dc.contributor.author | Pettersson, Irina | |
dc.date.accessioned | 2018-03-08T08:36:01Z | |
dc.date.available | 2018-03-08T08:36:01Z | |
dc.date.issued | 2017 | |
dc.description.abstract | The aim of this paper is to adapt the notion of two-scale convergence in Lp to the case of a measure converging to a singular one. We present a specific case when a thin cylinder with locally periodic rapidly oscillating boundary shrinks to a segment, and the corresponding measure charging the cylinder converges to a one-dimensional Lebegues measure of an interval. Themethod is then applied to the asymptotic analysis of linear elliptic operators with locally periodic coefficients andap-Laplacian stated inthincylinders withlocally periodic rapidly varying thickness. | en_US |
dc.description | OA Policy: <a href=http://dea.ele-math.com/open-access>http://dea.ele-math.com/open-access</a>
Link to publishers version: <a href=http://doi.org/10.7153/dea-2017-09-28>http://doi.org/10.7153/dea-2017-09-28</a> | en_US |
dc.identifier.citation | Pettersson I. Two-scale convergence in thin domains with locally periodic rapidly oscillating boundary. Differential Equations & Applications. 2017;9(3):393-412 | en_US |
dc.identifier.cristinID | FRIDAID 1530720 | |
dc.identifier.doi | 10.7153/dea-2017-09-28 | |
dc.identifier.issn | 1847-120X | |
dc.identifier.uri | https://hdl.handle.net/10037/12277 | |
dc.language.iso | eng | en_US |
dc.publisher | Ele-Math | en_US |
dc.relation.journal | Differential Equations & Applications | |
dc.rights.accessRights | openAccess | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400 | en_US |
dc.title | Two-scale convergence in thin domains with locally periodic rapidly oscillating boundary | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | no |
dc.type | Peer reviewed | en_US |