Show simple item record

dc.contributor.authorBraides, Andrea
dc.contributor.authorPiatnitski, Andrei
dc.date.accessioned2023-02-07T09:24:34Z
dc.date.available2023-02-07T09:24:34Z
dc.date.issued2022-01-06
dc.description.abstractWe prove that by scaling nearest-neighbour ferromagnetic energies de ned on Poisson random sets in the plane we obtain an isotropic perimeter energy with a surface tension characterised by an asymptotic formula. The result relies on proving that cells with `very long' or `very short' edges of the corresponding Voronoi tessellation can be neglected. In this way we may apply Geometry Measure Theory tools to de ne a compact convergence, and a characterisation of metric properties of clusters of Voronoi cells using limit theorems for subadditive processes.en_US
dc.identifier.citationBraides, Piatnitski. Homogenization of Ferromagnetic Energies on Poisson Random Sets in the Plane. Archive for Rational Mechanics and Analysis. 2022;243(2):433-458en_US
dc.identifier.cristinIDFRIDAID 2023090
dc.identifier.doi10.1007/s00205-021-01732-6
dc.identifier.issn0003-9527
dc.identifier.issn1432-0673
dc.identifier.urihttps://hdl.handle.net/10037/28506
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.relation.journalArchive for Rational Mechanics and Analysis
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleHomogenization of Ferromagnetic Energies on Poisson Random Sets in the Planeen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)