dc.contributor.author | Tangrand, Kristoffer | |
dc.contributor.author | Bremdal, Bernt Arild | |
dc.date.accessioned | 2021-05-17T19:52:31Z | |
dc.date.available | 2021-05-17T19:52:31Z | |
dc.date.issued | 2020-02-06 | |
dc.description.abstract | This paper presents results from ongoing research
with a goal to use a combination of time series from
non-intrusive ambient sensors and deep recurrent
neural networks to predict room usage at a university campus. Training data was created by collecting measurements from ambient sensors measuring
room CO2, humidity, temperature, light, motion
and sound, while the ground-truth counts was created manually by human observers. Results include
analyses of relationships between different sensor
data sequences and recommendations for a prototype predictive model using deep recurrent neural
networks. | en_US |
dc.identifier.citation | Tangrand, Bremdal. Using Deep Learning Methods to Monitor Non-Observable States in a Building. Proceedings of the Northern Lights Deep Learning Workshop. 2020 | en_US |
dc.identifier.cristinID | FRIDAID 1881096 | |
dc.identifier.doi | 10.7557/18.5159 | |
dc.identifier.issn | 2703-6928 | |
dc.identifier.uri | https://hdl.handle.net/10037/21194 | |
dc.language.iso | eng | en_US |
dc.publisher | Septentrio | en_US |
dc.relation.ispartof | Tangrand, K.M. (2023). Some new Contributions to Neural Networks and Wavelets with Applications. (Doctoral thesis). <a href=https://hdl.handle.net/10037/28699>https://hdl.handle.net/10037/28699</a>. | |
dc.relation.journal | Proceedings of the Northern Lights Deep Learning Workshop | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2020 The Author(s) | en_US |
dc.subject | VDP::Technology: 500::Information and communication technology: 550 | en_US |
dc.subject | VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550 | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Information and communication science: 420::Knowledge based systems: 425 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420::Kunnskapsbaserte systemer: 425 | en_US |
dc.title | Using Deep Learning Methods to Monitor Non-Observable States in a Building | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Conference object | en_US |
dc.type | Konferansebidrag | en_US |