Vis enkel innførsel

dc.contributor.authorLukkassen, Dag
dc.contributor.authorPersson, Lars-Erik
dc.contributor.authorSamko, Stefan
dc.date.accessioned2022-10-25T06:05:14Z
dc.date.available2022-10-25T06:05:14Z
dc.date.issued2012-11-11
dc.description.abstractWe study the weighted -boundedness of the multidimensional weighted Hardy-type operators and with radial type weight , in the generalized complementary Morrey spaces defined by an almost increasing function . We prove a theorem which provides conditions, in terms of some integral inequalities imposed on and , for such a boundedness. These conditions are sufficient in the general case, but we prove that they are also necessary when the function and the weight are power functions. We also prove that the spaces over bounded domains Ω are embedded between weighted Lebesgue space with the weight and such a space with the weight , perturbed by a logarithmic factor. Both the embeddings are sharp.en_US
dc.identifier.citationLukkassen D, Persson L, Samko. Weighted Hardy Operators in Complementary Morrey Spaces. Journal of Function Spaces and Applications. 2012en_US
dc.identifier.cristinIDFRIDAID 995257
dc.identifier.doi10.1155/2012/283285
dc.identifier.issn0972-6802
dc.identifier.issn1758-4965
dc.identifier.urihttps://hdl.handle.net/10037/27119
dc.language.isoengen_US
dc.publisherHindawien_US
dc.relation.journalJournal of Function Spaces and Applications
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2012 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleWeighted Hardy Operators in Complementary Morrey Spacesen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)