Show simple item record

dc.contributor.authorDebus, Sebastian
dc.contributor.authorGoel, Charu
dc.contributor.authorKuhlmann, Salma
dc.contributor.authorRiener, Cordian Benedikt
dc.date.accessioned2024-11-05T14:24:01Z
dc.date.available2024-11-05T14:24:01Z
dc.date.issued2024-10-09
dc.description.abstractThe equivariant nonnegativity versus sums of squares question has been solved for any infinite series of essential reflection groups but type <i>A</i>. As a first step to a classification, we analyse <i>A<sub>n</sub></i> -invariant quartics. We prove that the cones of invariant sums of squares and nonnegative forms are equal if and only if the number of variables is at most 3 or odd.en_US
dc.identifier.citationDebus, Goel, Kuhlmann, Riener. On nonnegative invariant quartics in type A. Journal of symbolic computation. 2024
dc.identifier.cristinIDFRIDAID 2311275
dc.identifier.doi10.1016/j.jsc.2024.102393
dc.identifier.issn0747-7171
dc.identifier.urihttps://hdl.handle.net/10037/35458
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalJournal of symbolic computation
dc.relation.projectIDTromsø forskningsstiftelse: 17MatteCR
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleOn nonnegative invariant quartics in type Aen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)