dc.contributor.advisor | Johansen, Thomas A. Haugland | |
dc.contributor.advisor | Myhre, Jonas Nordhaug | |
dc.contributor.advisor | Godtliebsen, Fred | |
dc.contributor.author | Berezowski, Jonathan | |
dc.date.accessioned | 2021-07-02T07:39:37Z | |
dc.date.available | 2021-07-02T07:39:37Z | |
dc.date.issued | 2021-06-03 | |
dc.description.abstract | Trans-dimensional Bayesian inference for multi-layer perceptron architectures of varying size by reversible jump Markov chain Monte Carlo is developed and examined for its theoretical and practical merits and considerations. The algorithm features the No-U-Turn Sampler and Hamiltonian Monte Carlo for within-dimension moves, and makes use of a delayed-rejection sampler while exploring a variety of across-dimension moves that propose neural network models with varying numbers of hidden layers and hidden nodes. The advantages and considerations of sampling from a joint posterior distribution over model architecture and parameters are examined, and posterior predictive distributions are developed for classification and regression tasks. | en_US |
dc.identifier.uri | https://hdl.handle.net/10037/21689 | |
dc.language.iso | eng | en_US |
dc.publisher | UiT Norges arktiske universitet | en_US |
dc.publisher | UiT The Arctic University of Norway | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2021 The Author(s) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0 | en_US |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | en_US |
dc.subject.courseID | STA-3900 | |
dc.subject | VDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Statistikk: 412 | en_US |
dc.title | Trans-dimensional inference over Bayesian neural networks | en_US |
dc.type | Master thesis | en_US |
dc.type | Mastergradsoppgave | en_US |