Show simple item record

dc.contributor.authorZhao, Pengzhi
dc.contributor.authorFallu, Daniel
dc.contributor.authorCucchiaro, Sara
dc.contributor.authorTarolli, Paolo
dc.contributor.authorWaddington, Clive
dc.contributor.authorCockroft, David
dc.contributor.authorSnape, Lisa
dc.contributor.authorLang, Andreas
dc.contributor.authorDötterl, Sebastian
dc.contributor.authorBrown, Antony
dc.contributor.authorVan Oost, Kristof
dc.date.accessioned2022-01-26T11:13:40Z
dc.date.available2022-01-26T11:13:40Z
dc.date.issued2021-12-08
dc.description.abstractBeing the most common human-created landforms, terrace construction has resulted in an extensive perturbation of the land surface. However, our mechanistic understanding of soil organic carbon (SOC) (de-)stabilization mechanisms and the persistence of SOC stored in terraced soils is far from complete. Here we explored the factors controlling SOC stability and the temperature sensitivity (<i>Q</i><sub>10</sub>) of abandoned prehistoric agricultural terrace soils in NE England using soil fractionation and temperature-sensitive incubation combined with terrace soil burial-age measurements. Results showed that although buried terrace soils contained 1.7 times more unprotected SOC (i.e., coarse particulate organic carbon) than non-terraced soils at comparable soil depths, a significantly lower potential soil respiration was observed relative to a control (non-terraced) profile. This suggests that the burial of former topsoil due to terracing provided a mechanism for stabilizing SOC. Furthermore, we observed a shift in SOC fraction composition from particulate organic C towards mineral-protected C with increasing burial age. This clear shift to more processed recalcitrant SOC with soil burial age also contributes to SOC stability in terraced soils. Temperature sensitivity incubations revealed that the dominant controls on <i>Q</i><sub>10</sub> depend on the terrace soil burial age. At relatively younger ages of soil burial, the reduction in substrate availability due to SOC mineral protection with aging attenuates the intrinsic <i>Q</i><sub>10</sub> of SOC decomposition. However, as terrace soil becomes older, SOC stocks in deep buried horizons are characterized by a higher temperature sensitivity, potentially resulting from the poor SOC quality (i.e., soil C:N ratio). In conclusion, terracing in our study site has stabilized SOC as a result of soil burial during terrace construction. The depth–age patterns of<i>Q</i><sub>10</sub> and SOC fraction composition of terraced soils observed in our study site differ from those seen in non-terraced soils, and this has implications when assessing the effects of climate warming and terrace abandonment on the terrestrial C cycle.en_US
dc.description.sponsorshipEUen_US
dc.identifier.citationZhao P, Fallu DJ, Cucchiaro S, Tarolli P, Waddington C, Cockroft, Snape L, Lang A, Dötterl, Brown A, Van Oost K. SOC stabilization mechanisms and temperature sensitivity in old terraced soils. Biogeosciences. 2021;18(23)en_US
dc.identifier.cristinIDFRIDAID 1973652
dc.identifier.doihttps://doi.org/10.5194/bg-18-6301-2021
dc.identifier.issn1726-4170
dc.identifier.issn1726-4189
dc.identifier.urihttps://hdl.handle.net/10037/23813
dc.language.isoengen_US
dc.publisherEuropean Geosciences Unionen_US
dc.relation.journalBiogeosciences
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/787790/Norway/Terrace Archaeology and Culture in Europe/TerrACE/en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
dc.titleSoil organic carbon stabilization mechanisms and temperature sensitivity in old terraced soilsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record