In addition, 3 outbreak strains and 1 isolate collected prior to the outbreak 

was whole-genome sequenced. The isolates were predominantly ST192, considered to belong 

within a high-risk lineage, and concordantly harbored at least eight virulence genes associated 

with high-risk genotypes, as well as were geno- and phenotypically resistant to ampicillin, 

gentamicin, ciprofloxacin and vancomycin, with susceptibility to teicoplanin. The 

vancomycin resistance was of vanB2-type, and this gene cluster was part of the conjugative 

transposon Tn1549/Tn5382. PFGE analysis with S1 nuclease restriction as well as filter 

mating experiments indicated that vanB2-Tn1549/Tn5382 was placed in a 70 kb sized pRUM 

replicon, which readily transferred between E. faecium. The plasmid also contained an axe-txe 

toxin-antitoxin stability module capable of securing persistence within the bacterial host. The 

two VSEfm were similar by PFGE and MLST and harbored a 30 kb smaller pRUM plasmid 

lacking the vanB2-Tn1549/Tn5382.  

In conclusion, the obtained results indicate introduction of vanB2-Tn1549/Tn5382 into a 

pRUM plasmid harbored in a pre-existing high-risk clone. Afterwards, the resulting VRE 

containing the pRUM-vanB2-Tn1549/Tn5382-axe-txe plasmid successfully disseminated in 

the three hospitals.  
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Introduction 

Enterococci, Enterococcus faecium in particular, have undergone a genomic transition from 

harmless gut commensals to leading causes of multidrug resistant hospital infections since the 

introduction of antimicrobial agents (1). E. faecium is frequently causing urinary tract 

infections, endocarditis, infections in indwelling catheters and septicaemia (2-4). Recent 

trends show a pronounced increase (more than 19 % per year) in bacteraemias caused by E. 

faecium in Europe (4). Their ability to gain antibiotic resistance and virulence factors by 

horizontal gene transfer and the emergence of strains in which these traits concentrate, might 

be attributable to this rise (1).  

E. faecium recombines frequently, and the use of Multi Locus Sequence Typing (MLST) has 

been considered a standard method for global epidemiological surveillance (5), while pulsed-

field gel electrophoresis (PFGE) is the preferred method for surveillance of E. faecium seen in 

local outbreaks. The clonal complex (CC) 17 has shown to pool E. faecium strains involved in 

hospital-associated infections and the CC17 genogroup has a high rate of recombination, 

displays a broad resistance profile as well as a concentration of genes mediating virulence (6-

8). Newer insights pertained with another type of population structure analysis; Bayesian 

Analysis of Population Structure (BAPS) of strains in CC17, show a divergent origin of 

sequence type (ST) lineages within CC17. The isolates in CC17 could largely be found and 

divided in two BAPS groups, 2-1 (ST78), and 3-3 (ST17 and ST18), with the corresponding 

MLST ancestry nodes in parenthesis (9).  

Globally, resistance to widely used antibiotics such as ampicillin, gentamicin, ciprofloxacin 

and vancomycin is increasing in prevalence. Vancomycin resistant enterococci (VRE) gain 

resistance by acquisition of one of eight resistance gene clusters, vanA,B,D,E,G,L-N (10-13). 

The vanA genotype is the most prevalent globally, but VRE infections with the vanB genotype 

are predominant in Australia and on the rise in many European countries (14-19). The vanB 

gene cluster confers inducible low- to high-level resistance to vancomycin and susceptibility 

to teicoplanin and has 3 gene sequence subdivisions; vanB1-3 (20). The predominant subtype 

vanB2 is an integral part of an Integrative Conjugative Element transposon family 

Tn1549/Tn5382 which might infer conjugative dissemination of vanB2 (21). Several 

replicons representing plasmids associated with glycopeptide resistance as well as stabilizing 

toxin-antitoxin systems have been linked to CC17 strains. Several possible virulence genes 
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have been associated with E. faecium and it is hypothesized that their phenotypes might work 

in concert to establish invasion of a host (2). 

The prevalence of vancomycin resistant E. faecium (VREfm) in Sweden remained low until 

2007 when a large hospital associated outbreak occurred (15). Three different hospitals in 

separate counties of Sweden were involved in the transmission of VREfm harbouring the 

vanB gene. This multicentre outbreak was not declared over until 2011.  

The aim of the present study was to explore the origins of the outbreak strain by performing 

molecular characterization of different isolates of the outbreak strain and comparing them 

with consecutive invasive E. faecium isolates from the same time period and location. The 

selected strains were characterized with regard to clonal relatedness and in-depth molecular 

analysis. 

 

Materials and methods 

Bacterial isolates 

In Sweden, all cases of vancomycin-resistant enterococci are mandatorily reported to the 

Swedish Institute for Communicable Disease Control (SMI) and the respective isolates are 

collected for verification of resistance and for epidemiological typing at SMI. In 2007, an 

increasing number of notified cases were seen in Stockholm County, related to an E. faecium 

with vanB gene. This strain subsequently caused clonal dissemination also in two other 

geographically separate counties (Västmanland and Halland) (15). During the autumn 2008, 

17 isolates of the outbreak strain from these three counties were selected for further studies. 

They consisted of isolates found early and late during the outbreak period, and also isolates 

with different resistance profiles (Figure 1, Collection A). In addition, four blood isolates 

from Collection B (see below) were included.  

In an attempt to reveal the origin of the E. faecium  vanB outbreak strain, all consecutive 

E. faecium blood isolates from 1
st
 of January 2006 to 31

st
 of August 2009 (n=191) diagnosed 

at the Karolinska University Hospital Huddinge where the outbreak started, were collected 

and analysed using Pulsed-Field Gel Electrophoresis (PFGE). A total of 45 (2006), 32 (2007), 

71 (2008) and 43 (2009) isolates were investigated (Figure 1, collection B). Out of these 

blood isolates, four were selected for further analysis using 454 full genome sequencing. The 

selection criterion was based on PFGE patterns, where the first vancomycin susceptible 

(VSE1036), the first vancomycin resistant  (VRE1044) and the most recent vancomycin 
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resistant (VRE1261) isolate with identical or closely related patterns to the outbreak strain, 

were chosen. In addition, one vancomycin resistant isolate (VRE576) from 2006 was chosen 

because of its divergent PFGE pattern (Figure 1). For the filter mating experiments E. faecium 

64/3 (22), BM4105RF and BM4105-Str (23) were used as recipients.  

Antimicrobial susceptibility testing  

The minimum inhibitory concentration (MIC) was determined using Etest (BioMerieux). The 

methodology and clinical breakpoints applied were according to the European committee of 

Antimicrobial Susceptibility Testing (EUCAST) (www.eucast.org/). For ciprofloxacin a 

tentative breakpoint was used classifying isolates with MIC >32 mg/L as high level resistant 

(39). 

PFGE 

For SmaI-digestion, the protocol adapted by Saeedi et al. (24) was used with 5U/mL 

lysozyme added in the lysis buffer. The bands were separated with the following program: 

Block I switch time 3 to 26,5s for 14 hours and 50 minutes. Block II: switch time 0,5 to 8,5s 

for 6 hours and 25 minutes. Total run time 21 hours and 15 minutes at 6V with 120. The 

PFGE patterns were analysed and compared using BioNumerics software (version 6.6, 

Applied Maths). The Dice coefficient was used for pair-wise comparison of patterns, and the 

un-weighted pair group method with arithmetic mean (UPGMA) for pattern grouping. Isolates 

clustering above 97% were considered identical and isolates with identity > 90% closely 

related.  

Multi Locus Sequence Typing  

MLST was performed using the method adapted by Homan et al. (5) with the following 

primers: adk1n, adk2n, atp1n, atp2n, ddl1, ddl2, gdh1, gdh2, gyd1, gyd2, pstS1n, pstS2n, 

purK1n and purK2n. The whole genome sequencing (see below) also allowed us to extract a 

sequence type (ST) from the VRE0576 (ST17), VRE1036 (ST192), VRE1044 (ST192) and 

VRE1261 (ST192) isolates. 

Detection of genes by PCR and isolation of bacterial DNA 

Extraction of DNA for all PCRs were performed by BioRobot M48® (Qiagen
®

), according to 

the manufacturers manual.  

http://www.eucast.org/
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The chosen virulence genes are associated with high-risk genotypes, and encode proteins 

involved in biofilm formation (esp) (25), tissue permeability (hyl) (26), host tissue attachment 

(acm (27), efaAfm (18), srgA, ecbA, scm, orf903/2010/2514 (28, 29) and pili formation 

(pilA/B) (28). The PCRs were conducted as stated in Table 1. The presence of genes was 

tested by PCR using the JumpStart™ REDTaq® Readymix PCR Reaction mix (Sigma®), 

with a standard program of 1 min in 95° C followed by 30 cycles at 95 °C for 30 sec, 30 sec 

of annealing in the temperature given in Table 1, 72 °C for 1 min with a final elongation step 

at 72 °C for 7 min. Presence of the vanB gene in transconjugants was tested by vanB 

consensus PCR by inoculating 1 µl of BHI-broth bacterial culture into the PCR mix and using 

an initial denaturation period of 10 min at 95 °C.  

Southern blotting and hybridization 

S1-nuclease digestion was used to analyse the plasmid content. Plugs were made as for SmaI 

digestion, and the digestion was performed as described by Rosvoll et al. (30). The Vacugene 

XL system (Amersham Biosciences) was used for Southern blotting. Consecutive 

hybridization was performed using reppRUM, vanB and axe-txe probes in the mentioned order. 

Probes were made by amplification using positive controls (see Table 1), and labelled using 

the PCR DIG synthesis kit (Boehringer Mannheim). The same hybridisation protocol as in 

Rosvoll et al. (30) was used with the following modification: The DNA was purified after the 

first PCR using the Cycle Pure Kit (zDNA®).   

Conjugative transfer of vanB 

Filter mating was performed according to Bjørkeng et al. (18) with some minor modifications, 

using the E. faecium 64/3  and E. faecium BM4105-RF as recipient strains for the first filter 

mating, and BM4015-Str in retransfer. Briefly, the isolates were grown together on MF-

Millipore membrane filters for 24h, spotted on selective BHI agar plates containing either 

vancomycin (8 mg/L), fusidic acid (10 mg/L) and rifampicin (20 mg/L), or all three 

antibiotics together. The bacterial suspension was serially diluted down to 10
-9

 and incubated 

at 37 °C for 48h. In the retransfer experiments, the recipients were selected on plates 

containing 1000 mg/L streptomycin. 

454 whole genome sequencing 

Chromosomal DNA from the four isolates (VSE1036, VRE1044, VRE1261 and VRE0576) 

was prepared using the DNeasy Blood and Tissue Kit (Qiagen) with lysozyme (20 mg/mL) 
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added to the lysis buffer and further treated with RNase. This protocol allowed purification of 

extra-chromosomal plasmids. Libraries were prepared and used for whole genome shotgun 

sequencing on a 4-region picotiter plate with the Roche 454 FLX system according to 

standard protocols (www.454.com). Raw sequencing data were processed with standard filters 

using the GS Run Processor (v 2.6), generating between 246084 and 310421 reads for each of 

the strains with average lengths between approximately 307 and 320 nucleotides, 

corresponding to between 78750175 and 99124035 nucleotides. Reads were assembled de 

novo with the accompanying GS de novo assembler software (v 2.6) (454 Newbler algorithm) 

generating between 201 and 302 contigs with a length of more than 100 nucleotides. The GS 

Reference mapper software (v 2.6) was subsequently used for homology comparisons 

between the different strains and to find homologies to specific query gene sequences and also 

used to identify indels and point mutations that separated the different strains. Some small 

plasmids could be identified by screening for contigs where individual reads mapped to both 

ends of the contig. The contigs were tentatively linked to each other by a collection of 

evidence, including comparison with molecular biology data, identification of individual 

reads mapping to two different contigs and comparisons with published genomes. The 

tentative gene content of the contigs was analysed with the tBLASTx software tool (NCBI). 

 

Results 

PFGE patterns and antimicrobial susceptibility  

All E. faecium blood isolates from the collection at Karolinska University Hospital Huddinge 

(n=191, Collection B) were analysed using PFGE, retrospectively. One PFGE pattern 

dominated and comprised 37 isolates. This pattern was identical or closely related to that of 

the VRE outbreak strain from the large outbreak 2007-2010 (named SE-EfmB-0701 

according to the Swedish nomenclature). Among the blood isolates, this PFGE pattern was 

observed for the first time in a vancomycin susceptible isolate (VSE) in February 2007 and 

soon after in two more VSE. During the autumn of 2007 this PFGE pattern was detected in 

three VRE. It should be mentioned that the first known clinical isolate of this VRE strain 

(subsequently called the outbreak strain) was found in an abdominal infection in August 2007. 

In 2008 another eight VRE from blood with the same PFGE pattern were detected, but also in 

14 VSE isolates. During the observation period from January until August 2009 no more VRE 

were detected but still 10 VSE of the SE-EfmB-0701 PFGE type.   
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 Antimicrobial susceptibility testing and PCR for detection of van genes performed on these 

37 blood isolates showed that a total of 11 (30 %) isolates were resistant to vancomycin and 

14 (38 %; 9 VSE and 5 VRE) had high level resistance (HLR) to gentamicin. All 37 were 

resistant to ampicillin and ciprofloxacin but susceptible to teicoplanin. The vanB gene was 

detected in all eleven vancomycin-resistant isolates.  

In collection A, with isolates representing PFGE patterns as diverse as possible at the time of 

selection (autumn 2008), a total of 9 subgroups (a to i) of the pattern SE-EfmB-0701 were 

noted (Table 2 and Figure 2). All these PFGE patterns displayed a similarity > 90%, thereby 

fulfilling the definition of clonality (> 81%) according to Morrison et al. (31). The isolates did 

however not group together consistently in relation to their geographical origin (Figure 2). 

The nineteen VRE isolates in this collection had vancomycin MICs ranging from 8 to ≥256 

mg/L and were susceptible to teicoplanin, consistent with the vanB2 genotype. All the isolates 

were resistant to ampicillin and ciprofloxacin, and seven displayed high-level resistance to 

gentamicin. The two isolates lacking the vanB gene (VSE1036 and VSE1027) were 

susceptible to both vancomycin and teicoplanin, but otherwise showed the same resistance 

pattern as the other isolates, with the exception of gentamicin (Table 2).  

 

Molecular characterization  

Twenty one isolates were studied in greater detail by MLST and PCR for virulence genes 

(Table 2). Three isolates of the outbreak strain (according to PFGE) and one unrelated VRE 

isolate were also whole genome sequenced (see Materials and methods), generating a series of 

contiguous sequences with high sequence coverage. 

A total of 19 isolates, including the two VSE isolates, belonged to ST192. Two isolates were 

either single locus (VRE0673, ST78) or double locus (VRE0881, ST17) variants of ST192.  

All except the ST17 isolate belonged to the ST78 lineage. All isolates except VRE0576, a pre-

outbreak vanB-positive ST192 isolate from 2006, had identical or closely related PFGE 

pattern, as shown by SmaI PFGE (Figure 2). The MLST- and PFGE results concurred well in 

showing the similarity of the isolates, since the isolates that deviated in MLST profiles 

(VRE0673 and VRE0881) also deviated the most in their PFGE patterns.  
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Molecular antimicrobial resistance patterns 

The vanB genotype of vancomycin resistance is divided into three subtypes where vanB2, 

which is linked to the conjugative transposon family Tn1549/Tn5382, is the most 

predominant. All VRE isolates in collection A harboured the vanB2 gene as an integral part of 

Tn1549/Tn5382 by the vanXB-ORFC-PCR as described by Dahl et al. (32). This link was 

confirmed in the whole genome sequences (WGSs) of the VRE isolates, see Table S1. 

Analyses of the WGS data show that in VRE576 the vanB2 transposon shows the same 

genetic organisation (Figure 3) as well as 99% nucleotide (nt) identity to Tn1549. In 

VRE1044 and VRE1261 the vanB2 transposon also show the same organisation and 99% 

nucleotide identity to Tn1549, but has an additional 2588 bp inserted between nt 5014 and 

5015 of Tn1549 (Figure 3). Since this insertion is a unique signature of the vanB transposon 

in two SE-EfmB-0701 isolates we are currently working to confirm if the transposon has this 

signature in the other SE-EfmB-0701 isolates by ICEsluvan Q8 PCR (Table 1) and 

sequencing. The 2588 bp insert sequence is 89% identical to the region in Clostridium 

saccharolyticum-like K10 (GenBank Acc. No. FP929037), which encodes a retron-type 

reverse transcriptase. In line with this, the 2588 bp sequence encodes a putative protein of 610 

amino acids (aa) with 99% identity to a putative reverse transcriptase/maturase from 

Faecalibacterium prausnitzii A2-165 (GenBank Acc. No. EEU96266) and a putative group II 

intron-encoded protein LtrA (reverse transcriptase and RNA maturase) from Flavonifractor 

plautii ATCC 29863 (GenBank Acc. No. EHM54980). The putative protein further shows 

43% identity to the group II intron 599 aa multifunctional protein LtrA in Lactococcus lactis 

(GenBank Acc. No. U50902) known to have reverse transcriptase, RNA maturase and site-

specific DNA endonuclease activity mediating intron splicing and mobility (33).  

The previously described genetic linkage between pbp5 (involved in high-level ampicillin 

resistance) and Tn1549/Tn5382 was not detected by PCR in this study (34). The gyrA and 

parC genes were extracted from the WGSs and analysed to find possible loci associated with 

ciprofloxacin resistance. Two mutation events in each gene were found (Table 2), and both 

amino acid combinations (GyrA Arg83, ParC Ile80 or GyrA Ile83, ParC Arg80) have been 

described previously in E. faecium isolates with ciprofloxacin MICs ≥ 16 mg/L (35-37). 

Further on, genotypic tetracycline resistance (tetM) was also found in the three fully 

sequenced outbreak isolates, but not in VRE0576. Erythromycin resistance genotype was 

found in all the fully sequenced isolates (Table S1). 
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Presence of virulence genes 

All isolates of the PFGE type SE-EfmB-0701 harboured esp, sgrA, acm, scm, pilB, efaAfm 

orf2010 and orf 2514. Moreover 17 of 20 isolates contained hyl. The genes pilA, ecbA and 

orf903 were not prevalent, with an occurrence in six, one and one of 20 isolates, respectively. 

The last two genes were found in isolates with unique PFGE subtypes in this collection 

(VRE0776 and VRE0673). However, the genome sequences showed that pilA (VRE1044 and 

VRE1261) and ecbA (VRE1036, VRE1044 and VRE1261) were present albeit with a reduced 

identity corresponding to a nt match of 1672/1976 (85%) for pilA and 2766/3173 (87%) for 

ecbA compared to reference isolates E1162 and TX16 (data not shown). The pilA and ecbA 

primers used yielded no good matches in these sequences, thereby concluding that these genes 

may appear in a form not recognised by the performed PCRs.  

 

vanB presence on pRUM plasmid 

The vanB resistance gene co-hybridised with reppRUM on a ~70kb plasmid 

By comparing the VSE1036 isolate with the VRE1044 and VRE1261 isolates the exact AT-

rich location of the vanB2 transposon insertion site could be identified (Figure 4). Moreover, 

the transposon insertion site was identical for VRE1044 and VRE1261 and the insertion site 

corresponded with 100% identity to sequences in VSE1036. When comparing the gene 

content of the whole genome sequenced isolates additional stretches of DNA was observed in 

isolate VRE1044, all of which contained typical plasmid genes.  We could also see that some 

plasmid-like pieces of DNA were not present in VRE1261, including a stretch containing 

gentamicin resistance. But as most resistance plasmids are of a large size and typically contain 

repeated IS-elements it was not possible to generate contiguous sequences of all plasmids. 

Only in one case a contig could be circularized into a complete plasmid.  

To get a better picture of the plasmid composition in the various isolates we compared the 

results from S1 nuclease PFGE Southern hybridisation analyses with the replication (rep) 

gene specific probes for reppRUM, reppLG1 and reppRE25. From the WGSs some additional 

plasmid replication genes could be identified, as well as a number of plasmid specific 

relaxases, resistance genes including the vanB gene, Tn1549/Tn5382 and axe-txe gene 

sequences (Table S1). According to the WGS data replication genes representative of rep 

group families 2 (reppRE25), 9 (reppTEF1), 11 (reppB82), 17 (reppRUM), and pLG1 were present in 

all four isolates, with a slight homology difference between the pre-outbreak isolate 

(VRE0576) and the three outbreak isolates. Notably, VRE1044 and VRE1261 contained two 
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reppRE25-sequences with dissimilar homology on different contigs, which reflected the 

occurrence of two pRE25 plasmids in S1 nuclease PFGE Southern hybridization (Table 3 and 

S1). The third outbreak isolate VRE1036 had a similar Southern hybridization pattern as the 

other two isolates, but did not have an identical reppRE25-sequence pattern. The pre-outbreak 

isolate also differed from the outbreak isolates by lacking the rep group 14 (reppRI1) gene 

which were present with identical nt identity scores in the outbreak isolates, and by containing 

a putative reppCIZ2 gene absent in the outbreak isolates.  

All designated VRE isolates harbour the vanB resistance gene on an approximately 70-kb 

reppRUM replicon (data partly presented in Figure 5 lanes 5, 8 and 11 and Figure 6 lanes 5, 7 

and 9). S1 nuclease PFGE hybridisation of selected isolates (Table 3) further revealed the 

following common pattern for isolates VRE0726, VRE0815, VRE0678, VRE1044, 

VRE1261, VRE0650, VRE0653, VRE0651 and VRE0673 with reppRE25 on a similar sized 

replicon as reppRUM as well as on a 40-50 kb replicon, reppLG1 on a 160-kb replicon as well as 

an unknown replicon of approximately 100 kb. The reppRE25 and reppRUM replicons of 

approximately 70 kb were difficult to separate by S1 nuclease PFGE (Figure 5 lanes 5, 8 and 

11, Figure 6 lanes 5, 7 and 9), because of their similar size. However, all the VRE isolates 

showed a thick double band around 70 kb that on some gels could be resolved into two bands 

(Figure 5 lanes 5, 8 and 11, Figure 6 lanes 5, 7 and 9). VRE0673 contained an unknown 

replicon of around 10 kb (data not shown). The other VRE isolates showed variations of the 

common pattern showing either a different sized reppRE25 plasmid or lacking  reppLG1 and the 

70 kb reppRE25 plasmids (Table 3, Figure 5 lanes 5, 8 and 11, Figure 6 lanes 5, 7 and 9, and 

data not shown). 454 sequence data revealed that VSE1036, VRE1044 and VRE1261 

contained a reppRI1 replicon of 2.9 kb and a reppB82 replicon of 6.1 kb. Furthermore, the two 

VSE isolates (VSE1027 and VSE1036) belonging to the same clone according to PFGE 

analysis differed from the common pattern by having a reppRUM replicon that was 

approximately 30 kb less than that of the VRE isolates (Table 3 and data not shown). This 

finding was expected since 30 kb is the approximate size of the Tn1549/Tn5382 transposon 

carrying the vanB2 vancomycin resistance gene. Notably, the pRUM repA was found with 

100% homology to the reference sequence in VRE0576, and present in the three outbreak 

isolates with identical nucleotide differences. Tn1549/Tn5382-related genes, axe-txe and the 

vanB2 gene were found within the same contig in the VRE1044 and VRE1261 isolates, thus 

supporting the S1 nuclease PFGE hybridisation and PCR data showing linkage of vanB2-

Tn1549/Tn5382 and axe-txe genes on the same replicon. The S1-nuclease PFGE hybridisation 

data further mapping vanB2-Tn1549/Tn5382 and axe-txe together with pRUM repA indicates 
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these are confined within the same plasmid even though the pRUM repA was found in other 

contigs. WGS analyses of VSE1036 showed that the sequence corresponding to the 

transposon insertion site of VRE1044 and VRE1261 (Figure 4) mapped to the same contig as 

axe-txe (Table S1). Interestingly, the reference pRUM sequence contains a putative relaxase 

gene and a mobilization gene both consistently absent from all four WGSs. 

 

Transfer of vanB 

The plasmid containing vanB, axe-txe and reppRUM is transferable and transferability 

increases in retransfer experiments after the plasmid has picked up additional genetic 

material containing reppRE25 

All but 2 (VRE0651 and VRE0673) out of 10 tested VRE isolates produced transconjugants 

with a low frequency of 10
-8 

to 10
-11

 per donor, close to detection limits with the applied 

method, when conjugated with the E. faecium recipient 64/3 (Table 4). Conjugation of the 

isolates with E. faecium recipient BM4105-RF yielded no transconjugants (data not shown).  

S1 nuclease PFGE and subsequent hybridization of the 64/3 transconjugants revealed that the 

transconjugants had received a vanB-reppRUM-reppRE25-containing plasmid of variable size 

(110-150 kb), larger than the 70-kb plasmids of their donors. With the exception of 

VRE0690x64/3 (150 kb) (Figure 6 lane 4) and VRE0776x64/3 (110 kb) (Figure 6 lane 8), all 

the other transconjugants had a vanB-reppRUM-reppRE25 containing plasmid of about 140 kb 

(Figure 5 lanes 6, 9 and 12 and Figure 6 lane 6 and data not shown). The transconjugants were 

then tested for susceptibility to streptomycin in order to identify eligible donors for a 

retransfer. Out of the 8 1
st
 generation transconjugants, only the three originating from donors 

VRE0726 (ST192), VRE0734 (ST192) and VRE0881 (ST17) were susceptible to 

streptomycin.  

Retransfer attempts succeeded in demonstrating that the plasmids in these transconjugants 

were stable and readily transferable with transfer rates of 10
-3

-10
-5

 transconjugants
 
per donor. 

The following S1 nuclease PFGE and Southern hybridisation revealed that the plasmids in the 

second generation transconjugants had a stable size at around 140 kb, similar to the plasmid 

size in their donors. These plasmids also co-hybridized with reppRUM, axe-txe, vanB (Figure 5 

lanes 7, 10 and 13) and reppRE25 (data not shown).  
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Discussion 

The extensive spread of an E. faecium with vanB in Sweden from 2007 to 2010 prompted us 

to further investigate selected isolates from the hospitals where the dissemination took place 

by an array of molecular methods to get a better insight into the genetic characteristics of this 

successful outbreak strain, and possibly to find the ancestor. In Sweden, mandatory reporting 

of VRE according to the Communicable Disease Act includes reporting of all findings of 

resistant organisms, both from infected and colonised patients. In short, the actual outbreak 

strain was found mostly in elderly hospitalised patients with underlying diseases, and it was 

mostly found as a coloniser. Less than 10% of the patients had a clinical infection where VRE 

was found in blood, urine or wounds (15). Nevertheless, it remains worrisome when a VRE 

strain is spread among severely ill patients already burdened with several risk factors. In an 

attempt to identify a probable ancestor of the outbreak strain, we were able to study 

consecutive blood isolates of E. faecium from Karolinska University Hospital, Huddinge, 

from a four-year period (2006-2009) around the time of appearance of the presumably first 

clinical isolate of the outbreak VRE strain. Based on the findings of PFGE analysis of all 

blood isolates, it is highly probable that this strain, as a vancomycin-susceptible variant, 

already from 2007 was a successful hospital inhabitant and that the acquisition of the vanB 

gene cluster made it even more contagious. VSE but not VRE of the outbreak strain could still 

be found among invasive isolates in 2009, which could imply parallel development lines for 

the VRE clone and the VSE clone. Despite efforts it has not been possible to identify a 

common source which could explain the dissemination of the strain in three different 

counties.  

 

Molecular characterization of a subset of the isolates done by us has shown that a PFGE 

pulsotype belonging predominately to ST192 is causative of the observed increased incidence 

of VRE. This sequence type is a single-locus variant of the ST78 line and is considered to be a 

high-risk genotype. The MLST- and PFGE results concurred well in showing similarity of the 

isolates, as the isolates that diverged in the MLST screening (VRE0673/0881) also diverged 

the most in the PFGE profile. The PFGE subtypes characterized by single- or double band 

differences did not group together in time or location which could be caused by the length of 

time (2 years) of sample collection. The isolate VRE0881, considered to be clonal by PFGE, 

belonged to ST17 which is a single locus variant of ST78 and a double locus variant of 

ST192. Others (9) have by BAPS concluded that the ST78 and ST17 lineages are not related, 
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which is paradoxical to our PFGE results which grouped VRE0881 in the SE-EfmB-0701 

PFGE strain. Since these data are controversial, both MLST and PFGE were repeated and 

confirm that these methods disagree whether VRE0881 is related to the other isolates in this 

clone. The overall presence of high-risk genotypes in this population prior to this outbreak is 

not known, albeit signs of emergence of high-risk genotypes in Scandinavia have been seen 

(18, 38, 39)(Lester et al., 2009. Poster P844 ECCMID), and an outbreak of ST192 strains 

containing vanB2 has also been seen in Germany in 2008-2009 (17). The isolates in CC17 

could largely be found and divided in two BAPS groups, 2-1 (ST78), and 3-3 (ST17 and 

ST18), with the corresponding MLST ancestry nodes in parenthesis. BAPS 3-3 showed a 

strong association with hospital-associated isolates whereas BAPS 2-1 was associated with 

VRE found in animals, thus it is speculated that STs linked to BAPS 2-1 might originate from 

a farming reservoir (9).  

 

The characterized isolates were both multi-resistant to antibiotics and harboured a range of 

genes associated with increased invasiveness and virulence, concordant with a high-risk 

genotype. All isolates had a VanB phenotype resistance, except two VSE1027 and VSE1036 

isolates collected at the start of the outbreak period. However, these VSE isolates were clonal 

to the vanB-type resistant E. faecium isolated later, and except for vancomycin resistance 

exerted the same resistance- and virulence profile as the other isolates (Table 2). Both plasmid 

profile and WGS data (Table 3 and S1) also indicated close relatedness of the isolates within 

the SE-EfmB-0701 PFGE strain with minor differences in plasmid profile.  The WGS data 

further show that there are clear differences both in content and identity score between the 

pre-outbreak isolate and the three outbreak isolates.  

 

Our results indicate that internalisation of the vanB transposon into the pRUM plasmid is at 

least a partial explanation for the success of this high-risk clone. The reppRUM replicon has 

previously been shown to harbour a segregation stability module encoded by a toxin-antitoxin 

cassette (axe-txe) which may support maintenance of linked antimicrobial resistance genes 

(40). The tested SE-EfmB-0701 pRUM replicons were shown to contain the axe-txe stability 

module which in the WGSs showed 100% identity to the original pRUM axe-txe sequence. 

The toxin (txe) is experimentally shown to be an endonuclease capable of cleaving mRNA 

one nucleotide downstream from the AUG start codon (41). In an E. coli model set up by 

Boss et al.(42), expression of the axe and txe genes is meticulously regulated by promoters 

and repressors for both or one of these bi-cistronically transcribed genes to ensure stable toxin 
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production and further a toxin/antitoxin ratio securing stability of this gene complex in a host. 

The complete mechanism of how this system operates is still not shown, and it might also 

change between bacterial species. VSE1027 and VSE1036 contained a 40 kb pRUM-like 

plasmid which is approximately 30 kb smaller than the pRUM replicons of the VRE isolates. 

The 30 kb lacking corresponds to the size of the vancomycin resistance carrying transposons 

Tn1549/Tn5382. All VanB-type VRE isolates in collection B contained this 70 bp “pRUM-

vanB2-Tn1549/Tn5382-axe-txe-plasmid” with no variance in size by timeline or geographic 

location. WGS data confirms presence of vanB2, Tn1549/Tn5382-related genes and the axe-

txe system within the same contig while repApRUM was found in other contigs which does not 

contradict the hybridisation results since no plasmid of this size, pRUM included, was 

successfully circularized. A pRUM-vanB2-Tn1549/Tn5382-axe-txe-plasmid of approximately 

120-130 kb has previously been described in a polyclonal cluster of E. faecium from 2002-

2004 in the Swedish county Örebro. This cluster originated from BAPS-group 3-3 (ST17, 

ST18 and single locus variants of these) (18). The Örebro isolates were however different 

from the present strain SE-EfmB-0701 according to PFGE analysis (data not shown).  

 

The observation of reppRUM plasmids with the vanB2 transposon transferring to a recipient in 

vitro and in the process consistently gaining genetic material is a surprising feature. The 

“wild-type” plasmid was present only as a 70 kb size, but after conjugation, was considerably 

larger (110-150 kb) and had fused with a reppRE25 replicon. The WGSs in our study did not 

contain the putative relaxase and mobilization protein associated with the reference pRUM 

sequence, explaining the need to fuse with a conjugation system from other intracellular 

sources in order to be mobilised. Freitas et al. (43) have stressed the propensity of 

independent shuffling and variation of plasmids present in enterococci, thus indicating a high 

degree of fluidity of plasmid gene content variation. They also described mosaicism and/or 

merging of plasmids for enhanced host range or other functional benefits as well as the 

occurrence of several replicons in one plasmid. All in all, fusion with another replicon could 

account both for the observed plasmid size increase and subsequent gain in transfer 

frequency. The observed differences in speed of transfer could be explained by HGT 

“affinity” differences between individual strain backgrounds. Since initial transfer to recipient 

BM4105-RF did not succeed whereas 2
nd

 generation donors readily transferred the fused 

plasmid into BM4105-Str which is derived from the same mother strain as BM4105-RF (23), 

such changes must rather involve difference in the donor than recipient potential.  
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There is a noteworthy reservoir of vanB in intestinal anaerobes, and Howden et al. (44) noted 

the possibility of introduction of vanB-type vancomycin resistance on Tn1549/Tn5382 in VSE 

from other co-habitants (mainly Gram-positive anaerobes) in the intestinal environment. By 

WGS, recipient insertion sites of these transposons as well as a phylogenetic analysis revealed 

a diversification likely due to a higher grade of de novo VRE generation compared to cross-

transmission between enterococcal strains than previously believed. They also found 

increasing incidence of VRE infections intrahospitally despite normal screening and 

preventive action to limit spread of virulent clones. Acquisition of the vanB2 transposon into 

the Swedish outbreak strain is a likely theory of how vancomycin resistance appeared in this 

strain. The WGSs show that the vanB transposon likely was inserted within the pRUM-like 

plasmid of a strain already present, further causing a parallel evolution between VSE clones 

without, and VRE clones with the pRUM-vanB2-Tn1549/Tn5382-axe-txe arrangement. 

Notably, the pRUM plasmid replicon has been found in 74% of CC17 strains by Rosvoll et al. 

(26), and this replicon was strongly associated with the toxin-antitoxin gene cassette axe-txe. 

 

Several experiments studying bacterial ecology in the intestines during and after antimicrobial 

therapy point to potentially hazardous effects of prior colonization of VRE, as these bacteria 

could end up dominating the intestinal flora (45). VRE colonization could persist for months 

after therapy cessation, and suggested clearance time post-infectionally is in the literature 

suggested to be 4 years (46). Still, others suggest presence of resistant environmentally 

adapted VRE capable of inhabiting the intestines in small numbers for even longer periods of 

time (47, 48). Infections of multi-resistant bacteria seem to add to rather than replace 

infections by susceptible bacteria, thus creating an additive strain to health services (4). 

Together, this suggests the presence of VRE in Sweden can become a lasting problem. 

 

MIC values for vancomycin varied from 8 mg/L to larger than 256 mg/L in the tested isolates 

in our study. Moderate to low vancomycin MIC phenotypes of vanB-type VRE is a challenge 

to phenotypic detection and screening methods. The selective enriched broth used in some 

laboratories in Sweden before January 2009 with a vancomycin concentration of 32 mg/L was 

not suitable to screen for vanB-type resistance. To address this problem, microbiological 

laboratories were then advised to reduce the concentration to 4 mg/L (15). However, vanB-

type VRE may have even lower MICs (17, 49). Moreover, the EUCAST disk diffusion test 

used by most laboratories in Sweden as the phenotypic vancomycin-susceptibility test method 



Sivertsen et al.   17 

 

rely on observing the zone edge quality for identification of low level vanB-type resistance, 

thus having observer experience as a variable (Hegstad et al., in manuscript).  

 

In conclusion, molecular characterization revealed that the disseminated E. faecium strain 

belonged to the high-risk ST192. The strain was resistant to several antibiotics and harboured 

several virulence genes. A successful pRUM-like plasmid containing a vanB transposon that 

possibly originate from other intestinal species, was present in all the VRE isolates within this 

strain. This plasmid harboured a toxin-antitoxin stability module capable of ensuring plasmid 

persistence. In addition the pRUM replicon easily spreads within E. faecium, thus making it 

probable to enter high-risk clones. A feature possibly hampering prevention or limitation of 

this dissemination of VRE might be the phenotypic screening methods previously and 

presently used, as low-MIC vanB-type VRE might go under the radar.   
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TABLE 1. Primers used in this article 

PCR target: Primer sequence (5’-3’) 
Amplicon 

size (bp) 

Annealin

g temp. 

(
o
C) 

Positive 

control 
Reference 

acm 
TGACGAGCGGTGATAAAACAGCTA 

636 53 
TUH7-15 

(20) 
(50) 

ATAGGCTGTTCATCTGCTCGTCTTA 

efaAfm  
GTTCGATAACTTGATGGAAAC 

561 53 TUH7-15 (18) 
CATCTGATAGTAAGAATCTCCTTG 

esp  
AGATTTCATCTTTGATTCTTGG 

510 55 TUH7-15 (25) 
AATTGATTCTTTAGCATCTGG 

hyl 
GTTAGAAGAAGTCTGGAAACCG 

Ca 500 53 TUH7-15 (26) 
TGCTAAGATATTCCTCTACTCG 

srgA 

(orf2351) 

AATGAACGGGCAAATGAG 
671 50 TUH7-15 (28) 

CTTTTGTTCCTTAGTTGGTATGA 

ecbA 

(orf2430)  

GCAGTTTACAATGGTGTGAAGCAA 
963 55 TUH7-15 (28) 

CGGCTAATGAGTATTTGTCGTTCC 

scm (orf418) 
CTAACTGGTAACTATGGCTTGT 

1109 55 TX16 (51) (28) 
GTCCGTGCTGTCACTTGT 

pilA 

(orf1904) 

AGGCAGATTATGGTGATGTT 
619 55 TX16 (28) 

GGCTGTTGGTTCTTTATCTG 

pilB 

(orf2569) 

GTGTTTGCAGAGGAGACAGC 
1121 55 TX16 (28) 

GACAGAATAATTTACTGGGTCG 

orf903 

(fms11) 

TCAACGGACATACCATACCA 
409 55 TX16 (28) 

CTTACCATCAACGATCTGCC 

orf2010 

(fms14) 

GTAGCGAAGAAAATGAGATGG 
1021 55 TX16 (28) 

TAACTTGACTGAATCGGTGC 

orf2514 

(fms15) 

AGTTCCAGTTGCGAGTCAGA 
989 55 TX16 (28) 

ATGTAGTCGGATTCGGTGC 

vanB 

consensus 

CAAAGCTCCGCAGCTTGCATG 
484 58 C68 (34) (20) 

TGCATCCAAGCACCCGATATAC 

vanXB-

ORFC  

ATCAAGGACTCAACCGTAATT 
873 60 C68 (32) 

TGAGTTGTGGAAGTCGATTAGAG 

pbp5-

Tn5382 

TCAGCCGATTTGCGACAGGTTATG 

TGGGGTGGCGGGTATTAGCAGTAT 
1079 68 TUH7-15 (34) 

axe-txe 
CTTTAATGGCTCAGGTTTTCCTAA 

ATGAGGATGCTGAAACACTTATT 351 55 U37 (30) 

reppRUM 
TACTAACTGTTGGTAATTCGTTAAAT 

604 52 U37 (52) (53) 
ATCAAGGACTCAACCGTAATT 

reppLG1 
TTTAAGGCGGATAGAGTTTACAACG 

CTGATAGGCTTTTAACAGTGTCGTGT 
864 56 TX16  (38) 

reppRE25 
GAGAACCATCAAGGCGAAAT 

ACCAGAATAAGCACTACGTACAATCT 
630 56 RE25 (54) (53) 

ICEsluvan 

Q8 

CAAGTGGTAACGCAGGATGA 

AAAGATAGCCGTCTGCGTGT 
2512/5100  5-F9 (55) 

ICEsluvan 

Q12-15 

CTTTGCGAGGGCCAGACCTT 

GTCTGTTCCATTTGGGCAAG 
3006  5-F9 (55) 
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TABLE 2. Demographic data and characteristics including results from MLST- and PFGE analyses as well as antimicrobial 

susceptibility testing and presence of virulence genes.  

Isolate 

ID County Material 

Year of 

isolation 

MLST 

type PFGE type
a
 

vanB2-

Tn5382 

Antimicrobial susceptibility
b
  Mutations 

involved in CIP 

resistance 

Virulence 

genes
c
 

VAN 

MIC 

TEI 

MIC 

GEN AMP CIP 

GyrA ParC 

VRE0673 Halmstad Faeces 2008 78 SE-EfmB-0701g Pos 8 0,5 R R HLR NT NT hyl, orf903 

VRE0726 Halmstad Wound 2008 192 SE-EfmB-0701d Pos ≥256 0,5 R R HLR NT NT hyl  

VRE0734 Halmstad Faeces 2008 192 SE-EfmB-0701c Pos 64 1 R R HLR NT NT hyl, pilA 

VRE0762 Halmstad Faeces 2008 192 SE-EfmB-0701c Pos ≥256 1 R R HLR NT NT hyl, pilA 

VRE0815 Halmstad Faeces 2008 192 SE-EfmB-0701c Pos 16 0,5 R R HLR NT NT hyl  

VRE0651 Stockholm Abdomen 2007 192 SE-EfmB-0701b Pos 32 0,5 HLR R HLR NT NT hyl  

VRE0678 Stockholm Faeces 2007 192 SE-EfmB-0701a Pos 16 0,5 R R HLR NT NT hyl  

VRE0683 Stockholm Faeces 2007 192 SE-EfmB-0701c Pos 16 1 R R HLR NT NT hyl  

VRE0688 Stockholm Faeces 2008 192 SE-EfmB-0701f Pos 32 1 HLR R HLR NT NT pilA 

VRE0690 Stockholm Faeces 2008 192 SE-EfmB-0701e Pos 16 0,5 HLR R HLR NT NT  

VSE1036 Stockholm Blood 2007 192 SE-EfmB-0701a Neg 1 1 HLR R HLR S83I S80R hyl  

VSE1027 Stockholm Blood 2007 192 SE-EfmB-0701a Neg 2 1 R R HLR NT NT hyl, pilA 

VRE1044 Stockholm Blood 2007 192 SE-EfmB-0701a Pos 32 1 HLR R HLR S83I S80R hyl  

VRE1261 Stockholm Blood 2008 192 SE-EfmB-0701a Pos 16 1  R R HLR S83I S80R hyl  

VRE0576 Stockholm Blood 2006 192 EfmB Unique Pos 64 0,5 R R HLR S83R S80I hyl  

VRE0650 Västerås Urine 2008 192 SE-EfmB-0701a Pos 32 0,5 R R HLR NT NT hyl  

VRE0653 Västerås Urine 2008 192 SE-EfmB-0701a Pos 16 0,125 R R HLR NT NT  

VRE0654 Västerås Wound 2008 192 SE-EfmB-0701a Pos 16 1 R R HLR NT NT hyl, pilA 

VRE0776 Västerås Faeces 2008 192 SE-EfmB-0701h Pos ≥256 0,25 HLR R HLR NT NT hyl, pilA, ecbA 

VRE0881 Västerås Faeces 2008 17 SE-EfmB-0701i Pos 32 0,5 HLR R HLR NT NT hyl, pilA 

VRE0892 Västerås Faeces 2008 192 SE-EfmB-0701a Pos ≥256 0,25 R R HLR NT NT hyl  

VAN, vancomycin; TEI, teicoplanin; GEN, gentamicin; CIP, ciprofloxacin; AMP, ampicillin; R, resistant; HLR, high level resistant; NT, not 

tested; S, serine; I, isoleucine; R, arginine. 
a
 A 97% threshold similarity value of Dice dendrogram was used to designate PFGE subtype (small letter). 

b
 Breakpoints for resistance were as follows: VAN, MIC>4 mg/L; TEI, MIC>2 mg/L; GEN HLR, MIC>128 mg/L; AMP, MIC>8 mg/L; CIP 

HLR MIC>32 mg/L. 
b
 All isolates were positive for esp, srgA, efaAfm, acm, scm, pilB, orf2010 and orf2514 in addition to the virulence gene results showed in this 

table. 
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TABLE 3. Replicon size estimated from S1 nuclease PFGE hybridisation with rep 

probes on selected isolates and whole genome sequences (WGSs) 

 

Replicon sizes estimated by S1 nuclease PFGE Replicon size by 

WGS 

Isolate ID (PFGE 

subtype) (unique ST) 
reppRUM reppRE25 reppLG1 Unknown 

replicon
a
 

reppB82 reppRI1 

VRE0726 (d) 70-kb 50-kb, 70-kb 160-kb 100-kb   

VRE0734  (c) 70-kb 25-kb, 70-kb 160-kb 100-kb   

VRE0815 (c) 70-kb 45-kb, 70-kb 160-kb 100-kb   

VRE0678 (a) 70-kb 50-kb, 70-kb 160-kb 100-kb   

VRE0688 (f) 70-kb 50-kb, 70-kb  100-kb   

VSE1036 (a) 40-kb 50-kb, 70-kb 160-kb 100-kb 6.1-kb 2.9-kb 

VSE1027 (a) 40-kb 50-kb, 70-kb 160-kb 100-kb   

VRE1044 (a) 70-kb 50-kb, 70-kb 160-kb 100-kb 6.1-kb 2.9-kb 

VRE1261 (a) 70-kb 50-kb, 70-kb 160-kb 100-kb 6.1-kb 2.9-kb 

VRE0650 (a) 70-kb 50-kb, 70-kb 160-kb 100-kb   

VRE0653 (a) 70-kb 50-kb, 70-kb  100-kb   

VRE0892 (a) 70-kb 25-kb, 70-kb 160-kb 100-kb   

VRE0651 (b) 70-kb 50-kb, 70-kb 160-kb 100-kb   

VRE0690 (e) 70-kb 50-kb  100-kb   

VRE0673 (g) (ST78) 70-kb 50-kb, 70-kb 160-kb 10-kb, 100-kb   

VRE0776 (h) 70-kb 40-kb  100-kb   

VRE0881 (i) (ST17) 70-kb 25-kb, 70-kb 160-kb 100-kb   
a reppTEF1 hybridisation will be performed to try reveal the unknown rep of the 100-kb 

plasmid. 
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TABLE 4. Transfer frequencies between donors and recipients after filter mating 
 

Primary matings Transfer frequency 
Donor (PFGE subtype) (ST) Recipient Transconjugants/donor Transconjugants/recipient 
VRE0653 (a) (192) 64/3 6 × 10

-9 4 × 10
-10 

VRE0651 (b) (192) 64/3 <6 × 10
-9 <2 × 10

-9 
VRE0683 (c) (192) 64/3 8 × 10

-9 5 × 10
-11 

VRE0734 (c) (192) 64/3 2 × 10
-11 2 × 10

-12 
VRE0726 (d) (192) 64/3 1 × 10

-9 3 × 10
-11 

VRE0690 (e) (192) 64/3 2 × 10
-9 1 × 10

-10 
VRE0688 (f) (192) 64/3 7 × 10

-9 6 × 10
-9 

VRE0673 (g) (78) 64/3 <2 × 10
-8 <1 × 10

-9 
VRE0776 (h) (192) 64/3 1 × 10

-10 5 × 10
-8 

VRE0881 (i) (17) 64/3 2 × 10
-8 7 × 10

-11 

Secondary matings  
VRE0726 x 64/3 BM4105-Str 7 × 10

-5 2 × 10
-3 

VRE0734 x 64/3 BM4105-Str 1 × 10
-3 2 × 10

-3 
VRE0881 x 64/3 BM4105-Str 3 × 10

-4 1 × 10
-3 
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FIG. 1. A schematic figure demonstrating the two different strain collections used in this 

study. The circles represents non-invasive isolates and the squares represent blood isolates.  
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FIG. 2. Dendrogram of SmaI PFGE of the 20 isolates, showing clonality (lane 1-20) and one 

divergent isolate (lane 21). The PFGE-type nomenclature is based on the following: SE stands 

for Sweden, EfmB stands for E. faecium with vanB, the number 07 represents year 2007 (the 

year the index was identified) and the last number is a serial number. The letter at the end 

describes which PFGE-subtype the isolate belongs to.  
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FIG. 3. Genetic organization of the vanB2-Tn1549/Tn5382 conjugative transposons in 

VRE576 versus VRE1044 and VRE1261. Gene identifiers for Tn1549 are captured from 

GenBank accession number AF192329 and the black arrows indicate coding sequences 

(CDSs) with no assigned functions and white arrows CDSs with putative functions. In 

VRE576 the vanB2 transposon shows the same genetic organisation and 99% nucleotide (nt) 

identity to Tn1549 over nt 1..30810 (VRE576 contig 4) and 30808..33799 (VRE576 contig 8). 

In VRE1044 and VRE1261 the vanB2 transposon show the same organisation and 99% 

nucleotide identity to Tn1549 over nt 1..15788 (VRE1044 contig 41/ VRE1261 contig 44) 

and 15795..33799 (VRE1044 contig 36/ VRE1261 contig 49), but has an additional 2588 bp 

(indicated by triangle) encoding a putative protein (grey arrow) of 610 amino acids inserted 

between nt 5014 and 5015 of Tn1549. The 2588 bp insert sequence is 89% identical to the 

region covering nt 497155.499743 in the Clostridium saccharolyticum-like K10 draft genome 

(FP929037) which encodes a retron-type reverse transcriptase. We are currently working to 

close the gap in the vanB transposon of VRE1044 and VRE1261 by ICEsluvan Q12-15 PCR 

(Table 1) to confirm if the transposon has further deviations from the original Tn1549. 
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FIG. 4. Sequence comparison of the insert regions of Tn1549/5382 in VRE576 versus VRE1044 and VRE1261 and the corresponding region in 

VSE1036 (contig00062). Tn1549/Tn5382 left and right end imperfect inverted repeats are shown in bold capital letters. Vertical lines indicate 

identical nucleotides.  
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FIG. 5. S1-nuclease PFGE and corresponding Southern hybridisations with reppRUM, vanB 

and axe-txe probes as indicated in the figure illustrated transfer from donors 

VRE0726/0734/0881 (lanes 5, 8 and 11) of a similar sized plasmid (approximately 140 kb) to 

64/3 (lane 1) (1
st
 generation transconjugants shown in lanes 6, 9 and 12) which was 

subsequently retransferred to BM4105Str (lane 2) (2
nd

 generation transconjugants shown in 

lanes 7, 10 and 13) when using the 1
st
 generation transconjugants as donors. Lane 3 vanB 

positive control V583, lane 4 reppRUM and axe-txe positive control U37.  
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FIG. 6. S1-nuclease PFGE and corresponding Southern hybridisations with vanB and reppRUM 

probes as indicated in the figure. Donors VRE0690/0653/0776 (lanes 5, 7 and 9) and their 

respective transconjugants (lanes 4, 6 and 8) illustrate transfer of different sized plasmids co-

hybridizing to vanB and reppRUM (≈ 110-150kb) into 64/3 (lane 1). Lane 2 vanB positive 

control V583, lane 3 reppRUM positive control U37.  
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TABLE S1. Plasmid replication, resistance, toxin-antitoxin system and conjugative 

transposon genes found in the WGSs of the pre-outbreak isolate VRE576 and the three 

outbreak isolates VSE1036, VRE1044 and VRE1261. Gene identity refers to the reference 

sequence.  

VRE0576 contig00101 100.00 1434

VSE1036 contig00084 100.00 1434

contig00079 100.00 1434

contig00081 89,76 1358

contig00085 100.00 1434

contig00098 89,76 1358

VRE0576 contig00115 76.29 641

VSE1036 contig00071 76.44 641

VRE1044 contig00086 76.44 641

VRE1261 contig00090 76.44 641

VRE0576 contig00054 83.72 215

VSE1036 contig00090 100.00 579

VRE1044 contig00087 100.00 579

VRE1261 contig00091 100.00 579

VRE0576

VSE1036 contig00113 83.50 976

VRE1044 contig00109 83.50 976

VRE1261 contig00121 83.50 976

VRE0576 contig00094 100.00 1041

VSE1036 contig00075 97.32 1043

VRE1044 contig00070 97.32 1043

VRE1261 contig00072 97.32 1043

VRE0576 contig00115 98.6 1041

VSE1036 contig00071 99.7 1041

VRE1044 contig00086 99.7 1041

VRE1261 contig00090 99.7 1041

VRE0576 contig00086 99.59 738

VSE1036

VRE1044

VRE1261

VRE0576 contig00004 99,71 1029

VSE1036

VRE1044 contig00036 99,71 1029

VRE1261 contig00049 99,71 1029

VRE0576 contig00100 100.00 738

VSE1036 contig00100 99.46 738

VRE1044 contig00095 99.46 738

VRE1261 contig00106 99.46 738

VRE0576

VSE1036 contig00094 94,62 1357

VRE1044 contig00089 94,62 1356

VRE1261 contig00096 94,62 1357

VRE0576 contig00161 100.00 270 E. faecium AF507977

VSE1036 contig00062 100.00 270

VRE1044 contig00036 100.00 270

VRE1261 contig00049 100.00 270

VRE0576 contig00161 100.00 258 E. faecium AF507977

VSE1036 contig00062 100.00 258

VRE1044 contig00036 100.00 258

VRE1261 contig00049 100.00 258

VRE0576 contig00008 99,92 1194 E. faecalis AF192329

VSE1036

VRE1044 contig00036 99,92 1194

VRE1261 contig00049 99,92 1194

VRE0576 contig00008 99 201 E. faecalis AF192329

VSE1036

VRE1044 contig00036 99 201

VRE1261 contig00049 99 201

VRE1261

E. faecium X92945 33-1526

Contig GenBank 

Acc. No.
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9

11

14

17

unique

Excisionase Tn1549

Conjugative 

transposon 

genes

Tetracycline resistance 

(tetM ) Tn916

vancomycin resistance 

gene vanB  (D-alanine:D-

lactate ligase) Tn1549 -like

erythromycin resistance 

transferase

Antitoxin of axe-axe 

pRUM

Resistance genes

TA-system genes

Toxin of axe-txe  pRUM

Integrase Tn1549

repA -1 pTEF1

repA  pB82 

replication 

initiation 

protein pRI1 

Putative repA 

pRUM 

Putative 

plasmid 

replication 

protein pCIZ2

replication-

associated 

protein repA 

pLG1

E. faecium EU327398
3161-

4114

E. faecium AF507977
20542-

21582

32432-

33625

32148-

32348

E. faecium AF507977
12938-

13675

5213-

5482

4963-

5220

40769-

41809

E. faecalis X56353
223-

2142

E. faecium NC_008259
5690-

6427

E. faecium AY655721
4857-

5885

E. faecium HM565183

% nt 

identity

Alignment 

lengt nt

Reference data

2

Category Gene
Rep group 

family
Isolate

Replication 

genes

CDS1 pRE25

E.faecalis 

V583
AE016833

101-

1111

E. faecium AB178871
4157-

5101
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