Show simple item record

dc.contributor.authorKarak, Pijush
dc.contributor.authorRuud, Kenneth
dc.contributor.authorChakrabarti, Swapan
dc.date.accessioned2022-12-20T08:51:21Z
dc.date.available2022-12-20T08:51:21Z
dc.date.issued2022-11-01
dc.description.abstractWe highlight the important roles the direct spin–orbit (DSO) coupling, the spin-vibronic (SV) coupling, and the dielectric constant of the medium play on the reverse intersystem crossing (RISC) mechanism of TXO-TPA and TXO-PhCz molecules. To understand this complex phenomenon, we have calculated the RISC rate constant, kRISC, using a time-dependent correlation function-based method within the framework of second-order perturbation theory. Our computed kRISC in two different solvents, toluene and chloroform, suggests that in addition to the DSO, a dielectric medium-dependent SV mechanism may also have a significant impact on the net enhancement of the rate of RISC from the lowest triplet state to the first excited singlet state. Whereas we have found that kRISC of TXO-TPA is mostly determined by the DSO contribution independent of the choice of the solvent, the SV mechanism contributes more than 30% to the overall kRISC of TXO-PhCz in chloroform. In toluene, however, the SV mechanism is less important for the RISC process of TXO-PhCz. An analysis of mode-specific nonadiabatic coupling (NAC) between T2 and T1 of TXO-PhCz and TXO-TPA suggests that the NAC values in certain normal modes of TXO-PhCz are much higher than those of TXO-TPA, and it is more pronounced with chloroform as a solvent. The findings demonstrate the role of the solvent-assisted SV mechanism toward the net RISC rate constant, which in turn maximizes the efficiency of thermally activated delayed fluorescence.en_US
dc.identifier.citationKarak, Ruud, Chakrabarti. Spin-vibronic interaction induced reverse intersystem crossing: A case study with TXO-TPA and TXO-PhCz molecules. Journal of Chemical Physics. 2022;157(17)en_US
dc.identifier.cristinIDFRIDAID 2069618
dc.identifier.doi10.1063/5.0120068
dc.identifier.issn0021-9606
dc.identifier.issn1089-7690
dc.identifier.urihttps://hdl.handle.net/10037/27886
dc.language.isoengen_US
dc.publisherAIP Publishingen_US
dc.relation.journalJournal of Chemical Physics
dc.relation.projectIDNorges forskningsråd: 262695en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleSpin-vibronic interaction induced reverse intersystem crossing: A case study with TXO-TPA and TXO-PhCz moleculesen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)