Vis enkel innførsel

dc.contributor.advisorMatteo, Chiesa
dc.contributor.authorLarsen, Andreas
dc.date.accessioned2022-08-12T05:47:35Z
dc.date.available2022-08-12T05:47:35Z
dc.date.issued2022-06-01en
dc.description.abstractThis thesis desires to study the use of solar resources in a less frequently used location, by exploring the use of a photovoltaic systems on the roof of a warehouse in Tromsø, Norway. The research is gathered using a 15 000 𝑚2 warehouse as the location, which has an annual energy consumption of 2,9 GWh. The solar resources at this location are highly dependent on season, with periods of polar nights during winter and midnight sun during summer. With this in mind this study considers solar radiation conditions, area utilization and energy production for three photovoltaic systems to find the optimal system for harvesting energy under the mention constraints. The three systems evaluated consists of horizontal modules, 40° tilted south orientated modules and 40° tilted east-west orientated modules, and their energy production respectively covers 16%, 16% and 25% of the warehouse consumption. Being capable of producing the most energy, system design and an economic analysis is performed for the system with 40° tilted east-west orientated modules, resulting in a break-even price of 0,38 NOK/kWh. The system consists of 3456 modules with a combined power of 1382 kWp and requires an investment cost of 5 961 000 NOK. In the pursuit of relieving stress from the grid and decreasing the washhouse’s electricity cost, this study also the investigates the idea of utilizing otherwise unused roofs on neighbour buildings for solar energy production and transmit the energy to the warehouse with inter-building cables. Two building were considered, one closer but limited in size, and one larger in size but further away. Results prove the short inter-building distance to be most profitable when electricity prices are below 0,9 NOK/kWh, due to lower investment costs. For prices above 0,9 NOK/kWh, the extra cost of the longer distance would be more profitable due to the possibility of a larger production area.en_US
dc.identifier.urihttps://hdl.handle.net/10037/26152
dc.language.isoengen_US
dc.publisherUiT The Arctic University of Norwayen
dc.publisherUiT Norges arktiske universitetno
dc.rights.holderCopyright 2022 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)en_US
dc.subject.courseIDEOM-3901
dc.subjectVDP::Teknologi: 500::Miljøteknologi: 610en_US
dc.subjectVDP::Technology: 500::Environmental engineering: 610en_US
dc.titleSolar Photovoltaic Potential on Commercial Buildings in Arctic Latitudesen_US
dc.typeMaster thesisen
dc.typeMastergradsoppgaveno


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)