Show simple item record

dc.contributor.authorNordli, Anders Samuelsen
dc.contributor.authorAursand, Peder Kristian
dc.date.accessioned2023-12-12T12:30:58Z
dc.date.available2023-12-12T12:30:58Z
dc.date.issued2023-11-14
dc.description.abstractWe derive a novel two-component generalization of the nonlinear variational wave equation as a model for the director field of a nematic liquid crystal with a variable order parameter. The equation admits classical solutions locally in time. We prove that a special semilinear case is globally well-posed. We show that a particular long time asymptotic expansion around a constant state in a moving frame satisfies the two-component Hunter–Saxton system.en_US
dc.identifier.citationNordli, Aursand. A two-component nonlinear variational wave system. Journal of Hyperbolic Differential Equations. 2023en_US
dc.identifier.cristinIDFRIDAID 2197967
dc.identifier.doi10.1142/S0219891623500182
dc.identifier.issn0219-8916
dc.identifier.urihttps://hdl.handle.net/10037/32022
dc.language.isoengen_US
dc.publisherWorld Scientific Publishingen_US
dc.relation.journalJournal of Hyperbolic Differential Equations
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.titleA two-component nonlinear variational wave systemen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record