Vis enkel innførsel

dc.contributor.authorDebus, Sebastian
dc.contributor.authorGoel, Charu
dc.contributor.authorKuhlmann, Salma
dc.contributor.authorRiener, Cordian Benedikt
dc.date.accessioned2024-11-05T14:24:01Z
dc.date.available2024-11-05T14:24:01Z
dc.date.issued2024-10-09
dc.description.abstractThe equivariant nonnegativity versus sums of squares question has been solved for any infinite series of essential reflection groups but type <i>A</i>. As a first step to a classification, we analyse <i>A<sub>n</sub></i> -invariant quartics. We prove that the cones of invariant sums of squares and nonnegative forms are equal if and only if the number of variables is at most 3 or odd.en_US
dc.identifier.citationDebus, Goel, Kuhlmann, Riener. On nonnegative invariant quartics in type A. Journal of symbolic computation. 2024
dc.identifier.cristinIDFRIDAID 2311275
dc.identifier.doi10.1016/j.jsc.2024.102393
dc.identifier.issn0747-7171
dc.identifier.urihttps://hdl.handle.net/10037/35458
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalJournal of symbolic computation
dc.relation.projectIDTromsø forskningsstiftelse: 17MatteCR
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleOn nonnegative invariant quartics in type Aen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)