dc.contributor.author | Debus, Sebastian | |
dc.contributor.author | Goel, Charu | |
dc.contributor.author | Kuhlmann, Salma | |
dc.contributor.author | Riener, Cordian Benedikt | |
dc.date.accessioned | 2024-11-05T14:24:01Z | |
dc.date.available | 2024-11-05T14:24:01Z | |
dc.date.issued | 2024-10-09 | |
dc.description.abstract | The equivariant nonnegativity versus sums of squares question has been solved for any infinite series of essential reflection groups but type <i>A</i>. As a first step to a classification, we analyse <i>A<sub>n</sub></i>
-invariant quartics. We prove that the cones of invariant sums of squares and nonnegative forms are equal if and only if the number of variables is at most 3 or odd. | en_US |
dc.identifier.citation | Debus, Goel, Kuhlmann, Riener. On nonnegative invariant quartics in type A. Journal of symbolic computation. 2024 | |
dc.identifier.cristinID | FRIDAID 2311275 | |
dc.identifier.doi | 10.1016/j.jsc.2024.102393 | |
dc.identifier.issn | 0747-7171 | |
dc.identifier.uri | https://hdl.handle.net/10037/35458 | |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.journal | Journal of symbolic computation | |
dc.relation.projectID | Tromsø forskningsstiftelse: 17MatteCR | |
dc.rights.holder | Copyright 2024 The Author(s) | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | en_US |
dc.rights | Attribution 4.0 International (CC BY 4.0) | en_US |
dc.title | On nonnegative invariant quartics in type A | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |