dc.contributor.author | Koirala, Madhu | |
dc.contributor.author | Ellingsen, Pål Gunnar | |
dc.contributor.author | Ådland, Roar Os | |
dc.date.accessioned | 2024-01-30T14:10:56Z | |
dc.date.available | 2024-01-30T14:10:56Z | |
dc.date.issued | 2023-10-20 | |
dc.description.abstract | In this paper, we present a novel concept of tracking cargoes at open ports using remote sensing images and convolution neural network (CNN) to classify various dry bulk commodities. The dataset used is prepared using Sentinel-2 atmospherically corrected (Sentinel-2 L2A) images covering 12 spectral bands. There are total 4995 labeled and geo-referenced images for four different cargoes-bauxite, coal, limestone and logs. We provide benchmarks for this dataset using a CNN. The overall classification accuracy achieved was more than 90% for all cargo types. The dataset finds its applications in detecting and identifying cargoes on open ports. | en_US |
dc.identifier.citation | Koirala M, Ellingsen PG, Ådland RO: Classification of bulk cargo types stored openly at ports using CNN. In: Yueh. IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, 2023. IEEE conference proceedings p. 6874-6877 | en_US |
dc.identifier.cristinID | FRIDAID 2202545 | |
dc.identifier.isbn | 9798350320107 | |
dc.identifier.uri | https://hdl.handle.net/10037/32777 | |
dc.language.iso | eng | en_US |
dc.publisher | IEEE | en_US |
dc.relation.projectID | Norges forskningsråd: 326609 | en_US |
dc.relation.uri | https://hdl.handle.net/10037/31019 | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2023 The Author(s) | en_US |
dc.subject | VDP::Teknologi: 500::Marin teknologi: 580 | en_US |
dc.subject | VDP::Technology: 500::Marine technology: 580 | en_US |
dc.subject | Skipsfartsøkonomi / Shipping Economics | en_US |
dc.title | Classification of bulk cargo types stored openly at ports using CNN | en_US |
dc.type.version | acceptedVersion | en_US |
dc.type | Chapter | en_US |
dc.type | Bokkapittel | en_US |