dc.contributor.author | Mannisto, Jere K. | |
dc.contributor.author | Pavlovic, Ljiljana | |
dc.contributor.author | Tiainen, Tony | |
dc.contributor.author | Nieger, Martin | |
dc.contributor.author | Sahari, Aleksi | |
dc.contributor.author | Hopmann, Kathrin Helen | |
dc.contributor.author | Repo, Timo | |
dc.date.accessioned | 2021-11-30T12:32:49Z | |
dc.date.available | 2021-11-30T12:32:49Z | |
dc.date.issued | 2021-09-02 | |
dc.description.abstract | Capture of CO<sub>2</sub> by amines is an attractive synthetic strategy for the formation of carbamates. Such reactions can be mediated by superbases, such as 1,1,3,3-tetramethylguanidine (TMG), with previous implications that zwitterionic superbase–CO<sub>2</sub> adducts are able to actively transfer the carboxylate group to various substrates. Here we report a detailed investigation of zwitterionic TMG–CO<sub>2</sub>, including isolation, NMR behavior, reactivity, and mechanistic consequences in carboxylation of aniline-derivatives. Our computational and experimental mechanistic analysis shows that the reversible TMG–CO<sub>2</sub> zwitterion is not a direct carboxylation agent. Instead, CO<sub>2</sub> dissociates from TMG–CO<sub>2</sub> before a concerted carboxylation occurs, where the role of the TMG is to deprotonate the amine as it is attacking a free CO<sub>2</sub>. This insight is significant, as it opens a rational way to design new synthesis strategies. As shown here, nucleophiles otherwise inert towards CO<sub>2</sub> can be carboxylated, even without a CO<sub>2</sub> atmosphere, using TMG–CO<sub>2</sub> as a stoichiometric source of CO<sub>2</sub>. We also show that natural abundance 15N NMR is sensitive for zwitterion formation, complementing variable-temperature NMR studies. | en_US |
dc.identifier.citation | Mannisto, Pavlovic, Tiainen, Nieger, Sahari, Hopmann, Repo. Mechanistic Insights into Carbamate Formation from CO2 and Amines: The Role of Guanidine–CO2 Adducts,. Catalysis Science & Technology. 2021 | en_US |
dc.identifier.cristinID | FRIDAID 1933531 | |
dc.identifier.doi | 10.1039/D1CY01433A | |
dc.identifier.issn | 2044-4753 | |
dc.identifier.issn | 2044-4761 | |
dc.identifier.uri | https://hdl.handle.net/10037/23224 | |
dc.language.iso | eng | en_US |
dc.publisher | Royal Society of Chemistry | en_US |
dc.relation.journal | Catalysis Science & Technology | |
dc.relation.projectID | Tromsø forskningsstiftelse: TFS2016KHH | en_US |
dc.relation.projectID | Norges forskningsråd: 300769 | en_US |
dc.relation.projectID | Norges forskningsråd: 262695 | en_US |
dc.relation.projectID | Notur/NorStore: nn9330k | en_US |
dc.relation.projectID | Nordforsk: 85378 | en_US |
dc.relation.projectID | Notur/NorStore: nn4654k | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/RCN/FRINATEK/300769/Norway/CATCH ME IF YOU CAN: Selective CO2 conversion via chiral CO2 trapping// | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/RCN/SFF/262695/Norway/Hylleraas Centre for Quantum Molecular Sciences// | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2021 The Author(s) | en_US |
dc.title | Mechanistic Insights into Carbamate Formation from CO2 and Amines: The Role of Guanidine–CO2 Adducts, | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |