dc.contributor.advisor | Hopmann, Kathrin Helen | |
dc.contributor.author | Gahlawat, Sahil | |
dc.date.accessioned | 2024-10-18T07:59:12Z | |
dc.date.available | 2024-10-18T07:59:12Z | |
dc.date.issued | 2024-10-25 | |
dc.description.abstract | <p>Transition metal (TM) catalysts are indispensable in industrial operations and organic synthesis due to their unique properties, such as variable oxidation states, rich coordination chemistry, and ability to enable electron transfer processes. These properties allow them to activate a diverse range of substrates by lowering activation energies, and the catalysts can be fine-tuned to enhance chemo-, regio-, and stereoselectivities for desired products. One of the prominent and requisite uses of TM catalysts is in the conversion of CO<sub>2</sub> to higher-value products.
<p>With the advent of climate change, scientists are looking for renewable carbon sources to replace fossil fuels. One promising option is CO<sub>2</sub>, a non-toxic and highly abundant greenhouse gas. However, the use of CO<sub>2</sub> in chemical synthesis is limited due to its kinetic and thermodynamic stability. TM catalysts have the potential to address these challenges, making the study of these catalysts vital for developing effective CO<sub>2</sub> activation processes. Nonetheless, their complex electronic structures, ligand coordination dynamics, assorted reaction pathways, broad spectroscopic signals, and environmental sensitivity make it difficult to study them experimentally. Computational chemistry, with its explanatory and predictive power, can help elucidate their intricate behaviors and interactions.
<p>In this thesis, I examined TM-mediated processes using computational chemistry techniques, particularly density functional theory (DFT), to identify transient species like intermediates and transition states, and to understand their nuclear and electronic structures. My research included an analysis of the factors leading to enantioenriched carbamate formation from CO<sub>2</sub>, catalyzed by an Ir-based complex (Paper I). Another study investigated the CO<sub>2</sub>-insertion mechanism into diverse Pd-alkyl complexes and its relationship with the experimentally observed reaction kinetics, in close collaboration with an experimental group from Yale University (Paper II). I also collaborated with Aarhus University to examine diverse mechanistic pathways for a Nicatalyzed aryl-alkyl cross-coupling reaction with CO (originating from CO<sub>2</sub>) insertion (Paper III). Additionally, I employed state-of-the-art computational techniques, involving ab initio molecular dynamics simulations (AIMD), to precisely predict <sup>19</sup>F nuclear magnetic resonance (NMR) chemical shifts in a Ni-fluoride complex (Paper IV). | en_US |
dc.description.abstract | <p>Innskudsmetall (TM) katalysatorer er vesentlige i industrielle operasjoner og organisk syntese på grunn av deres unike egenskaper, slik som variable oksidasjonstilstander, rik koordinasjonskjemi og evne til å muliggjøre elektronoverføringsprosesser. Disse egenskapene tillater dem å aktivere et mangfoldig utvalg av substrater ved å senke aktiveringsenergier, og katalysatorene kan finjusteres for å forbedre kjemo-, regio- og stereoselektiviteter for ønskede produkter. En av de fremtredende og nødvendige bruksområdene for TM-katalysatorer er konvertering av CO<sub>2</sub> til produkter med høyere verdi.
<p>Med fremveksten av klimaendringer leter forskere etter fornybare karbonkilder for å erstatte fossilt brensel. Et lovende alternativ er CO<sub>2</sub>, en ikke-giftig og svært rikelig drivhusgass. Bruken av CO<sub>2</sub> i kjemisk syntese er imidlertid begrenset på grunn av dens kinetiske og termodynamiske stabilitet. TM-katalysatorer har potensial til å møte disse utfordringene, noe som gjør studiet av disse katalysatorene avgjørende for å utvikle effektive CO<sub>2</sub>-aktiveringsprosesser. Ikke desto mindre deres komplekse elektroniske strukturer, ligandkoordinasjonsdynamikk, assorterte reaksjonsveier, brede spektroskopiske signaler og miljøfølsomhet gjør det vanskelig å studere dem eksperimentelt. Beregningskjemi, med sin forklarende og prediktive kraft, kan bidra til å belyse deres intrikate atferd og interaksjoner.
<p>I denne avhandlingen undersøkte jeg TM-medierte prosesser ved bruk av beregningsbaserte kjemiteknikker, spesielt tetthetsfunksjonalteori (DFT), for å identifisere forbigående arter som mellomprodukter og overgangstilstander, og for å forstå deres nukleære og elektroniske strukturer. Vår forskning inkluderte en analyse av faktorene som fører til enantioanriket karbamatdannelse fra CO<sub>2</sub>, katalysert av et Ir-basert kompleks (Paper I). En annen studie undersøkte CO<sub>2</sub>-innsettingsmekanismen i forskjellige Pd-alkylkomplekser og dens forhold til den eksperimentelt observerte reaksjonskinetikken, i nært samarbeid med en eksperimentell gruppe fra Yale University (Paper II). Jeg samarbeidet også med Aarhus Universitet for å undersøke forskjellige mekanistiske veier for en nikatalysert aryl-alkyl-krysskoblingsreaksjon med CO (som stammer fra CO<sub>2</sub>)-innsetting (artikkel III). I tillegg brukte jeg state-of-the-art beregningsteknikker, som involverer ab initio molekylær dynamikksimuleringer (AIMD), for å presist forutsi <sup>19</sup>F kjernemagnetisk resonans (NMR) kjemiske skift i et Ni-fluoridkompleks (Paper IV). | en_US |
dc.description.doctoraltype | ph.d. | en_US |
dc.description.popularabstract | Transition metals (TMs) are crucial in chemical processes, acting as catalysts for the synthesis of materials and organic transformations due to their unique electronic properties and ability to form complex compounds. Therefore, TMs are vital for tackling contemporary challenges such as our dependence on non-renewable fossil fuels. The combustion of these fuels releases greenhouse gases, including carbon dioxide (CO<sub>2</sub>), which contribute to global warming and climate change. On a positive note, CO<sub>2</sub> is a non-toxic, abundant gas with great potential as a renewable carbon source for producing fuels and valuable chemicals. However, the utilization of CO<sub>2</sub> is challenging due to its high stability. TMs hold significant promise for creating products derived from CO<sub>2</sub>.
<p>Understanding the reactivity of CO<sub>2</sub> is critical for developing efficient TM-mediated CO<sub>2</sub> conversion processes in the future. Consequently, one of the goals of this project is to use computational chemistry tools, utilizing their predictive and explanatory power, to rationalize the reaction mechanisms of TM-mediated processes, particularly focusing on CO<sub>2</sub> incorporation. To validate our computational results, I closely collaborated with experimentalists. Additionally, the complex electronic structure of TMs complicates their study through nuclear magnetic resonance (NMR) spectroscopy, and quantum NMR can help understand these complicated spectra. I have contributed to the use of advanced computational tools for accurately predicting the NMR chemical shifts in TM complexes. | en_US |
dc.description.sponsorship | This work has been supported by the Research Council of Norway (grant no. 300769 and Centre of Excellence grant no. 262695), Sigma2 (nn9330k and nn14654k), NordForsk (grant no. 85378), and the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 859910. A special thanks to CO2PERATE, NordCO2, and Hylleraas Centre for Quantum Molecular Sciences consortiums for financing work-related travel. | en_US |
dc.identifier.isbn | 978-82-8236-592-5 trykk | |
dc.identifier.issn | 978-82-8236-593-2 - pdf | |
dc.identifier.uri | https://hdl.handle.net/10037/35298 | |
dc.language.iso | eng | en_US |
dc.publisher | UiT Norges arktiske universitet | en_US |
dc.publisher | UiT The Arctic University of Norway | en_US |
dc.relation.haspart | <p>Paper 1: Gahlawat, S., Artelsmair, M., Castro, A.C., Norrby, P.O. & Hopmann, K.H. (2024). Computational Study of the Ir-catalyzed Formation of Allyl Carbamates from CO<sub>2</sub>. <i>Organometallics</i>, In Press. Now published in Vol 43, 1818-1826, available in Munin at <a href=https://hdl.handle.net/10037/35262>https://hdl.handle.net/10037/35262</a>.
<p>Paper 2: Deziel, A.P., Gahlawat, S., Hazari, N., Hopmann, K.H. & Mercado, B.Q. (2023). Comparative study of CO<sub>2</sub> insertion into pincer supported palladium alkyl and aryl complexes. <i>Chemical Science, 14</i>, 8164-8179. Also available in Munin at <a href=https://hdl.handle.net/10037/30678>https://hdl.handle.net/10037/30678</a>.
<p>Paper 3: Mühlfenzl, K.S., Enemærke, V.J., Gahlawat, S., Golbækdal, P.I., Ottosen, N.M., Neumann, K.T., … Skrydstrup, T. (2024). Nickel Catalyzed Carbonylative Cross Coupling for Direct Access to Isotopically Labeled Alkyl Aryl Ketones. <i>Angewandte Chemie</i>, In Press. Now published, available in Munin at <a href=https://hdl.handle.net/10037/35297>https://hdl.handle.net/10037/35297</a>.
<p>Paper 4: Gahlawat, S., Hopmann, K.H. & Castro, A.C. Advancing 19F NMR Prediction of Metal-Fluoride Complexes in Solution: Insights from Ab Initio Molecular Dynamics. (Submitted manuscript). | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/859910/EU/Cooperation towards a sustainable chemical industry/CO2PERATE/ | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2024 The Author(s) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0 | en_US |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | en_US |
dc.subject | computational chemistry | en_US |
dc.subject | density functional theory | en_US |
dc.subject | ab initio molecular dynamics simulations | en_US |
dc.subject | CO2 utilization | en_US |
dc.subject | NMR spectroscopy | en_US |
dc.subject | transition metal complexes | en_US |
dc.subject | chemical reaction mechanisms | en_US |
dc.title | Computational Approach to Molecular Reactivity of Transition Metal Complexes | en_US |
dc.type | Doctoral thesis | en_US |
dc.type | Doktorgradsavhandling | en_US |