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Abstract

The goal of this thesis is analyse the incidence rate of the first ever myocardial

infarction (MI) and the survival time after the MI. The data used for this purpose

is from the Tromsø study surveys collected in the period from 1974 to 2008.

This thesis provides a general introduction to latent Gaussian models and the

methodology of integrated nested Laplace approximation. Specifically, the data

is analysed using Bayesian age period cohort models and cox proportional hazards

models.
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Chapter 1

Introduction

1.1 Myocardial Infarction

Cardiovascular diseases (CVD) such as Heart diseases are often reposted as the

leading causes of death world wild (Murray et al., 2010). According to the Norwe-

gian institute of public health (NIPH), heart diseases are also one of the leading

causes of death in Norway, and about one fifth of the population in Norway is

diagnosed with at least one type of CVD or in risk of developing one.

Myocardial infarction (MI) is a common type of coronary heart disease and its

incidence has been in a decline from 2001 to 2014 in all age groups (Sulo et al.,

2018, 2014) A considerable amount of the reduction is attributed to changes in

cardiovascular risk factors such as smoking, high levels of cholesterol and levels of

physical activity (Mannsverk et al., 2016). In addition, the Norwegian Prescrip-

tion database reports that there is an increased number of medical drug use for

both prevention and treatment of cardiovascular diseases in all age groups.

The mortality due to MI has been declining in Norway since 1976 according to

the Norwegian cause of death register. There is a higher proportion of men above

the age of 75 among those who die as a result of MI. This over representation of

men is also seen in the incidence of MI (Albrektsen et al., 2016; Jortveit et al.,

2014). In addition, the inhabitants of the two northern most counties are affected

1



2 CHAPTER 1. INTRODUCTION

by these issues in a higher proportion than the rest of the country.

A large portion of the general population is affected by MI. Even though the

incidence rate and mortality is decreasing, there is still a lots of work that remains

to be done in this field. One of them is to find the groups that exposed to the

risk of MI. Therefore, in this thesis we are interested in looking at the incidence

rates of MI and survival time after MI. To do that, data from the Tromsø study

surveys will be used. From here on, we refer to the first ever myocardial infarction

as MI.

1.2 Overview of the Tromsø Study surveys

Since the data analysis in this thesis will be based on data from the Tromsø study

surveys, an introduction to the population based study is provided. Most of the

information about the Tromsø Study surveys is from the website of the Tromsø

study https://uit.no/forskning/forskningsgrupper/gruppe?p_document_id=

367276.

The Tromsø Study, with 45000 participants and seven surveys, is the highest

visited and most comprehensive health survey in Norway. Since its beginning in

1974, the population study has evolved in complexity and depth. Each of those

surveys have taken on challenging public heath issues and revealed interesting

medical findings that have helped improve the health condition of the community.

The most notable results based on the Tromsø Study are that consumption of

boiled coffee raises the level of serum cholesterol (Thelle et al., 1983) and the

importance of HDL cholesterol (Miller et al., 1977) .

In this thesis, various statistical analysis will be conducted using the Tromsø study

dataset consisting of 39 870 subjects that participated in at least one of the first six

surveys. Figure 1.1 and table 1.1 show the age and gender distribution of all the

enrolled participants by survey. It started off with just male participants between

the ages of 20 and 49. However, the second survey was expanded to include female

participants as well. The entire data consists of roughly equal number of male

https://uit.no/forskning/forskningsgrupper/gruppe?p_document_id=367276
https://uit.no/forskning/forskningsgrupper/gruppe?p_document_id=367276
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and female participants. Figure 1.2 displays a histogram with the horizontal axis

showing the number of surveys and the vertical axis showing total number of

participants with the given number of participation. The histogram shows that

a large portion of the participants has return for the subsequent surveys.

The dataset contains the age at each medical examination, gender, date of each

medical examination, date of their first myocardial infarction, date of death and

date of emigration from Tromsø (if the participant has moved from Tromsø, had

a heart attack and/or died ) of all the 39 870 subjects. The date of each case of

MI was extracted by looking for the MI through the discharge summaries from

the University Hospital of northern Norway (UNN). In addition to the discharge

summaries, the Norwegian cause of death registry and death certificates were

also extensively reviewed for deaths that did not take place at UNN, in case the

patients died of MI. The registration process was overseen by experienced medical

doctors (Hopstock et al., 2011).

Figure 1.1: The distribution of participants of Tromsø study by age, gender and

survey. In addition, the number of first time participants is given.
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Cardiovascular diseases were widespread among middle aged Northern Norwegian

men in the 1970s. The search for the cause of the pandemic cardiovascular disease

lead to the initiation of the Tromsø study in 1974. The first survey, Tromsø 1

was therefore started in 1974 with the invitation of 8866 men between 20 and

49 to take part in the survey. About 74% of those invited chose to participate.

These participants answered a questionnaire, gave a short interview followed by

measurements of height, weight, blood pressure and giving a blood sample. The

Tromsø study has since broaden its focus from just cardiovascular diseases to

problems like mental health, dental health and also cancer.

Table 1.1: The distribution of participants of Tromsø study by survey and gender.

Compliance Age/ No. total No. 1st time

Survey rate Gender Avg age Part. Part.

Tromsø 1 74% Male 20-49/ 6578 6578

Female - - -

Tromsø 2 74% Male 20-54 8457 3456

Female 20-50 8121 8121

Tromsø 3 75% Male 12-64 10937 4314

Female 12-67 10823 4747

Tromsø 4 77% Male 25-97 12805 4356

Female 25-94 14187 5718

Tromsø 5 57% Male 30-75 3483 310

Female 30-75 4579 392

Tromsø6 74% Male 30-86 6053 884

Female 30-86 6928 1001

Tromsø 2 took place in 1979/80 and is the first Tromsø survey to include women

attendees. The participants of Tromsø 1, women between 20 and 50 years old

and men between the ages of 20 and 25 were invited to participate in the Tromsø

2 survey. All of the participants went through a similar process to the subjects
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of the Tromsø 1 survey.

Tromsø 3 expanded on the number of participants by inviting the family members

of the participants of Tromsø 1 and 2 and randomly selected 10% of those between

the ages of 12 and 19. Almost 22000 of Tromsøs inhabitants between 12 and 67

participated in the survey in 1986/87.

All the citizens of Tromsø Municipality who were above the age of 25 at the time

of the survey was invited to take part in Tromsø 4 in 1994/95. This was the

largest invited group, and made Tromsø 4 the largest survey among the Tromsø

Study surveys. There were more than 27 000 participants between the ages of

25 and 97 years. The questionnaires and medical examinations have evolved in

complexity since the ones in the Tromsø 1 survey. The fifth Tromsø study took

place in 2001 and included a group that attended the Tromsø 4 study and another

group as part of a nationwide health survey. There were 8130 participants in the

2001 Tromsø 5 survey, among which 703 were first time participants.

Figure 1.2: The number of surveys attended by

participants of the Tromsø Study.

Tromsø 6 was carried out in

2007-08 with almost 13000

participants. The partici-

pants went through a thor-

ough questionnaire about their

mental and physical health.

1885 of the participants were

first time participants of the

Tromsø study. Data from the

most recent survey, Tromsø

7, were not available for this

thesis.

A large proprtion of the in-

vited population has participated in the Tromsø studies. The majority of the

surveys have about 75% participation rate. This rate is higher for women than

men. The participation rate tends to increase with age except for the oldest
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participants.

1.3 Objectives and outline of the thesis

The objective of this thesis is to give a temporal analysis of the incidence rate

of MI in the municipality of Tromsø. Also the survival time after an MI among

the population is studied. In particular, this thesis focuses on gender differences

and characteristics in different age groups. All analysis is performed using the

programming language R.

In chapter 2, the data is presented and preliminary analysis is performed using

basic statistical methods. To address the issue of increased age among the par-

ticipants during the study period more advanced statistical methods are used.

Chapter 3 presents a Bayesian framework for analysing a wide class of statistical

models known as latent Gaussian models (LGM). These models are analysed us-

ing the methodology of integrated nested Laplacae approximation (INLA). The

models analysed in chapters 4 and 5 are subclasses of LGM. These include an

age period cohort model to study the incidence rate of MI and Cox proportional

hazards model to analyse survival time. A discussion and the final conclusions

are provided in chapter 6.



Chapter 2

Data and preliminary analysis

This chapter presents the datasets that will be analysed in the upcoming chapters.

A preliminary analysis on the occurrence of MI will be also be provided in this

chapter. In section 2.1, data that will be used in the analysis of incidence rate of

MI will be presented. Next, survival data will be introduced in section 2.2. The

chapter will then be concluded in section 2.3 by the discussion of the preliminary

analysis based on age and gender of the participants who suffered from MI, and

monthly and seasonal variation of the incidence of MI.

2.1 Description of incidence of MI data

In the datasets, there are registered dates of occurrence of MI prior to the en-

rolment time of the participants. This is due to the comprehensive retrospective

process of MI registration. As a result, the enrolment time of the participants

does not play any role in the analysis of incidence rates of MI. The first regis-

tered MI took place in August 1962, about 12 years before the first Tromsø study

survey took place. This was used at the start of registration. While, the last

registered MI, in November of 2014 denotes the end of the registration.

As a consequence of that, every participant in the Tromsø study can be thought

of as eligible for MI before their first attendance in the study. In figure 2.1, the

7
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number of MI per year, average age, total number of participants and proportion

of male participants is displayed, and the counting started in 1962. Total number

of participants denotes the number of participants that were alive and yet to have

MI at the given time. This was decided by extracting their birth year using their

age at the time of participation for each participant. At time of death or MI,

the participants are then removed from the list of the risk. The average age and

the proportion of male participants was then calculated using the risk set at the

given time.
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Figure 2.1: The total number of MI per year (top left). The annual average age

(top right). The total number of participants (bottom left) and the proportion of

male participants in percent (bottom left).

In the beginning, the annual number of MI remained constant near zero up until

1970. Next, the total number increased steadily for the following 20 years. It then

accelerated faster in the 90s before an abrupt drop beyond 2000. Simultaneously,

the proportion of the female population and average age increase linearly from

the time of the first to the last registered MI. The average age was just below

18 in 1962 and increased to 59 in 2014, while the proportion of women increased
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form 49 % to 52% in the same time period. Meanwhile, the total number of

participants increases sharply from 31000 to 39600 in the first 10 years, and it

drops back to 31458 in 2014.

Figure 2.2: A) Total female participants distributed by year and age B) Total male

participants distributed by year and age C) Total MI in the female population

distributed by year and age D) Total MI among the male participants distributed

by year and age

Figure 2.2 has age in the vertical axis and years from the first to the last registered

MI in the horizontal axis. The total number of females and males by age and

year are color coded into figure 2.2 A) and B) receptively. For instance, the total

number of 40 years old females in 1980 are given according the legend on the right

hand side of the figure. Similarly, the total number of MIs for females and males
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are displayed in figure 2.2 C) and D) receptively. The individual birth cohorts

can be followed along the diagonal lines. Such figures are known as Lexis diagram

(Lexis, 1875)

Nr of MI Gender Age Year Birth Cohort Total

0 1 40 1982 1942 361

0 2 40 1992 1942 318

0 1 41 1982 1941 218

0 2 41 1982 1941 287

0 1 42 1982 1940 298

0 2 42 1982 1940 277
...

...
...

...
...

...

1 1 60 1995 1935 190

1 2 60 1995 1935 194
...

...
...

...
...

...

0 1 80 2014 1934 133

0 2 80 2014 1934 112

Table 2.1: A list of all the ages between the 40 and 80 and years between 1982

and 2014 with total participant in a particular row above 100. Nr of MI denotes

the total number of MI in a given gender, age and year. Females are represented

by 1 and males by 2 under the gender column. Total denotes the total number

of participants that are eligible for MI in the specified gender, age and year. All

rows are given a specific sets of age, period in years and the birth Cohort.

The count data in table 2.1 consist of the number of MI for a given age, year and

gender. All the ages between 40 and 80 in the time between 1982 and 2014 with

total number of participants in the age group that exceeds 100 are represented.

Figure 2.2 C) and D) show that males and female below the age of 40 rarely suffer

from MI and that there are few registered MI prior to 1982. Those groups are

omitted from the table because of the small number of MIs.
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2.2 Survival data

In addition to the dates of the MI of the participants, the date of death of

the participants is part of the Tromsø study dataset which is available for this

thesis. The first registered death was registered in august of 1974, while the last

registered death took place in march of 2017. Between august 1974 and march

2017, a total of 8441 have died, among them 2753 have also had a MI. Table 2.2

presents the total number of deaths and the number of dead participants who

had suffered MI, divided by gender. Table 2.3 summarizes the age at the time of

death of the participants by gender.

Males (%) Female (%) Total (%)

Dead 4830 (24%) 3611 (18%) 8441 (21%)

Dead & MI 1790 (63%) 963 (69%) 2753 (65%)

Table 2.2: The number of participants that have died

As expected, table 2.2 shows a higher proportion of the participants who have

had MI have died than the overall participants. In the overall population, the

proportion of male participants who have died is higher than that of females.

However, higher proportion of females who have had encountered MI have died

than their male counterparts. Not only do those with MI die at higher proportion,

their median age at the time of death is 3 year higher than the overall population

as can be seen in table 2.3. And there is in addition about a 10 difference in the

median age at the time of death between sexes.

In figure 2.3, the percentage of participants who have died after having had MI

is plotted against the number of weeks they lived after MI. Among the total

male participants who have had MI followed by death, 579 ( 32% ) of them died

within the first week. Similarly, 329 (34 %) of females died within the first week.

Following the first week after the MI, the percentage of death declines markedly

for both sexes. The longest time a male has lived after MI is 50 years, and the

longest time a female lived after MI is 38 years.
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Age at the time of death

Min Median Max Min Median Max

Dead Dead & MI

Overall 15 75 106 26 78 104

Males 16 71 101 29 74 104

Females 15 80 106 26 83 99

Table 2.3: The minimum, median and maximum age at the time of death grouped

by gender and MI

Table 2.4 shows that the proportion of the participants with MI that live past

the first week decreases with age for both sexes. In addition, the median and

maximum number of weeks the participants of Tromsø study with MI decreases

progressively with age for males. While there is an increase for females in the first

two age groups, the trend reverses for the last four age groups. The proportion of

participants that had MI and who are still alive after march 2017 (last registered

death in the dataset) decreases from 51% for the youngest age group to just under

7% in the oldest age group for males. The corresponding decrease for females is

from 40% to 8%.
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Figure 2.3: Survival time of males (left) and females (right) (each bin represents

52 weeks starting at week 1).

Based on the tables in this section,the life course of the participants after the

incidence of MI depends on age and gender. The tables so far do not include
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Males Females

Age MI(Dead) Wk 1(%) Med Max MI(Dead) Wk 1(%) Med Max

(0-40] 101 (44) 14 (13.9) 678 2612 10 (4) 2 (20) 157 793

(40-50] 423 (206) 64 (15.1) 477 2123 60 (17) 5 (8.3) 419 1948

(50-60] 822 (443) 140 (17) 336 2117 207 (96) 24 (11.6) 629 1966

(60-70] 731 (430) 132 (18.1) 306 1606 315 (178) 41 (13) 451 1431

(70-80] 530 (433) 134 (25.5) 116 1113 392 (294) 87 (22.2) 168 1102

(80+) 251 (234) 95 (37.9) 6 782 406 (374) 170 (41.9) 3 950

Total 2858 (1790) 579 (20.3) 174 2612 1390 (963) 329 (23.7) 115 1966

Table 2.4: The total number of participants with MI ( the number of part. with MI

that have died), Total death in week 1 (in %), Median number of weeks participants

lived before death, and maximum number of weeks before death grouped by age and

gender

the participants that have had MI and are still alive. Including the participants

that are alive after the last registered death gives a more complete data for the

analysis of life span of the participants who had suffered from MI. In order to

utilize the dataset that includes the participants that are alive and have suffered

from MI, survival analysis models have to be applied to the dataset. Next, the

structuring of the data that will be used in chapter 5 will be described.

All of the participants that have suffered form MI are included in the data. Each

participant is given an ID number from 1 to 4248. Time from the incidence of the

MI to death for the dead participants is given in days and weeks in parenthesis.

The number of days from the incidence MI to the last registered death is given

for the participants that were alive at the end of death registration. Counting

the days/weeks starts at the time of MI. Therefore, the smallest value the time

to column can have is 1. Furthermore, death of participants is marked by 1 in

the censor column, while the participants who are alive are assigned the number

0 in the censor column. Gender of the participants is also included as part of

the dataset. Number 1 is given to males and 2 to females. In addition, Age of
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ID Time to (weeks) Censor Gender Age MI Year MI Month MI

1 4685 (670) 0 2 63 2004 5 (Spr)

2 1 (1) 1 2 60 2005 1(win)

3 2609(373) 0 2 64 2010 2(win)
...

...
...

...
...

...
...

...
...

...
...

...
...

...

4247 1247(179) 0 1 51 2013 10(win)

4248 5083(727) 0 2 59 2003 4(win)

Table 2.5: Structuring of the data which will be used in the survival analysis

models in chapter 5

the participants, year and season at the time of the incidence of the MI included.

The data in table 2.5 is the data behind the survival analysis in this thesis.

2.3 Preliminary analysis of occurrence of MI

In this section, the difference in the occurrence of MI with age and gender will

be investigated. In addition, the monthly and seasonal variations of the occur-

rences of MI and death will be examined. This involves standard hypothesis tests

described in Walpole et al. (2013).

2.3.1 Age and gender

Of the total participants in the first six Tromsø study surveys, 49.9 % are males

and 50.1 % females. Even though the percentage distribution of males and females

is similar, more than twice as many males have had MI compared to the female

participants. In table 2.6, the total number of males and females who have had

MI are displayed.

A hypothesis test with the null and alternative hypothesis in (2.1) is used to

determine if the observed difference is significant. The null hypothesis states that



2.3. PRELIMINARY ANALYSIS OF OCCURRENCE OF MI 15

Males Females Total

Total Participants 19896 19974 39870

Participants with MI 2858 1390 4248

Table 2.6: Number of males and females in the Tromsø study survey who have

had MI

the proportion of men pm that have had MI is equal to the proportion among

women.

H0 : pm = pf

H1 : pm 6= pf . (2.1)

Due to the large sample sizes of both genders, the difference between the point

estimates are approximately normal distributed with µpm−pf and σ2 = p1q1
n1

+ p2q2
n2

.

The hypothesis test in (2.1) is done using the test statistic,

Z =
p̂m − p̂f√

p̂(1− p̂)(1/nm + 1/nf )
, (2.2)

where Z is a standard normal distribution, nm is the number of male participants,

nf is the number of female participants and p̂ is the pooled estimate of both male

and female participants. With Z ≈ 24, the null hypothesis can be rejected in

favour of the alternative hypothesis with p− value� 0.01.

The earliest a participant has had MI in the Tromsø study dataset is at the age

of 22, while the oldest was 100 years. Figure 2.4A shows that women tend to

have MI at a higher age than men.

The median age at the first MI is 65 years, 74 years for the female participants

and 61 for males. The mean age is 72 years for the female and 62.3 years for the

male participants. The dotted lines in figure 2.4A mark the average ages of the

occurrence of the first heart attacks of the subjects.

The difference between mean ages at the time of MI males and femalesis tested

by using (2.3). The null hypothesis states that the expected mean age of the male
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Figure 2.4: A) The distribution of ages at the first heart attacks by gender. The

dotted lines indicate the average age of the subjects at their first heart attack B)

The distributions of ages at the time death for participants who died within three

weeks of their first heart attack by gender.

µm and female µf participants at the time of MI are equal, while the alternative

hypothesis states the opposite, i.e.

H0 : µm = µf

H1 : µm 6= µf . (2.3)

The hypothesis test is based on the test statistic ,

T =
µ̂m − µ̂f√

(s2
m/nm + s2

f/nf )
. (2.4)
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with unknown and different sample variances s2
m and s2

f for males and females

respectively.

And T is approximately t-distributed with ν degree of freedom defined as follows:

ν =
(s2
m/nm + s2

f/nf )

(s2
m/nm)2/(nm − 1) + (s2

f/nf )
2/(nf − 1)

,

where µ̂m and µ̂f are the average age at the time of MI for males and females

respectively. With t = 19.035,and ν ≈ 38575, the null hypothesis is rejected with

p− value� 0.01.

2.3.2 Monthly and seasonal variation

AVOVA will be performed using random complete block (RCB) design to test

for monthly or seasonal differences in incidence of MI. In addition, when the

ANOVA reveals significant differences between population means, Tukeys proce-

dure for comparison of mean will be utilized to test which populations exhibit

the difference. Therefore, a short introduction to the method will also be given.

ANOVA tests the difference between more than three population means. This is

done by performing a hypothesis test. The null and alternative hypotheses are in

the case of the monthly death rate variations is given by

H0 : µ1. = µ2. = . . . = µ12.

H1 : The µm. are not equal. (2.5)

The RCB design is used when the effects of the factor of interest is affected by

a second factor that is not of interest. The primary factors are then grouped

by each secondary factor. Such groups are known as blocks. The RBC design

is used in order to get a clearer vision of how the monthly death rates change

with minimal impact from the annual fluctuations. RCB design is used with the

monthly variation in the incidence of MI as the primary effect and the annual

increase in the incidence of MI as the secondary factor. The annual effects are
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then blocked off to control their effects on the between month variations. This

can be done by grouping all the monthly rates in a year in table 2.7.

Month Block: 1975 1976 . . . 2016 Total Mean

1 y1 1975 y1 1976 . . . y1 2016 T1 . ȳ1 .

2 y2 1975 y2 1976 . . . y2 2016 T2 . ȳ2 .

3 y3 1975 y3 1976 . . . y3 2016 T3 . ȳ3 .

...
...

... . . .
...

...
...

12 y12 1975 y12 1976 . . . y12 2016 T12 . ȳ12 .

Total T. 1975 T. 1976 . . . T. 2016 T. .

Mean ȳ. 1975 ȳ. 1976 . . . ȳ. 2016 ȳ. .

Table 2.7: RCB design

The values of ymj are the sums of the daily number of MI within a month. Thus,

due to the central limit theorem they can be assumed to be normal distributed

with mean µmj and variance σ2. The monthly averages denoted by µm. for

m = 1, 2, ..., 12 are

µm,. =
1

42

2016∑
j=1975

µm,j ,

for j = 1975, 1976, ..., 2016. The annual averages µ. j also known as the average

of the jth block are

µ. j =
1

12

12∑
m=1

µmj .

Whereas, the total mean µ is

µ. . =
1

12× 42

12∑
m=1

2016∑
j=1975

µmj .
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As part of the hypothesis test the various sums-of-squares are defined as follows:

SST =
12∑
m=1

2016∑
j=1976

(ymj − ȳ. .)2 total sum of squares

SSM = 12
12∑
m=1

(ym. − ȳ. .)2 monthly sum of squares

SSB = 42
2016∑
j=1976

(y. j − ȳ. .)2 block sum of squares

SSE =
12∑
m=1

2016∑
j=1976

(ymj − ȳm. − ȳ. j + ȳ. .)
2 error sum of squares

and

SST = SSM + SSB + SSE

s2
m =

SSM

dofm
s2
j =

SSB

dofy
f =

s2
m

s2
j

(2.6)

The null hypothesis is rejected in favour of the alternative hypothesis at α level

of significance if f = s2m
s2
> fα[dofm, dofm · dofy].

Figure 2.5 and figure 2.6 show the monthly variation in the incidence rate of MI.

The black line in figure 2.5 shows the total monthly MI from first registered MI

to the last one. The largest number of MIs were registered in January with 411

cases. June had the smallest number of MIs with 315 cases. The incidence rates

of MI have a local maximum in July.

The red line in figure 2.5 shows the total number MIs registered in each month

multiplied by 30
days per month

, and the MIs from 1963 to 2013 are added to make

sure each month has equal number of observations.

The within and between month variation are graphically displayed in the box plot

in figure 2.6. It looks like the between month variation become less prominent

when presented with the within month variations. The hypothesis test introduced

in (2.5) is used to test whether there is monthly difference in the incidence rate

of MI. Using RCB design, the sum-of-squares and test statistic defined in (2.6),

the test is carried out. The results of the test is summarized in table 2.8.
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Figure 2.5: The number of MI in each month summed up is shown in black, while

the red line shows the number total number of death adjusted for the number of

days and taking equal number of months(Jan-1963 to Des-2013)

Variation Sum of sq Dof Mean sq f (P (> f))

Month 140.2 11 12.75 2 (0.03)

Block(Year) 20363.4 50 407

Error 3558 550 6.47

Table 2.8: ANOVA table for the monthly variation in incidence rate of MI using

the RCB design

The results presented in table 2.8 reveal that f = 2, and that the null hypothesis

in (2.5) can be rejected in favour of the alternative hypothesis with the P−value =

0.03.

To further investigation on which months are significantly different the Tukey’s

procedure is used. Tukey’s procedure is used to test paired comparisons by mak-

ing a simultaneous confidence interval for all pairs. This ensures the preservation
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Figure 2.6: The monthly variation in the number of MI displayed in a boxplot.

The black dot localizes the mean

of the rate of type I error. Meaning, the preservation of the type I error rate

means that there is a probability α that at least one of the pairs will be falsely

found to be different. The simultaneous confidence interval is constructed based

on the number of means to be compared (k), the significance level (α) and the

degrees of freedom(v) (Tukey, 1949).

Using Tukey’s procedure, the difference between means is found significant if

|yi,. − yj,.| > q(α, k, v)
√

s2

n
, where q(α, k, v) is the upper quantile for α based on

the studentized range distribution (Tukey, 1949).

Since at least two of the monthly MI rates are unequal, Tukey’s procedure was

applied to find which months were significantly different. There test revealed that

significant differences were found only between the months of January and June

with P-adj=0.047.
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An alternative way to test for seasonal differences is to study the incidence rates

of MI during the winter, spring, summer and autumn. The four season in Tromsø

according to the Norwegian weather forecasting site https://yr.no/ are divided

as; winter between November 6 and April 10, spring between April 11 and June

22, summer between June 23 and August 24 and autumn between August 25 and

November 5. Following the seasonal division, the number of MI in each seasons

were summed and presented by the black line in the right panel of figure 2.7. The

number of MI during the winter is far are larger than any of the other seasons.

However, there are many more days in the winter in Tromsø than in the other

seasons. To adjust for those differences the total number of MI in the season were

divided by the number of days in the seasons and multiplied by 30. The result is

presented by the red line in the same figure.
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Figure 2.7: The number of MI in each season summed up is shown in black and the

adjusted monthly incidence rates of MI of each season in red is presented (left).

The seasonal variations and within season variations diplayed in a boxplot. The

black dot denotes the mean seasonal MI rates per 30 days (right).

Based on the seasonal division presented earlier, the total numbers of MIs in each

season are added together and presented in figure 2.7. The majority of the MI

occurred in the winter season, while the smallest number of MIs occurred during

the summer. However, after adjusting for the number of days and the total

https://yr.no/
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number of seasons (starting in Jan. 1963 and ending in Des. 2013), the least

number of MI occurre in the spring and the most in the winter. Moreover, the

between variations seem smaller when presented with the large within variations.

The following hypothesis test was conducted to verify if the seasonal differences

are significant by blocking for the year effects:

H0 : µWi . = µSp . = µSu . = µAu .

H1 : The µseasonal,. are not equal. (2.7)

The ANOVA method was applied to investigate the significance of the seasonal

differences. This was done using the hypothesis test with the null and alternative

hypothesis presented in (2.7). The annual differences are blocked as in table 2.7

and the sum of squares and test statistic defined in (2.6) are used in the testing

the hypothesis with. The results are presented in table 2.9

Variation Sum of sq Dof Mean sq f (P (> f))

Season 18.5 3 6.156 2.88 (0.038)

Block(Year) 6593.2 50 61.71

Error 320.5 150 2.137

Table 2.9: ANOVA table for the Seasonal variation in incidence rate of MI using

the RCB design

The result of the ANOVA method presented in 2.9 reveals the null hypothesis

can be rejected in favour of the alternative hypothesis that states that least to of

them are different with P-value= 0.038.

Since at least two of the seasonal means were different, the Tukey’s method for

comparing means was applied. The results are presented in table 2.10. It shows

that there is significant difference between the occurrence rates of MI in winter

and spring seasons with Padj = 0.021.
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- Spring - Summer - Autumn

Diff Padj Diff Padj Diff Padj

Winter 0.847 0.021 0.488 0.334 0.412 0.488

Spring - - -0.359 0.603 -0.435 0.438

Summer - - - - -0.077 0.993

Table 2.10: Results of Tukey’s comparison of mean monthly incidence rates of MI

in the four seasons



Chapter 3

Theory

In this chapter, the Bayesian inference techniques are presented. The presenta-

tions starts with a brief introduction in section 3.1. Following the introduction,

in section 3.2 Bayesian modelling framework is described. Then, the latent Gaus-

sian models are presented in section 3.12. Thereafter, the INLA methodology

is explained in section 3.4. Section 3.5 presents the summary statistics. Finally

the chapter is closed by a discussion about prior choises in section 3.6 and the

presentation of the R-INLA package in sec 3.7

3.1 Introduction

In the reminder of this thesis the statistical analysis will be mainly conducted

using Bayesian methods. The main goal of statistical inference in the Bayesian

setting is to compute probability densities for the unknown parameters and the

quantities yet to be observed. The prior beliefs about the parameters and un-

observed quantities are updated using the available data. Bayes Theorem (3.1)

plays a central role in incorporating the prior knowledge and the information

in the data. In Bayesian statistics, probability is viewed as the measure of un-

certainty and thus is subjective. Hence, the unknown parameters are viewed as

random variables rather than fixed values. Probabilistic statements can therefore

25
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be made about model parameters (Gelman et al., 2013)

3.1.1 Bayes Theorem

Bayes theorem was first discovered by Thomas Bayes and Pierre Simone Laplace

and states that

π(B|A) =
π(A ∩B)

π(A)
, (3.1)

where π(A) =
∑

i π(A|Bi)π(Bi) for Bi ∩Bj = ∅ when i 6= j.

The application of Bayes theorem can be expanded beyond the estimation of

probability of events. It can be used to infer the probability distribution of

unknown parameters. First, the full joint probability distribution of the data and

parameters has to be specified as follows:

π(θ,y) = π(θ)π(y|θ),

where π(θ) is the prior distribution of the parameter θ and π(y|θ) is the sampling

distribution. The posterior distribution of the parameter θ given the observed

data y and the prior distribution π(θ) is:

π(θ|y) =
π(θ)π(y|θ)

π(y)
∝ π(θ)π(y|θ), (3.2)

where π(y) is the marginal or prior predictive distribution of the observed data.The

marginal posterior distribution π(y) =
∑
θ∈Θ π(θ)π(y|θ) for discrete θ, whereas

π(y) =
∫
θ∈Θ

π(θ)π(y|θ)dθ for the continuous case. The marginal distribution is

independent of the model parameters, and works as a normalizing constant. Ex-

changeability of random variables and the structuring of the data is an important

part of Bayesian data analysis.
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3.2 Bayesian Modelling

3.2.1 Exchangeability

Exchangeability of random variables plays the same role in Bayesian statistics

as independence of random variables do in classical statistics. Independence is

a stronger mathematical condition than exchangeability and therefore implies

exchangeability (Cordani and Wechsler, 2006). A sequence of random variables

or model parameters are said to be exchangeable in their joint distribution if

π(y1, ...,yn) = π(yΩ(1), ...,yΩ(n))

for all combinations of Ω and for all subsets of the random variables or model

parameters (Bernardo, 1996). Exchangeability in the joint distributions of ran-

dom variables and model parameters can be assumed if there is no meaningful

information in the indexes of the aforementioned random variables and model

parameters (Gelman et al., 2013). If observations y1, ...,yn are exchangeable

random variables, then

π(y1, ...,yn) =

∫ ( n∏
i=1

π(yi|θ)

)
π(θ)d(θ) (3.3)

where π(y|θ) is a parametric model from which the y’s are drawn from and p(θ)

represents the prior probability distribution of θ. The concept of exchangability

of variables and parameters plays a vital role in the Bayesian approach to data

analysis and justifies the presence of prior distribution (Bernardo, 1996).

In many practical applications, modelling the data as a single sequence of ex-

changeable random variables is an over simplification (Bernardo and Smith, 1994).

If a sequence of random quantities can be subdivided into exchangeable groups,

then each group can be assigned a group specific prior distribution. In other

words, given a group identity, all observations in the given group are exchange-

able. Data structured in such a manner is referred to as partially exchangeable.

Moreover, a hierarchy can be introduced if the parameters of the group specific
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prior distribution are also exchangeable. Hyperprior distributions are assigned to

the parameters of the prior distributions (Gelman et al., 2013).

A common application of hierarchical model is when random variables y1, ...,yJ

depend on some observed values z1, ...,zJ for j=1,...,J . The observed values

are often referred to as covariates. In such cases, the random quantities yj’s

are not exchangeable, however the pairs (yj, zj) are exchangeable. Hence, the

observations are conditionally exchangeable (Gelman et al., 2013; Bernardo and

Smith, 1994).

3.2.2 Structured additive regression models

Regression models are one of the most useful and practically applicable ways of

studying the relationship between variables. Ordinary linear regression models

are the simplest regression models where the conditional distribution π(yj|zj,θj)
of the response variables y given the explanatory variable z are normally dis-

tributed and has a constant variance. The response variables given the explana-

tory variables have to be exchangeable given all the relevant information that

distinguishes the response variables from each other are included in the explana-

tory variables. In other words, the pairs (z, y)j are exchangeable (Gelman et al.,

2013).

Ordinary linear regression models cannot be applied to response variables that

are not normally distributed. Generalized linear models (GLM) widen the practi-

cal applicability of ordinary linear models beyond response variables with normal

distributed error terms. This is achieved by connecting the linear predictor to

the response variable through a link function g(·) (Gelman et al., 2013). The dis-

tribution of a conditionally independent response variable yi given the covariates

belongs to the exponential distribution if its density function can be presented in

the following form:

π(yi|θ, φ) = exp

(
yθi − b(θi)
a(φ)

wi + c(yi, wi, φ)

)
. (3.4)
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For response variables that are members of the exponential family, the expected

values and variances are:

E[yi] = µi = b′(θi) var[yi] = σ2
i = φb′′[θi],

where θi = g(µi) is known as a canonical parameter, φ > 0 is a dispersion

parameter which is independent of the link function and g(·) is a link function

commonly referred to as a canonical link function (Fahrmeir et al., 2013).

Generalized linear mixed models (GLMM) are a further expansion on the GLM

by incorporating independent random effects component in the linear predictor

(Fahrmeir et al., 2013).

A more general formulation is structured additive regression models which also

includes non-linear random effects and temporal trends. Therefore, structured

additive regression models can be viewed as a collection of the most commonly

applied parametric and semi-parametric regression models. They can be fitted

to conditionally exchangeable response variables yi with a probability density

function that belongs to the exponential family (Fahrmeir et al., 2013). The

regression model for the response variables y with the predictor η is

g(µi) = ηi = α +

nβ∑
j=1

βjzji +

nf∑
k=1

fk(cki) + ε, for i = 1, ..., n (3.5)

where α is the intercept, {βj} are the linear effects of covariates zj and {fk(·)}
are non-linear trends or non-linear functions of covariates ck. The non-linear

trends can for example represent autoregressive time series models, models for

smoothing and spatial effects. They can also include independent and identical

normal distributed random effects (Fahrmeir et al., 2013).

In the Bayesian framework a prior distribution is given to all the parameters {
η1, .., ηn , µ, β1, ..., βnβ , f1(·), ..., fnf (·) } and the hyperparameters θ. The prior

distribution is thus:

π(η1, .., ηn, α, β1, ...βnβ , f1(·), ..., fnf (·),θ) = π(η1, .., ηn, α, β1, ...βnβ , f1(·), ..., fnf (·)|θ)π(θ).
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The posterior distribution of the parameters is

π(η1, .., ηn, α, {β}, {fk(·)},θ|y) ∝
n∏
i=1

π(yi|ηi)π(η1, .., ηn, α, {β}, {fk(·)}|θ)π(θ).

(3.6)

3.3 The Computational framework: Latent Gaus-

sian Models

The goal of Bayesian inference is to obtain the marginal posterior distribution of

the unknown parameters and hyperparameters in (3.6). Analytical derivation of

the posterior distributions for complicated and multi-dimensional Bayesian mod-

els such as the structured additive regression models are usually inconvenient

and computationally infeasible. The progress made in computational power of

computers over the last half a century has however made fast simulation of ran-

dom processes and numerical integration possible. These advances has made

the Bayesian modelling a viable method for increasingly complicated probability

models (Gelman et al., 2013).

Simulation-based Markov chain Monte Carlo (MCMC) method is a popular choice

for the computation of the marginal posterior distribution of the unknown pa-

rameters and hyperparameters in (3.6). However, the development of integrated

nested Laplace approximation (INLA) over the last decade has presented the users

with a quicker, more accurate and more user friendly alternative for a subgroup

of the structured additive regression models known as latent Gaussian models

(Rue et al., 2009).

3.3.1 Latent Gaussian Models

Latent Gaussian Models (LGM) are a subclass of Bayesian structured additive

regression models with a Gaussian prior distribution assigned to the intercept α,

the fixed effects {β} and non-linear effects {fk(·)} in (3.6). The predictors and
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the parameters of additive effects together are known as the latent field (Rue

et al., 2009).

LGMs are three stage hierarchical models. The first stage specifies the condition-

ally exchangeable observations yi through the likelihood function
∏

i π(yi|xi, θ1),

and the second stage defines the latent Gaussian field x. Finally, the third stage

specifies priors of the hyperparameters π(θ). Mathematically, these stages are

summarized as follows:

Stage 1. L(y|x, θ1) =
n∏
i=1

π(yi|xi, θ1) (3.7)

Stage 2. x|θ2 ∼ N(0,Q−1(θ2)) (3.8)

Stage 3. θ ∼ π(θ) (3.9)

where x represents the unobserved components i.e. the latent field α, {β},{fk(·)}
and ηi for i = 1, ..., n with a Gaussian prior distributions when Q−1(θ2) denotes

the precision matrix (inverse of the covariance matrix ) of the unobserved com-

ponents and π(θ) is the hyperprior distribution (Rue et al., 2009).

3.3.2 Gaussian Markov Random Fields

The task of estimating large number of marginal posterior distribution has enor-

mous computational cost. INLA produces fast and accurate results if the latent

Gaussian fields has a Markov property. A Gaussian latent field x = (x1, . . . , xn)T

is said to be Gaussian Markov random field (GMRF) if it has a multivariate

Gaussian distribution in the following form:

π(x) = (2π)
−n
2 |Q|

1
2 exp

[
−1

2
(x− µ)T Q(x− µ)

]
, (3.10)

with the mean µ and precision matrix Q > 0. The Markov property in (3.10)

is embedded in the precision matrix Q as conditional independence between in-

dividual components xi and xj of the Gaussian latent field given all the other

components x−ij = (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn). If that is the case,
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then

xi ⊥ xj |x−ij ⇔ Qij = 0

where Qij is the ijth entry of the precision matrix Q. Consequently, the precision

matrices of GMRFs are often sparse (Rue and Held, 2005). Numerical opera-

tions such as factorization of the sparse precision matrices of GMRFs have high

computational speed compared to their dense counterparts. The equations that

involve the precision matrix such as the computation of the marginal variances

depend on factorization ofQ. Therefore the Markov properties of the latent fields

is vital in enhancing the computational speed of INLA (Rue et al., 2009).

The full Bayesian model for LGMs is thus:

π(x, θ|y) ∝
n∏
i=1

π(yi|xi,θ1)|Q(θ2)|
1
2 exp(xTQ(θ2)x)π(θ)

∝ π(θ)|Q(θ2)|
1
2 exp

(
xTQ(θ2)−1x+

n∑
i=1

log{π(yi|xi,θ1)}

)
(3.11)

3.3.3 Laplace approximation

Laplace approximation of integrals is a major part of the INLA algorithm as the

name suggests. The integral of a function is approximated by the density function

of normal distribution. The process has two steps. The first step involves the

Taylor series expansion of the log of the function to be integrated as follows:

f(x)dx = exp{log[f(x)]}dx

The second order Taylor series expansiongives :

log[f(x)] ≈ log[f(x0)] + (x− x0)
∂log[f(x)]

∂x
|x=x0 +

(x− x0)2

2

∂2log[f(x)]

∂2x
|x=x0

where x = x0 is the mode of log[f(x)]. Thus, (x− x0)
∂log[f(x)]

∂x
|x=x0 = 0

log[f(x)] ≈ log[f(x0)] +
(x− x0)2

2

∂2log[f(x)]

∂2x
|x=x0
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The second step is the approximation by normal distribution.

f(x)dx ≈ exp

(
log[f(x0)] +

(x− x0)2

2

∂2log[f(x)]

∂2x
|x=x0

)
dx

= f(x0)exp

(
−(x− x0)2

2σ2

)
dx (3.12)

Here, the term under the integration sign is Gaussian with µ = x0 and σ =

1/∂
2log[f(x)]
∂2x

|x=x0 . Therefore, the function f(x) can be approximated using the

Gaussian distribution. Thus, any non negative and integrable function can be

approximated by a Gaussian distribution using the result in (3.12). In this chap-

ter, this Gaussian approximation given by the Laplace method will be referred to

as Gaussian approximation.

3.4 The INLA Methodology

In Bayesian statistics, the goal is computation of the marginal posterior distribu-

tion of all the unknown quantities. To achieve this, INLA uses the combinations of

numerical integration techniques and Gaussian approximation. At first, the joint

posterior distribution of hyperparameters (π(θ|y)) has to be computed. Then,

the marginal posterior distributions of the latent field x have to be computed.

Each component of the latent field is given by:

π(xi|y) =

∫
θ

π(xi|θ,y) π(θ|y)dθ (3.13)

Finally, the marginal posterior distribution of each hyperparameter θi, which is

given by:

π(θi|y) =

∫
θ−j

π(θ|y)dθ−j, (3.14)

have to calculated (Rue et al., 2009, 2017)

Gaussian approximation in (3.12) is used in the approximation of the joint poste-

rior distribution of the hyperparameters. The joint posterior distribution of the

hyperparameters is given by:

π(θ|y) =
π(x, θ|y)

π(x|θ, y)
∝ π(y|x, θ)π(x|θ)π(θ)

π(x|θ, y)
(3.15)
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The joint distribution of the latent field given the observation and hyperparam-

eters is:

π(x|θ, y) ∝ exp

(
xTQ(θ2)x+

n∑
i=1

log{π(yi|xi, θ1)}

)
,

The joint posterior of the latent field conditioned on the observation and hyper-

parameters is close to GMRF since the effect of conditioning on the observation

only affects the diagonal elements of the precision matrix and the GMRF struc-

ture of the precision Q remains. Therefore, the Gaussian approximation is likely

to perform well (Rue et al., 2017).

As a result, the joint posterior of the hyperparametes can be approximated by

changing the denominator in (3.15) to its Gaussian approximation as follows:

π(θ|y) ≈ π(y|x, θ)π(x|θ)π(θ)

π̃(x|θ, y)

∣∣∣∣
x=x∗(θ)

= π̃(θ|y)

where x∗(θ) is the mode of latent field which is calculated by an iterative Newton-

Raphson method and π̃(x|θ, y) is the Gaussian approximation of π(x|θ, y) at

the mode (Rue et al., 2009).

Next, the marginal posterior distribution of each component of the latent field can

be computed. The posterior distribution of the latent field is presented in (3.13).

In order to get to the marginal posterior distributions of the latent field, π(xi|θ, y)

has to be obtained from π(x, |θ, y). There are three alternatives to accomplish

that task. The first and simplest method involves Gaussian approximation of

π(x, |θ, y). Then obtaining the marginals distributions from π(x, |θ, y) and the

marginal variance using the Cholesky decomposition. Choosing this approach

prioritizes computational speed at the expense of accuracy, since the Gaussian

approximation strategy is the quickest and least accurate of the three (Rue et al.,

2009).

The second method is termed Laplace approximation and is the most accurate

and with the highest computational cost of the three options. In the Laplace
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approximation method each π(xi|θ,y) is approximated by:

π(xi|θ,y) ∝ π(x,θ|y)

π(x−i|xi,θ,y)

≈ π(x,θ|y)

π̃(x−i|xi, θ,y)

∣∣∣∣
x−i=x∗i (xi,θ)

= π̃LA(xi|θ, y)

where x−i contains all the components of x except the ith, x∗i (xi,θ) is the mode of

π(x−i|x,iθ, y) and π̃(x−i|xiθ,y) is the Gaussian approximation of π(x−i|xi,θ,y).

The computational cost of the Laplace approximation method piles up since the

approximation needs to be computed for each component of x and that the

dimension of x exceeds the number of observations (Rue et al., 2009).

The third method is called the simplified Laplace approximation and it represents

a compromise between the numerically fast Gaussian and the accurate Laplace ap-

proximation. Taylor series expansion of the Laplace approximation π̃LA(xi|θ, y)

is used to correct skewness and the position of the mean of the Gaussian ap-

proximation. This is the default due to its accuracy and computational cost

improvements on the above methods (Rue et al., 2009).

The computation of the marginal posterior distributions of the latent field is

completed by integrating out the hyperparameters as in (3.13). This is done

numerically by approximating π(xi|y) by taking the sum of θ with weights ∆k as

in (3.16) (Rue et al., 2009)

π(xi|y) =
∑
k

π̃(xi|y, θ(k))π(θ(k)|y)∆k (3.16)

There are two approaches to finding the evaluation points for the integration θ(k)

and summation weights ∆k. The first method is known as grid strategy, and it

involves reparametrization of θ using the mode of π(θ|y) and negative Hessian

matrix (the second partial derivatives) at the mode. The process leads to a set

of points that locate where the high density of π(θ|y) is through reparametrized

and mutually orthogonal variables. This method has high computational cost,

and should only be used when the number of hyperparameters is low (Rue et al.,

2009).
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When the number of hyperparameters exceeds 6, the computational cost of the

grid strategy becomes too high and an alternative is needed (Rue et al., 2017).

The second strategy is termed Central Composite Design strategy (CCD) and

speeds up the integration process with minor loss of accuracy to the approxi-

mation. In this approach, the negative Hessian and the mode of p(θ|y) is used

to locate integration points (fewer integration points than in the grid strategy)

around the center to be evaluated using eq. (3.16) (Rue et al., 2009).

The joint posterior distribution of the hyperparameters is sufficient if the aim is

to compute the marginal posterior distribution of the latent field. However, the

marginal posterior distributions of the hyperparameters can be of interest. The

grid and CCD strategy can be used to integrate out θ−i from θ if the number of

hyperparameters is small, since

π(θi|y) =

∫
π̃(θ|y)dθ−i (3.17)

In both the grid and CCD strategy, the mode and negative Hessian matrix of

π(θ|y) has to be computed. Therefore, these values can be used to approximate

π(θ|y) with a multivariate Gaussian distribution. Then, using a weighted mix-

ture of Gaussian distributions with varying weights across different axes, skewness

can be added to the multivariate Gaussian distribution of the joint posterior of

the hyperparameters. Different weight can also be used for the values below

and above zero in the same axis. In the end, the marginal distributions can be

calculated using (3.17). This method is known as asymmetric Gaussian interpo-

lation and adds minimal computational cost since some of the values already had

been computed, but as the number of hyperparameters grow, the results become

unstable (Martins et al., 2013).

The default method for approximating the marginal posterior distribution is a

numerical integration free algorithm. In this method, the already computed mode

and negative Hessian matrix of π(θ|y) are used to approximate the joint poste-

rior of the hyperparameters. This is then used to to compute the conditional

expectation of E(θ−j|θj) which can be used to explore θj. The last step involves
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approximation of the marginal posterior of the hyper parameters by a mixture of

Gaussian distribution (Martins et al., 2013).

3.5 Summary Statistics

Once the marginal posterior distributions of the unknown parameters and hy-

perparameters are computed, the results are summarized and presented using a

point estimate along with a credible interval. The point estimates of the param-

eters are usually given by the posterior mean, MAP-estimator or median of the

marginal posterior distributions.

3.5.1 Point estimate

The posterior mean is one of the most commonly used point estimators in the

Bayesian setting (Cowles, 2013) and is defined as:

θ̂ = E(θ|y) =

∫ ∞
−∞

θπ(θ|y)dθ.

The maximum a posteriori (MAP) estimate can also be used as a point estimator

for an unknown parameter and is defined as:

θ̂MAP =argmax
θ

π(θ|y).

The posterior median is another option to finding a point estimate for the un-

known parameter. The posteror median is the value of the parameters that fulfils

the following condition:

∫ θ̂med

−∞
π(θ|y)dθ −

∫ ∞
θ̂med

π(θ|y)dθ = 0.

If the posterior distribution is unimodal and symmetric the posterior mean, MAP

estimator and the posterior median produce equal point estimates (Cowles, 2013).
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3.5.2 Bayesian credible intervals

The point estimates are usually accompanied by a credible interval (CI). CIs

are the Bayesian equivalent to the frequentist confidence interval. However,

the Bayesian CIs are computed from the marginal posterior distribution of the

unknown parameters and they are interpreted differently from their frequentist

counterparts. The Bayesian CI is interpreted as: The parameter has 100(1−α)%

probability of being located in the given interval. Since there is a probability dis-

tribution of the parameters, there are countless ways of constructing a CI. The

two most common types of CI are described below.

Equal-tailed credible interval

The 100(1 − α)% equal-tailed Bayesian credible interval for the population pa-

rameter θ is a < θ < b, where a and b are given by the following expression

(Walpole et al., 2013). ∫ a

−∞
π(θ|y)dθ =

∫ ∞
b

π(θ|y)dθ =
α

2

The advantage to the equal-tailed credible interval is that it is easy to calculate.

However, if the posterior distribution is not symmetric and unimodal, some points

outside the credible interval will have higher density values than some of the points

inside the interval. That leads to the equal tailed intervals not being the shortest

possible intervals (Cowles, 2013).

Highest Posterior Density interval

Highest Posterior Density(HPD) intervals are an alternative to the equal tailed

intervals. The points inside an HPD interval has higher pdf values than all the

points outside the interval. Therefore, the HDP intervals are guaranteed to be

the shortest intervals (Cowles, 2013). The HPD interval is defined by the region

R

R = {θ ; π(θ) ≥ c}
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where c is the largest number that:

∫
θ∈R

π(θ)dθ = 1− α.

The equal tailed inteval and HPD region cover the same region if the posterior is

symmetric and unimodal(Cowles, 2013).

3.6 Prior distributions

Bayesian statistical inference depends on the posterior distribution which is ob-

tained by updating the prior beliefs by new evidence. In this section, the assign-

ment of prior distribution to the unknown parameters will be discussed. There-

fore, the choice of prior distributions and the inclusion of information to the

model through these prior distribution plays a major role in Bayesian framework.

The issue related to choosing a prior distribution for a parameter has been ap-

proached from different angels and the topic is vast. However, the various prior

distributions can be broadly subdivided into non-informative, weakly informa-

tive and informative prior distributions. Non-informative prior distributions, also

known as objective prior distributions, are designed to have minimal impact on

the posterior distribution so that the data alone can be the source of inference.

They often produce the same results as maximum likelihood estimates. Jeffreys’

priors (Jeffreys, 1945) and reference priors (Berger et al., 2009) are examples of

the non-informative prior distributions. In contrast,the informative prior distribu-

tions that aim to construct a prior distribution that reflect the current knowledge

on the values of the parameters and the uncertainties that surround the knowl-

edge about the parameters in question (Gelman et al., 2013). Alternatively, the

weakly-informative prior distributions can be used. They constrain the parame-

ters to a reasonable range of values without incorporating strong prior information

(Gelman et al., 2013; Simpson et al., 2017).
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3.6.1 The latent field

The prior distribution to the latent Gaussian fields (3.8) in the three stage hi-

erarchical models described above is straight forward since they are defined to

be Gaussian (Rue et al., 2017). In the following chapters vague (large variance)

Gaussian prior distribution (non-informative) centred at zero will be used for the

fixed effects and the intercept. In the structured additive regression models in

(3.5), a prior has to be assigned to the model components {fk}. Random walk

models are often assigned as prior distributions to model temporal dependence

(Besag et al., 1995; Knorr-Held and Rainer, 2001; Riebler and Held, 2010a)

Random walk models are a type of GMRF with precision matrices that are not

of full rank, which makes them improper. The order of such GMRF, also known

as intrinsic GMRF (IGMRF), are defined based on their rank deficiency. In one

dimension, they are constructed using the forward difference of the order given

by their rank deficiency (Rue and Held, 2005). Here, random walk of order 1 and

2 will be of interest.

A prior based on the first order random walk (RW1) is constructed using first

order differences of x = (x1, . . . , xn). The first order difference ∆xi is

RW1: ∆xi = xi − xi−1 ∼ N(0, τ 2), i = 2, . . . , n

The joint distribution of x is also normal distribution and is given by

π(x|τ) ∝ τ−(n−2)/2exp

(
− 1

2τ 2

∑
i

(xi − xi−1)2

)
= τ−(n−2)/2exp

(
− 1

2
xTQ(τ)x

)
. (3.18)
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The precision matrix Q(τ) is

Q(τ) = τR
(rw1)
(dimx×dimx) = τ



1 −1

−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 1


,

AS a result, the RW1 gives xi|xi−1, . . . , x1 ∼ N(xi−1, τ
2), And a vague normal

distributed prior is assigned to x1. When the RW1 is assigned as a prior, deviation

from a constant level is penalized. Therefore, the resulting estimated effect is

smoothed. In addition, an increase in the parameter τ leads to a even smoother

effects vector (Rue and Held, 2005).

Similarly, the second order random walk (RW2) is constructed using the second

order difference of x = (x1, . . . , xn). The second order difference is then given by

RW2: ∆2xi = (xi − xi−1)− (xi−1 + xi−2) ∼ N(0, τ 2), i = 3, . . . , n

The joint probability distribution of x is:

π(x|τ) ∝ τ−(dimx−2)/2exp

(
− 1

2τ 2

∑
i

[(xi − xi−1)− (xi−1 − xi−2)]2
)

= τ−(n−2)/2exp

(
− 1

2
xTQ(τ)x

)
. (3.19)

And Q(τ) is
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Q(τ) = τR
(rw2)
(n×n) = τ



1 −2 1

−2 −5 −4 1

1 −4 6 −4 1

1 −4 6 −4 1
. . . . . . . . . . . . . . .

1 −4 6 −4 1

1 −4 5 −2

1 −2 1


,

Here, xi|xx−1, . . . , x1 ∼ N(2xi−1−xi−1, τ
2), and vague prior normal distributions

are then assigned to x1 and x2. In this case, deviations from a linear trend is

penalize. RW2 model leads to more smoothing than the RW1 model (Rue and

Held, 2005).

3.6.2 Assigning priors to hyperparameters

Penalized complexity prior

In the following chapters penalised complexity (PC) prior distributions introduced

by Simpson et al. (2017) will be used as prior distributions for the hyperparam-

eters. PC prior distributions are weakly informative prior distributions Simpson

et al. (2017) boiled down the desired properties of a prior distributions to four

principles. The following four principles are used to design PC prior distribution

for the hyperparameters.

∗ Principle 1: Occams Razor

The idea of a base and flexible models are crucial aspects of the first principle.

A base model can be defined as the simplest class of models among models with

the density π(x|ξ) and a flexibility parameter ξ. Simplicity for such models is

defined by the flexibility parameter ξ and the base model of a class has ξ = 0.

For instance, the base model for an iid model N(0, ξ) would be that there is
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no random effect (ξ = 0). As the value of the flexibility parameter increases,

the flexible model increases in complexity. The first principle which is based on

Occam’s razor prefers the simpler base model π(x|ξ = 0) to the more flexible

model π(x|ξ) (Simpson et al., 2017).

∗ Principle 2: Measure of complexity

Building on the first principle, the second principle presents the measure of

complexity between the flexible model and the base models. The information

lost when a flexible model f is approximated with the simpler base model g is

measured by the Kullback-Liebler divergence(KLD) which is defined as:

KLD(f(x) ‖ g(x)) =

∫
f(x)log

(
f(x)

g(x)

)
dx

where g(x) represents the base model π(x|ξ = 0) and f(x) represents the flexible

model π(x|ξ) (Kullback and Leibler, 1951). The complexity of the flexible model

compared to the base model is then measured by

d(f(x) ‖ g(x)) =
√

2KLD(f ‖ g)

The distance d(f(x) ‖ g(x)) is used as the measure of when comparing the flexible

model and the base model in that order. In other words, it is unidirectional

(Simpson et al., 2017).

∗ Principle 3: Constant rate penalisation

The third principle introduces a memoryless constant rate penalization that

only depends on the relative deviation from a simpler model and has a constant

decay rate. The prior distribution on the flexibility parameter is then given by:

π(ξ) = λeλd(ξ)

∣∣∣∣∂ d(ξ)

∂ ξ

∣∣∣∣
where d(ξ) = d(π(x|ξ) ‖ π(x|ξ = 0)). Exponential distribution is therefore

assigned to the probability distribution of the distance d(ξ), and the mode is

located at d(ξ) = 0 (Simpson et al., 2017).
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∗ Principle 4: User-defined scaling

The forth and final principle allows the user to define the scaling of the

flexibility parameter. This is done by allowing the user to control the value of U

which is given by

Prob(Q(ξ) > U) = α,

where Q(ξ) is a transformation of the flexibility parameter and U reflects the

value of the upper limit and α is the probability assigned to values exceeding the

U (Simpson et al., 2017).

PC prior distributions helps the user design prior distributions for the hyperpa-

rameters that avoid overfitting by giving appropriate weight to the base model.

In general, these prior distributions are weakly informative, and the informaiton

supplied depends on the value assigned to U . However, they can also be used to

construct informative prior distributions.

PC prior distribution for precision parameter

In both (3.18) and (3.19), the precision parameter τ is added to the model as a

hyperparameter. Such precision matrices can be assigned PC prior distributions.

Take for instance the RW2 model with the joint distribution in (3.19), has a base

model that puts all the mass at the center with τ0 =∞.

PC priors for the precision parameter of the random effect, RW1 and RW2 prior

distribution can be constructed using the Kullback-Leibler divergence between

two multivariate Gaussian distribution π1(x) and π2(x) with mean µ1 and µ2

and the covariance matrices Σ1 and Σ2. It is is given by:

KLD

(
π1(x) ‖ π2(x)

)
=

∫
log

(
π1(x)

π2(x)

)
π1(x) dx

=
1

2

(
tr(Σ−1

2 Σ1)− n− log
( |Σ1|
|Σ2|

)
+ (µ2 − µ1)TΣ−1

2 (µ2 − µ1)

)
,
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where n is the dimension of x. The KLD(· ‖ ·) for the random effects, RW1 and

RW2 are thus,

KLD

(
π(x|ξ) ‖ π(x|ξ = 0)

)
=
nτ0

2τ
+
n

2
log
( τ
τ0

)
+
n

2

=
nτ0

2τ

(
1 +

τ

τ0

log
( τ
τ0

)
− τ

τ0

)
,

In this case, n is dimx− k, where k is the rank deficiency of precision matrix Q.

Since the base model has τ � τ0,

KLD

(
π(x|ξ) ‖ π(x|ξ = 0)

)
=
nτ0

2τ

Consequently, the increase in complexity of the flexible model compared to the

base model can be measured as:

d
(
π(x|ξ) ‖ π(x|ξ = 0)

)
=

√
2KLD

(
π(x|ξ) ‖ π(x|ξ = 0)

)
=

√
n
τ0

τ

Based on the third principle, the hyperprior for τ is then designed using an

exponential prior on d
(
π(x|ξ) ‖ π(x|ξ = 0)

)
. Hence,

π(d(τ)) = λd exp(λd d(τ))

π(τ) =
1

2
λd
√
n τ0 τ

−3/2exp(λd
√
n τ0 τ

−1/2)

π(τ) =
λ

2
τ−3/2exp(λ τ−1/2), τ > 0, λ > 0. (3.20)

Evidently, the PC hyperprior disrtibution for the precision parameter is type-2

Gumbel distribution. Moreover, the PC prior for standard deviation is exponen-

tial distribution with the parameter λ.

In the end, the forth principle allows the user to define the parameters based on

π(1/
√
τ > U) = α.

π(1/
√
τ > U) = α ⇔ λ =

−ln(α)

U

When the PC prior is being used, the parameters U and α specified.
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Scaling the prior distributions

IGMRF’s such as the RW1 and RW2 models are used as prior distributions to

model dependency structure. These different types of prior distributions penalize

different deviances. The RW1 penalizes deviance from a fixed level, while RW2

model penalizes deviance from a linear trend (Rue and Held, 2005). Thus, they

have incomparable range of deviance. Furthermore, the size and shape of the

precision matrices of the RW1 and RW2 models, affect their marginal variances

(Sørbye and Rue, 2014). The marginal variances for an IGMRF with a random

precision parameter τ are defined as

στ (xi) =
σ{τ=1}(xi)√

τ
≈ σref (x)√

τ
, for i = 1, . . . , n,

where

σref (x) = exp

(
1

n

n∑
i=1

log
(
Σ∗ii

))

Here, Σ∗ is the generalized inverse of the precision matrix Q and σref (x) is the

geometric mean of the marginal variances with a fixed precision parameter τ = 1

(Sørbye and Rue, 2014).

As a result, setting and interpreting a hyperprior distributions for different models

or the same model with different size and/or shape precision matrices becomes

very challenging for the unscaled IGMRF models (Sørbye and Rue, 2014).

Scaling of the RW models leads to the generalized variance σref (x) being equal

to 1. This can be done by rescling RRW using a parameter κ (Sørbye and Rue,

2014). Once the RW models are scale, the PC prior distribtution can be assigned

to the scaled τ . The parameter τ can then be interpreted as the deviation from

the null space of RRW (Simpson et al., 2017). Hence, the scaled RW models are

invariant to changes in the shape and size of the precision matrix Q. In addition,

the precision parameter τ is comparable across different models (Sørbye and Rue,

2014).
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The PC prior for the scaled precision parameter is then set on :

π(
1√
τ
>

U

σref
) = α (3.21)

3.7 R-INLA

R-INLA is the R package through which the Bayesian inference with INLA

methodology was implemented in this thesis. The test version of the package

is often updated and it is available at http://www.r-inla.org/ . Therefore, the

test version was preferred to compute the various parameters in this thesis.

http://www.r-inla.org/
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Chapter 4

Temporal analysis of the

incidence rate of MI

The analysis performed in chapter 2 reveals that incidence rates of MI varies with

time. In addition to the temporal variation, there is a gender related variation

in the incidence rate MI. The incidence rate of MI is higher among males than

females. Furthermore, the analysis revealed that MI strikes males at a younger

age than females. This chapter provides further analysis of MI incidence rates

using Bayesian Age-Period-Cohort(APC) models.

In section 4.1, a general introduction to the APC models is given. Then, a

Bayesian Age-period (AP) model is introduced and the results of the analysis are

presented in 4.2. Following the section about bayesian AP model, in section 4.3

multivariate Bayesian APC models are provided with the results of the analysis.

This chapter is then concluded by a discussion of the results.

4.1 Age-period-cohort models

Temporal variations in disease and mortality rates can be attributed to changes in

age, time of event (Period) and time of birth of the group of people encountering

the event (birth cohort). The difference in the incidence rates of a given event

49
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across age is referred to as age effect. The period effect describes the changes

to the rate related to observation time of the event. Finally, the cohort effect

explains variations in the rates due to differences in birth time. The age-birth-

cohort(APC) models are often used to understand how these three effects affect

the observed patterns and make predictions about future outcomes (Clayton and

Schifflers, 1987b).

Univariate APC models are applied to disease or mortality data without strati-

fications such as gender and geographic locations (Riebler and Held, 2010a). In

such cases, the total number of events yij at age i and time period j are Poisson

distributed with the rate nij × λij,

yij ∼ Pios(nij × λij),

where nij is the total number of people at risk in the given age and time period

(Clayton and Schifflers, 1987b). Poisson distribution is a member of the expo-

nential family of distributions with E[yij] = µij = exp(ηij) = λij nij, var[yij] =

σ2
ij = exp(ηij) = λij nij and the conanical link function is log(·) (Fahrmeir et al.,

2013). The univariate APC model is defined by the predictor ηij.

ηij = log(λij) = α + ϕi + γj + ψk, (4.1)

where α is the intercept, ϕi is the age effect of ith age for i = 1, . . . , I, γj is the

period effect of time j for j = 1, . . . , J and ψk is the cohort effect of the kth birth

cohort for k = 1, . . . , K. The index of the cohort effect is k = (I − i) + j and

K = (I − 1) + J when the period and age are equally spaced (Riebler and Held,

2010a).

Unique identification of the intercept term α in (4.1) requires additional con-

straints on the additive time effects. A sum-to-zero constraint is often imposed on

the additive time effects to achieve that. The constraint imposes that
∑

i ϕi = 0,∑
j γj = 0 and

∑
j ψk = 0 (Holford, 2005).

A second identifiability problem plagues the APC models due to the linear de-

pendency between the time effects. If two of the three time effects are known,
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the third effect is automatically given (since birth cohort k = (I − i) + j). The

linear dependency of the age, period and cohort effects causes the presence of a

higher number of parameters to be estimated, than the data can uniquely esti-

mate (Clayton and Schifflers, 1987b). Consequently, by any transformations

ϕ∗i → ϕi + a

(
i− I + 1

2

)
, γ∗j → γj − a

(
j − J + 1

2

)
, ψ∗k → ψk + a

(
k − K + 1

2

)
(4.2)

with any a produce time effects that comply with the sum-to-zero constraints.

Also, the transformed time effects result in the same predictor ηij. In other words,

a transformation of one of the time effects, can be countered by a weighted trans-

formations of the two other effects to produce the same predictor ηij (Riebler and

Held, 2010a). This implies that, the individual time effects can not be distinctly

identified (Holford, 2005). However, deviations from the linear trends can be

identified (Clayton and Schifflers, 1987b).

4.2 Bayesian Age period model

By limiting the analysis to only two out of the three time effects, the linear

dependency is avoided and the effects can be identified. In the quest to find

how the incidence rate of MI vary with age and time, univariate Bayesian age-

period (AP) model is used separately for males and females. To analyse the

temporal patterns of incidence rates of MI, the AP model is a good option since

the age composition of the Tromsø study participants is progressively increasing

as illustrated by figure 2.2 A) and B) and age standardizing of the MI rates by

the standard methods do not give a a satisfactory result.

Let yijg define the number of MI of age i, year j and gender g are assumed

to be Poisson distributed with the rate nijg × λijg, where nijg is the number of

participants that are eligible for their MI for the given age, year and gender.

To apply the AP model, groups with too few participants have to be omitted.

Here, this includes males and females below the age of 40 and above the age of
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80, time period up to 1980 and in addition the age/period groups with less than

100 total participants are omitted from this study due to the limited number of

MI observed in those groups. Thus i = 40, ..., 80, j = 1982, ..., 2014 and g = 1, 2

for females and males respectively.

The Poisson distribution is equidispersed, meaning that the variance and mean

are equal. For some practical applications, the equidispersion property of the

poisson model can be too strong (Fahrmeir et al., 2013). However, the equidis-

persion assumption of the Poisson distribution can be relaxed using normal iid

random effect (N(0, τ)) (Besag et al., 1995).

The structured additive regression model described in(3.5) in chapter 3 for the

response variable yijg with the predictor ηijg is thus,

log(λijg) = ηijg = αg + ϕi,g + γj,g + κij (4.3)

where αg is the gender specific intercept, ϕi,g are the gender specific age effects,

γj,g are the gender specific period effects, κijg are the iid normal random effects

and the offset is given by the total number of eligible people for their MI, nijg.

The model is fitted to data in table 2.1 using the LGM framework described in

chapter 3. The three stage hierarchical Poisson model in (4.3) is as follows:

Stage 1: yijg|ηijg ∼ Poisson
(
nijg × exp(ηijg)

)
Stage 2: xg = (ηg, αg,ϕg,γg,κ)

Stage 3: τg ∼ π(τg),

INLA is used to estimate the various parameters in the model. Since the parame-

ter estimation is done in the Bayesian framework, prior distribution are assigned

to the unknown parameters. As mentioned in chapter 3, independent Gaussian

vague prior distributions are assigned to the fixed effects such as the gender spe-

cific intercepts and, while scaled random walk of second order in (3.19) is assigned

to the gender specific time effects as similarity between time adjacent observation

is assumed. PC prior in (3.21) are then assigned to the hyperparameters of the

scaled time effects and the random effects. In addition, the Bayesian AP model

is also fitted to different age groups (40-50,50-60,60-70 and 70-80 ) separately.
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4.2.1 Results

After fitting the Bayesian AP model to the data, the marginal posterior dis-

tribution of the intercepts for females and males is computed(see figure 4.1).

The posterior distribution of intercept is normal distributed. the intercept of

the females is smaller than that of males with the posterior mean α1 = −6.2

with sdα1 = 0.05. The posterior mean for their male peers is α2 = −4.9 with

sdα2 = 0.03 for males.

MalesFemales
0

5

10

-6.5 -6.0 -5.5 -5.0 -4.5

a

Figure 4.1: The marginal posterior distribution intercepts of the Bayesian AP

model for males and females

Gender specific scaled age effects are presented in figure 4.2 with the red area

marking the 95% credible interval of the age effects for females and the blue

area for males between the ages of 40 and 80. Both males and females have a

monotonically increasing age effects. An increase in age effect implies increase in

the incidence rate of MI with age.
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Figure 4.2: The marginal posterior mean of age effects with a 95% credible interval

of the Bayesian AP model for female (left) and male (right)

Figure 4.3 displayes the scaled period effect of females (left) and males (right) with

the shaded area representing 95% credible interval. The period effect of females

has wider interval between 1980 and 1990. The number of MI are smaller in that

period than the time after 1990 as can be seen in figure 2.2C). The period effect

remains more or less constant until the year 2000 (a slight decrease for males).

Around the year 2000, a major drop in the period effect can be observed for both

sexes. Similar to the age effect, a decrease in the period effect is associated with

a decrease in the incidence rate of MI. For both males and females, there is a

decreasing incidence rate of MI after the year 2000.

Figures 4.4 in the left panel show the marginal posterior distribution of the vari-

ances of the age effect, and the right panel shows the marginal posterior distribu-

tion of standard deviation of the period effect for males (blue) and females(red).

The standard deviations of both the age and period effects for both sexes are

similar.

The RW2 model that was assigned as prior to the age effects are scaled to have



4.2. BAYESIAN AGE PERIOD MODEL 55

-2

-1

0

1990 2000 2010

Year

P
e

ri
o
d

 E
ff

e
c
t

Females

-2

-1

0

1990 2000 2010

Year

P
e

ri
o
d

 E
ff

e
c
t

Males

Figure 4.3: The posterior mean of period effects with a 95% credible interval of

the Bayesian AP model for female (left) and male (right)
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Figure 4.4: The standard deviations of the age effects of the Bayesian AP model

(left), and the standard deviation of the period effect(right) for females in red and

males in blue

a generalised variance that equals to 1. This implies that, the hyperprior distri-

butions that are set on the precision parameters are set on the deviation of the

model from the null space of the random walk model. Therefore, the marginal

posterior distributions of the standard deviations of both the gender specific ef-
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fects are comparable. Their resemblance indicates that the RW2 models have

applied similar degrees of smoothing for both males and females.
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Figure 4.5: The posterior distributions of age group specific intercepts for females

(top) and for males (bottom)

In figure 4.5, the marginal posterior distribution of age group specific intercepts

are presented for females (top) and males (bottom). For both males and females,

the mean value of the intercepts increase for the older age groups. Moreover,

females have smaller mean intercepts than their male peers in the same age group.

Age group specific scaled age and period effects for each sex were computed using

the Bayesian AP models for the 40-50, 50-60, 60-70, and 70 - 80 age groups. In

figure 4.6, the age group specific age effects are displayed. Similar results are

observed for both males and females. There is an increase in the age effect for 40-

50, 50-60 and 60-70 age groups. While, the 70-80 age group has a more constant
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Figure 4.6: Posterior mean of the age group specific age effects for females (left)

and males (right) with the shaded region representing the 95% credible interval
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age effect.

In figure 4.7, the age group specific period effects are displayed. The first three

female age groups have a constant period effect until between 2000 and 2005. The

constant period effect is then followed by a decreasing trend. Whereas, the 70-80

female age group has a wide credible interval between 1987 to 1995 followed by

a constant effect until 2007. After 2007, the age group specific period effect is

decreasing.

The 40-50,50-60,70-80 male age groups have a constant period effect until 2000-

2005, and this period is followed by a decreasing trend until 2014. However, the

50-60 male age group has a slightly decreasing trend from the beginning in 1982

to 2014.

The incidence rate of MI is thus increasing with age for both genders from the

age of 40 to 80. And incidence rate of MI decreases after the year 2000.
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Figure 4.7: The posterior mean of the age group specific period effects for females

(left) and males (right) with the shaded region representing the 95% credible in-

terval
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4.3 Multivariate Bayesian age-period-cohort mod-

els

In this section, multivariate Bayesian APC models will be used to study how the

incidence rate of MI varies across gender. Such models are useful when jointly

analysing stratified mortality or disease rate data (Riebler and Held, 2010a).

When using the multivariate APC models, the incidence of MI yijg of age i, in

time period j and gender g is poisson distributed with the rate nijg × λijg where

nijg represents the total number of participants that are alive and yet to have

their first MI at time j, age i and gender g. An additional iid random effect is

added to the multivariate APC model as was the case in the AP model to account

for possible overdispersion. The predictor ηijg is thus:

ηijg = αg + ϕig + γjg + ψkg + κijg, (4.4)

where ϕig is the gender dependent age effect, γjg is the period effect of gender

g, ψkg is the cohort effect of the gender g and κijg is the random effect. When

jointly analysing the incidence rate using the multivariate APC models, one or

more of the time effects can be assumed to be common for both the sexes, while

the others can vary across gender (Riebler and Held, 2010a). If the age effect

in (4.4) is assumed to be common for both genders, then the gender specific age

effects ϕig will be replaced by ϕi. This can be done for the other time effects as

well.

As with the univariate case, the sum-to-zero constraint has to be imposed on the

multivariate APC model if the gender specific intercepts αg are to be uniquely

identified. In addition, the linear effects of the three time effects can not be

uniquely identified (Holford, 2005) Although unique identification of the time

effects of the multivariate APC models are not possible without additional con-

straints, the identifiable non-linear trends can be utilised (Clayton and Schifflers,

1987b; Riebler and Held, 2010a). Among the identifiable aspects of the multivari-

ate APC is the time effect differences between the stratum such as the difference
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between the age/period/cohort effects of males and females, if at least one of the

time effects is common for both genders (Riebler and Held, 2010a). Following the

convention used in Riebler and Held (2010a) capital A,P and C will be used to

emphasise the common time effects, whereas the lowercase letters a,p and c will

be used to specify the gender specific effects. Take for instance APc model, the

uppercase A and P imply that the age and period effects are common for both

males and females, while separate cohort effects are assumed.

To begin with, let two of the three time effects be common for both genders.

Such multivariate APC model can be the APc where the age and period effects

are the common effects, with the cohort effect varying across gender. In this case

the difference in between the cohort effects of males and females is identifiable

and given by:

∆k = ψk,1 − ψk,0

∆α = α1 − α0

∆̃j = ∆α + ∆k, (4.5)

where ∆k is the difference between the kth cohort effects of males and females, ∆α

is the difference between the intercepts and ∆̃k is the adjusted difference between

the cohort effects and is interpreted as log relative risk. All the differences in (4.5)

are identifiable since they do not depend on the transformation term a given in

(4.2) (Riebler and Held, 2010a). The same analogy in (4.5) is applicable to the

aPC and ApC models by changing the log relative risk of cohort effects ∆̃k to log

relative risk of the age effects ∆̃i and the log relative risk of the period effects ∆̃j

respectively.

Furthermore, only one of the time effects can be allowed to be common for both

genders. Suppose the age effect is set to be common for both genders and there

are gender specific period and cohort effects so that the resulting multivariate

APC model becomes Apc. The set up in (4.5) changes slightly to
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∆k = ψk,1 − ψk,0

∆j = γj,1 − γj,0

∆α = α1 − α0

Since both the gender specific period and cohort effects are allowed to vary, the

log relative risk becomes ∆̃jk and is defined as

∆̃jk = ∆α + ∆k + ∆j

∆̃j =
1

K

∑
k

∆̃jk and ∆̃k =
1

J

∑
j

∆̃jk, (4.6)

where ∆̃j is the average log relative risk of period j and ∆̃k is the average log

relative risk of cohort k (Riebler and Held, 2010a). Similar average log relative

risk for the time effects can be computed for the aPc and apC models using (4.6).

Moreover, any presumable correlation between the gender specific time effects

can be added to the model. Addition of the correlations can narrow the credible

interval of the log and average log relative risk of the time effects in (4.5) and (4.6).

For the uncorrelated time effects, second order random walk prior distributions

are used. In the case of correlated time effects, random walk prior distributions

with added correlation component can be used (Riebler et al., 2010b)

A uniform correlation matrix plays a vital role in driving correlated multivariate

random walk prior distributions. The uniform correlation matrix is a square ma-

trix with ones in the diagonal and the unknown correlation parameter ρ elsewhere
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as follows:

C = (1− ρ)I + ρJ =


1 ρ . . . . . . ρ

ρ 1 ρ . . . ρ
...

. . . . . . . . .
...

ρ . . . . . . ρ 1


R×R

C−1 =


a b . . . . . . b

b a b . . . b
...

. . . . . . . . .
...

b . . . . . . b a


R×R

,

where a =
−(R− 2)ρ+ 1

(ρ− 1)[(R− 1)ρ+ 1]

b =
ρ

(ρ− 1)[(R− 1)ρ+ 1]
,

I is the R×R identity matrix, J is an R×R matrix of ones and R is the number

of stratum (Riebler et al., 2010b). In this case R = 2, i.e. males and females.

If the gender specific age effects are assumed to be correlated, then the second

order random walk prior distribution of the time effects is then replaced by:

f(ϕ̃|Cϕ, τϕ) ∝
(

1

τϕ

)R(I−2)/2

|C−1|exp
(
− 1

2
ϕ̃T [C−1 ⊗R(2)]ϕ̃

)
, (4.7)

where ϕ̃ = (ϕT1 , ..., ϕ
T
R)T is the collection of all the age effects of all the stratum

and R(2) is the precision of the second order random walk prior distribution in

(3.19) and C−1 ⊗ R(2) is the Kronecker product of the matrices (Riebler et al.,

2010b).

Riebler et al. (2010b) uses the general fishers z-transformation which is a variance

stabilizing transformation to reparametrize the correlation parameter ρ in to :

ρ =
exp(ρ∗)− 1

exp(ρ∗) + l
⇔ ρ∗ = log(

1 + ρ

1− ρ
)

Then, a normal prior with mean zero and precision 0.2 is used for ρ∗. This leads

to an approximately uniform prior between -1 and 1 for the correlation parameter

ρ and π(ρ > 0) = 0.5.
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Similar to the AP analysis in section ??, everyone below 40 years and above 80

years, time before 1981 and the number of total participants in the age and time

group below 100 are omitted from this analysis due to the limited number of MI

observed. Correlated and scaled smoothing prior distribution such as (4.7) with

PC prior for the precision 1/τ in (3.21) and correlation ρ parameters are assigned

when correlation is assumed. For the uncorrelated models, scaled second order

random walk (3.19) are assigned as prior distribution for the time effects with

the PC prior for the precision parameter in (3.21). PC prior distribution is also

assigned to the precision parameter of the random effects.

The three stage hierarchical Poisson model in (4.4) is as follows:

Stage 1: yijKg|ηijkg ∼ poisson(nijkg exp(ηijkg))

Stage 2: xg = (ηg, αg,ϕg,γg,ψg,κg)

xg|θ ∼ N(0,Q(θ))

Stage 3: θ ∼ π(θ),

where xg is the gender specific latent field, Q(θ)) is the gender specific joint pre-

cision matrix of the latent field x and the hyperparamter θ include the correlation

parameters and π(θ) is prior distribution of the hyperparameters.

4.3.1 Results

Various Bayesian multivariate APC model with none, one, two or all three effects

assumed common for both sexes are fitted to the data. In addition, multivariate

APC models with correlation between the gender specific effects (the effects that

were not common for males and females) are fitted to the data. In table 4.1,

the values of the deviance information criterion (DIC) for the various models are

presented. The aPc model with a common period effect is classified as the best

model using DIC as the model choice criteria.

Correlation between the gender specific effects are computed for all the time ef-

fects that are allowed to vary across gender. The correlation between the time
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APC APc ApC aPC Apc aPc apC apc

Uncorrelated

DIC 5802 5768.11 5814.38 5724.38 5750.99 5722.23 5756.25 5753.1

Correlated

DIC - 5769.93 5800.52 5724.01 5738.27 5721.64 5742.06 5738.0

Table 4.1: The Model choice criteria DIC from INLA for of all the multivariate

APC models. The upper-case letters A (age), P (period) and C (cohort) represent

the effect that was kept common for males and females, while the lower-case letters

represent the gender specific effects

effects are presenter in table 4.2. The estimated values of the correlation pa-

rameters remained similar in the various multivariate APC models. Only the

correlation between the gender specific period effects was clearly greater than

zero. As a result, including the correlation in the aPc model with joint period

effects did not improve the results in a significant manner.

APc ApC aPC Apc aPc apC

A - - 0.7(-0.3-0.9) - 0.7(-0.3-0.9) 0.7(-0.3-0.9)

P - 0.93(0.8-0.96) - 0.9(0.7-0.9) - 0.9(0.7-0.9)

C 0.3(-0.6-0.9) - - 0.29(-0.7- 0.9) 0.3(-0.7-0.9) -

Table 4.2: Correlation and the 95% credible interval between gender specific effects

in lower case for all the multivariate APC models. The upper-case letters denote

the effects that were common for both males and female

In the figure 4.8, the average log relative risks of MI for males compared to females

for the aPc model, with the period effect assumed to be common, for the cohort

and age effects are displayed. Both the correlated and uncorrelated age and cohort

effects are shown. The shaded region shows the 95% credible interval of the time

effects with added correlation and the red line in the middle is the posterior

mean of the correlated average log relative risk. While, the dashed lines mark
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the 95% credible interval of the uncorrelated model, with the black line denoting

the posterior mean of the effects. In the presence of a notable correlation, the

coredible interval would have been narrowed. Since the correlation between male

and female age effects and between male and female cohort effects are not clearly

greater than zero, the effect on the credible interval is not significant.
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Figure 4.8: The average log relative risk for males compared to females for the

aPc model for the birth cohort (left) and age (right). The shaded region denotes

the 95% credible interval for the correlated model and the red line represents the

posterior mean of the average log relative risk of the correlated model. While

the dashed black lines mark the 95% credible interval for the uncorrelated model

and the black line denotes the posterior mean of the average log relative risk the

uncorrelated model.

The average log relative risk for males compared to females with common period

effects for the birth cohorts that were before 1925 and after 1955 have very wide

credible intervals and cover a large area. While, the risk of MI for males in the

birth cohorts in the middle(between 1925 and 1955) was more than twice that of

females.
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The risk of MI for males compared to females is monotonically decreasing from

the age of 40 to 80 (see figure 4.8 (right)). The 40 years old males have more

than 3.7 times risk of MI than their female peers in the same age. While this

relative risk decreases to below 2.2 having 2.2 risk of MI for 80 years old males

compared to their 80 years old female counterparts.

The results are discussed further in chapter 6.
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Chapter 5

Survival analysis

In the previous chapter the incidence rate of MI was investigated thoroughly.

Next, the focus shifts towards what happens once the individual participants

have encountered MI. In this chapter, the focus will be on how the survival time

of the Tromsø study participants who had MI evolves with time for the different

age groups, sexes and the time of the year the MI.

A brief introduction to the main concepts in survival analysis is provided in

section 5.1. Thereafter, the Kaplan-Meier’s method and estimation of confidence

intervals is presented along with the results of the analysis in section 5.2. In

section 5.3, the given data is analysed using one of the most regularly used survival

models known as Cox proportional hazards (Cox PH) model. The chapter is then

concluded by discussing the results of the analysis in ??.

5.1 Concepts in survival analysis

Across many fields, the concept of time from entry to an event is often of interest.

Time to the onset of a disease in medical sciences, time to divorce in social

sciences and time to the failure of an electronic component in engineering are

some examples of various fields with such interests. Generally, the time elapsed

from a well defined start to the event of interest is referred to as survival time.

69
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Survival time is commonly started at zero and often no event will have occurred

at that point (Aalen et al., 2008). In this chapter, the time from the incidence

of the MI to death is the variable that will be investigated. In addition, at most

only a single event can take place to each participant who has had MI.

5.1.1 Censoring

Survival times can be studied using a wide set of statistical tools. However, the

set of tools available can be narrowed if the events are not observed for every

individual. In some cases, this can be due to drop out of participants or the

time allocated to the data collection is smaller than the largest survival times

as shown by the transparent dots in figure 5.1. In others cases, participants can

be entered to the study at survival times other than zero commonly known as

delayed entry. Such data has therefore both complete and incomplete sets of

observations. Figure 5.1 has seven complete and three incomplete observations.

Survival analysis models are well suited to dealing with incomplete survival data

(Aalen et al., 2008).

Censoring of data is the main reason for incompleteness of survival time data.

In figure 5.1, there are three individuals without a registered event due to the

end of the study. Those observations are said to be censored. The censoring in

figure 5.1 happens towards the right end of the time axis. Hence, it is often called

right censoring. Rather than throwing out such observations, they can be part

of the participants in the risk set for as long as they are in the study. The total

risk set can then be reduced once the censoring takes place (Aalen et al., 2008).

According to Liu (2012) there are three types of right censoring; type I, random

censoring and type II censoring. Type I censoring happens as a result of the end

of the study as in figure 5.1. With random censoring, as the name indicates, the

censoring happens at an arbitrary time. In type II censoring, data collection goes

on until a fixed number of events are observed.

Survival models are also suitable to analyse truncated survival data. There may

be instances where portion of events do not get registered into the dataset. Sup-
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Figure 5.1: Survival time of 10 patients over 10 time units. The left panel shows

the calender time for each patient from enrollment to the event or end of the

study. In the right panel, the time axis measures survival time. The opaque dots

indecicate time of the event and the transparent dot symbols censoring. Figure

from Aalen et al. (2008)

pose all those who divorced within 6 months of their never never got registered.

Thus those events are truncated from the study (Aalen et al., 2008). In this

chapter, type I right-censored survival data without truncation will be used to

carry out the survival analysis.

5.1.2 Survival and hazard functions

Generally, survival analysis deals with time to event as a continuous random

variable. The cumulative distribution of the survival time (T) is the probability

of the event taking place prior to time t and is given by :
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F (t) = π(T ≤ t) =

∫ t

0

f(t)dt, t > 0

A closely related quantity to the cumulative density function (CDF) of the sur-

vival time F (t) is the survival function S(t). It plays a vital role in survival

models and is defined as the probability of the event occurring after time t. The

survival function is mathematically defined as follows :

S(t) = π(T > t) = 1− F (t) = 1−
∫ t

0

f(t)dt, t > 0 (5.1)

S(0) = 1 and S(∞) = 0.

Since no event has has taken place at time zero, S(0) is equal to 1. Furthermore,

the value decreases to zero with increasing time. This means that no event takes

place prior to time zero and given enough time all the subjects will encounter the

event. In addition to the survival function, a second function known as the hazard

rate h(t) is a crucial part of survival models. The hazard rate is the probability

of the event happening in an infinitesimal time interval [t, t+ ∆t) given the event

had not occurred prior to time t (Aalen et al., 2008). It is mathematically defined

as follows (Liu, 2012):

h(t) = lim
∆t→∞

π(t ≤ T < t+ ∆t |T > t)

∆t
(5.2)

=
f(t)

S(t)
=
S ′(t)

S(t)

= − ∂

∂t
log(S(t)).

Unlike the survival function, the hazard rate h(t) can have any non-negative

value. Based on the hazard rate, the cumulative hazard function H(t) is defined

as follows (Liu, 2012):

H(t) =

∫ t

0

h(t)dt = −log S(t). (5.3)
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5.2 The Kaplan-Meier method

5.2.1 Kaplan-Meier survival curves and confidence inter-

vals

Kaplan-Meier’s estimator, alternatively known as the product-limit method, is

one of the most commonly applied statistical methods in survival analysis. The

Kaplan-Meier’s method is a non-parametric method from the frequentist frame-

work. Essentially, the Kaplan-Meier method estimates the survival function of

complete or right censored data using a product of a sequence of conditional

probabilities for mutually exclusive time intervals. The Kaplan-Meier method

produces an estimate for the survival function that is constant with time unless

an event of interest is encountered. When an event is encountered, the estimated

value for the survival function drops abruptly right after the time of an event.

As a consequence of that, the Kaplan-Meier method produces the characteristic

step function as an estimate for the survival function (Kaplan and Meier, 1958).

To compute the Kaplan-Meier estimate, the time scale is sub-divided into smaller

time intervals. Then all of the observed complete and incomplete survival times

are arranged in order and the survival times are placed in the correct time in-

tervals. Thereafter, interval specific survival rates ŝ(t) =
nj − δj
nj

are computed,

where nj is the total number of the risk set going into the jth time interval and

δj is the total number of events in that time interval. Finally, the Kaplan-Meier

estimate of the survival function at time t is computed as the product of the

interval specific survival rate prior to time t (Kaplan and Meier, 1958). The

Kaplan-Meier estimate of the whole survival function Ŝ(t) is therefore given by

Ŝ(t) =


1, if t < t1∏t

j=1

(
nj−δj
nj

)
, if t ≥ t1

(5.4)

Here, the censored participants are removed from the risk set for the interval

following the censoring time interval, i.e. the censored participants are part of
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the total nj if the censoring took place at the jth time interval and they are

removed from the reisk set at the j + 1th time interval (Liu, 2012). In other

words, if a patient is censored at day 11, that patient is removed from the risk

set starting day 12.

From the Kaplan-Meier estimate, the cumulative hazard function can be derived

using (5.3). The estimate of the cumulative hazard function Ĥ(t) is defined by

(5.5) (Liu, 2012).

Ĥ(t) = −log
[ t∏
j=1

(
nj − δj
nj

)]
(5.5)

In general, when the parametric form of the hazard function is not known, the

non-parametric Kaplan-Meier estimate of the cumulative hazard function in (5.5)

can be useful in testing the assumptions of a parametric form or suggesting a

parametric form for the hazard function (Kaplan and Meier, 1958; Liu, 2012).

Once the Kaplan-Meier estimates for the survival functions are computed, then

the standard errors and confidence interval of the estimates have to be estimated.

However, estimating the standard error and confidence interval associated with

the Kaplan-Meier estimate is not straightforward for a number of reasons. One

such reason is that the largest survival times can be censored, such that Ŝ(tn) > 0

and ntn+1 = 0. Thus, Ŝ(tn+1) is undefined and the standard error estimate in

such cases may not be very informative. Nonetheless, for large survival times the

aforementioned issue is not of practical importance (Kaplan and Meier, 1958).

Another issue related to estimating the confidence interval for the Kaplan-Meier

estimates is that survival function is confined between 1 and 0, and the estimated

confidence interval should not exceed those limits (Liu, 2012).

Frequently, the variance of the Kaplan-Meier estimate is approximated using the

Greenwoods formula which is defined as:

V̂ [Ŝ(t)] ≈ [Ŝ(t)]2
t−1∑
j=1

δj
(nj − δj)(nj)

(5.6)

and the standard errors are obtained by taking the squareroot of (5.6) (Kaplan
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and Meier, 1958). A more through discussion on the derivation of the estimate

is found in Liu (2012); Kalbfleisch and Prentice (2002).

To avoid estimating a confidence interval for the Kaplan-Meier estimate that

exceeds the range of the survival function, a log-log transformation of Ŝ(t) is

commonly applied. The confidence interval is then estimated for the log-log

survival function, before it is transformed back to the original scale (Kalbfleisch

and Prentice, 2002). The confidence interval of the log-log survival function is

given by

log[−logŜ(t)]± z1−α/2

√
V̂ [Ŝ(t)]

Ŝ(t) logŜ(t)
,

where z1−α/2 is the upper α/2 percentile of the standard normal distribution

(Kalbfleisch and Prentice, 2002). The confidence interval of the estimated survival

function is given by

[Ŝ(t)]1/θ ≤[Ŝ(t)] ≤ [Ŝ(t)]θ, (5.7)

where θ = exp

(
z1−α/2

√
V̂ [Ŝ(t)]

Ŝ(t) logŜ(t)

)
(Kalbfleisch and Prentice, 2002). The 1− α

confidence interval in (5.7) is estimated for each time point separately. Further

derivation is needed to estimate a 1− α confidence region for the entire Kaplan-

Meier estimate of the survival function simultaneously. Such confidence regions

are know as simultaneous confidence bands (Liu, 2012). Hall and Wellner (1980)

introduced a method for estimating a simultaneous confidence band for random

censored data, and survival data of moderate to large size. The confidence band

is estimated by first picking tL = 0 and tU as the largest survival time after the

largest complete survival time. Second, aL and au are computed as follows:

aL =
nV̂ [Ŝ(tL)]

1 + nV̂ [Ŝ(tL)]
and aU =

nV̂ [Ŝ(tU)]

1 + nV̂ [Ŝ(tU)]
.

Then, using aL and aU , κα(aL, aU) coefficients for the Hall-Wellner bands can

be obtained from tables of confidence coefficients. The resulting Hall-Wellner

band gives good results when it is computed with respect to the aforementioned
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log-log transformed confidence interval (Liu, 2012). The log-log transformed Hall-

Wellner band is then given by:

[Ŝ(t)]1/θ ≤[Ŝ(t)] ≤ [Ŝ(t)]θ, (5.8)

where

θ = exp

(
κα(aL, aU)[1 + nV̂ (Ŝ)(t)]

√
n log[Ŝ(t)]

)
.

The median survival time of the Kaplan-Meier estimates of survival function are

often computed as S(M) = 0.5 and the confidence interval is given by

SEmedian = SEGR

{
(tsmall − tlarge)/(S(tlarge)− S(tsmall))

}
95%CI = (Median− 1.96SEmedian,Median+ 1.96SEmedian),

where SEGR is the standard deviation obtained from Greenwoods variance.

5.2.2 Results

The data available in this chapter is a type I right censored data without trun-

cation. If the Kaplan-Meier method is to produce an adequate estimate for the

survival function, the censoring and survival times need to be independent. Here,

the type I right censored data depends on the time of the MI, rather than the

time at censoring.

In figure 5.2, the Kaplan-Meiers survival curve for the entire Tromsø study pop-

ulation is displayed. The survival time in the x-axis measures the time from

MI to death in weeks. Estimation of the survival curve was carried out using

the Kaplan-Meier estimator in (5.4) with the pointwise log-log confidence inter-

val in the shaded region estimated by (5.7) and the simultaneous Hall-Wellner

confidence band estimated by (5.8).

As expected, the largest drop in the survival function in figure 5.2 takes place

in the first week. It then continues to decrease at a slower rate. Since the
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Figure 5.2: Kaplan-Meier curve of the total population. The shaded region denotes

the The shaded region denotes the 95% pointwise confidence interval with the

outer dotted line indicating the 95% Hall-Wellner simultaneous confidence band

95% pointwise confidence interval with the outer dotted line indicating the 95%

Hall-Wellner simultaneous confidence band

largest survival time was not censored, the Kaplan-Meiers survival curve goes

to zero after 2612 weeks (50 years). The estimated Hall-Wellner simultaneous

confidence band follows the pointwise log-log confidence interval in the beginning

and gets wider with deceasing size of the risk set and events. In average, the

probability of surviving past the first week of MI is 0.79 with (0.77-0.80) 95%

log-log confidence interval. The median survival time is 577 weeks (11 years),

and the 95% confidence interval is (527,610) weeks.

Separate Kaplan-Meier survival curves for males (blue) and females (red) are

displayed in figure 5.3. In general, both survival curves follow the same trend

with large decrease in week 1 followed by a slow decrease to zero. However, the



78 CHAPTER 5. SURVIVAL ANALYSIS

0.00

0.25

0.50

0.75

1.00

0 1000 2000

Weeks after MI

S
(t

)

Figure 5.3: Kaplan-Meier curve of the Male (blue) and female (red) participants

separately. The shaded region denotes the log-log 95% pointwise confidence in-

terval with the outer dotted line indicating the 95% Hall-Wellner simultaneous

confidence band

drop in the survival curve in week 1 for females is larger than that of males.

The survival function at week 1 for males is Ŝ(1) = 0.80 with a 95% confidence

interval that equals (0.78,0.81 ). In comparison Ŝ(1) = 0.76 for females with a

95% confidence interval that equals (0.74, 0.79 ). There is also a difference in

the median survival time between males and females. While females have median

survival time 405 weeks (confidence interval 349,462), the median survival time

of their males peers is 669 weeks (confidence interval 616,735). The analysis in

section 2.3.1 revealed that there is a significant difference in the average age at the

time of MI between males and females. This difference in age can have manifested

it self figure 5.3.

In figure 5.4, the Kaplan-Meiers survival curves with the 95% log-log pointwise

confidence interval denoted by the shaded regions and the simultaneous Hall-
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Figure 5.4: Kaplan-Meiers survival curves of the different age groups, the shaded

region denotes the 95% log-log confidence interval(males-blue and females-red)

and the dashed lines represent the Hall-Wellner simultaneous confidence bands

Wellner confidence bands for different age groups and sexes are displayed. Natu-

rally, the probability of survival decreases with increasing age in the age groups.

In addition, the proportion of the participants that suffered MI and died within
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the first week increases with increasing age.

Female Male

Age gr Ŝ(1)(95%CI) Med(95%CI) Ev. Ŝ(1)(95%CI) Med(95%CI) Ev.

(0 -40] 0.80(0.41-0.95) 793(1--) 4 0.86(0.78-0.92) 1969(1227--) 44

(40-50] 0.92(0.81-0.96) 1948(1034--) 17 0.85(0.81-0.88) 1249(1117-1396) 206

(50-60] 0.88(0.83-0.92) 1232(1088-1311) 96 0.83 (0.80-0.85) 961(873-1024) 443

(60-70] 0.87(0.83-0.90) 823(724-932) 178 0.82(0.79-0.85) 781(688-826) 430

(70-80] 0.78(0.73-0.82) 352(274-405) 294 0.75(0.71-0.78) 236(185-286) 433

(80 + ] 0.58(0.53-0.63) 13(3-33) 374 0.62(0.56-0.68) 12(2-38) 234

Overall 0.76(0.74-0.79) 405(349-462) 963 0.80(0.78-0.81) 669(616,735) 1790

Table 5.1: The estimated values of the survival function at week 1 and median

survival time presented with 95% confidence interval for the various age groups

and sexes. Ev. denotes the number of death in the given age group and gender.

The estimated value of the survival function at week 1 decreased from about 0.86

for the 0-40 male age group to 0.62 for males in the 80 + age group. Similarly,

the same estimate decreased from 0.8 for the 0-40 female age group to 0.58 for

the 80 + females. These results are summarized in table 5.1 and figure 5.5 (left

panel).

The median survival time in weeks is presented in figure 5.5 (right panel) and

table 5.1. The longest median survival time is observed in the 40-50 female

age group with 1948 weeks after MI and the shortest median survival time was

observed in the oldest male age group being 12 weeks .

The differences seen between males and females in figure 5.3 is partly explained

by the difference in age among those who have had MI. This can be seen in the

the overlap observed in the Kaplan-Meier survival curves of males and females in

the different age groups in figure 5.3.

In figure 5.6, Kaplan-Meier survival curves are displayed (top) with the estimated

values of the survival function at week 1 (bottom left) and estimated median sur-

vival times (bottom right) sub-divided by the season when the MI occurred. In



5.2. THE KAPLAN-MEIER METHOD 81

0.4

0.6

0.8

0-40 40-50 50-60 60-70 70-80 80 + 

Age groups

S
(1

)

G F M

0

500

1000

1500

2000

0-40 40-50 50-60 60-70 70-80 80 + 

Age groups

M
e
d
ia

n
 s

u
rv

iv
a
l 
ti
m

e

G F M

Figure 5.5: The estimated survival function at week 1 is presented by the dots in

the middle, and the vertical lines indicate the extent of the 95% log-log pointwise

confidence interval at week 1 (left). Similarly, the median survival time of the

various age groups are indicated by the dots and the vertical line indicate the 95%

confidence interval (right). Due to the scarce number of events in the first age

group for both sexes and the 50-60 age group for females, a reliable upper limit

for the confidence interval was not estimated. Males (blue) and female (red)

section 2.3, some seasonal differences in the MI incidence rate were revealed.

However, the Kaplan-Meier survival curves for the seasons in figure 5.6 overlap.

Seasonal differences in survival from MI is thus absent. The probability of sur-

viving beyond the first week after MI and median survival times do not depend

on the season of occurrence of MI.
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Figure 5.6: Kaplan-Meier survival curves divided by the season of the incidence of

MI (top). The estimated mean values of the survival function at week 1 denoted

by the dot in the middle and the log-log pointwise 95% confidence interval marked

by the vertical lines (bottom left). Median survival time of participants with 95%

confidence interval (bottom right).
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5.3 Proportional hazards models

In the previous section, the descriptive and nonparametric Kaplan-Meier method

was introduced, along with the results of the analysis. However, incorporat-

ing covariates into the Kaplan-Meier method is not easy. This section presents

Proportional hazard rates (PH) models is a commonly applied approach to fit

regression models in survival analysis.

PH models assume a common baseline hazard rate of encountering the event of

interest at a time t for all the participants and the various individual hazard rates

are the given by a product of the baseline hazard rate and a term of the effects

of covariates. In general, the PH models are given by

h(t) = h0(t)exp(

p∑
j=1

βjxj), (5.9)

where h0(t) is known as baseline hazard rate and βT = (β1, . . . , βp) are the effects

of the multiplicative covariates and {x} are the covariates (Liu, 2012).

In a PH modelling framework, the baseline hazards rate h0(t) depends only on

the survival time t, and the term that represents the effects of the covariates is

independent of the survival time t. As a direct consequence, the ratio of two

individual hazard rates, known as the hazard rate HR is defined as

HR =
hi(t)

hk(t)
=
h0(t)exp(

∑J
j=1 βjxij)

h0(t)exp(
∑J

j=1 βjxkj)

= exp(
J∑
j=1

βj(xij − xkj)),

is constant and independent of time. Moreover, two different hazard rates are

proportional to each other. Hence, the name proportional hazard rates models.

A key assumption in applying PH models to survival data is therefore built on the

individual hazard rates being proportional. In addition, the hazard ratio in PH

models is regularly used to measure the effects of the covariates on the baseline

hazard rate. Hazard ratios that are larger than one imply an increased risk for
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individual i compared to k, while the implication of HR less than one is a decrease

in risk for the same individual (Liu, 2012; Machin et al., 2006).

In the PH regression models, the parametric assumptions on the hazard rate in

(5.9) define the parametric distribution of the survival time t. Based on those

assumptions on the hazards rates, there are three types of PH regression models;

exponential regression model, Weibull regression model and the semi parametric

Cox PH model (Liu, 2012).

Assuming a constant λ as a hazard rate leads to an exponential regression model

since

h(t) = λ⇒ S(t) = e−λt

F (t) = 1− e−λt.

Implying that the survival time is an exponentially distributed random variable

(Liu, 2012). The resulting exponential regression model is then,

h(t, x;T ∼ Exp) = λexp(

p∑
j

βxj),

where the constant baseline hazard rate λ is also the rate parameter of the expo-

nential distributed survival time (Liu, 2012). If the assumption of the constant

hazard rate is accurate, then

H(t) = −log[S(t)] = λt ⇒ log{−log[S(t)]} = log(λ) + log(t).

The right side is in y = ax + b form, where a is represented by log(λ), b = 1

and x is given by log(t). Consequently, the log of the cumulative hazard function

is linear with log(λ) as the intercept, 1 as the slope and log(t) being in the

horizontal axis. The Kaplan-Meier estimate of the cumulative hazard function

(or the survival function) can be used to verify such assumption (Machin et al.,

2006).

In contrast to the constant hazard rate, the Weibull regression model assumes a

strictly increasing or decreasing hazard rate. Therefore, this model is well suited
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for situation where the hazard rate is either increasing or decreasing. Specifically,

the Weibull PH regression model is given by

h(t, x;T ∼ Weib) = λκ(λt)κ−1exp(

p∑
j

βxj),

where λκ(λt)κ−1 is the time dependent strictly increasing or decreasing baseline

hazard rate λκ(λt)κ−1. The survival time is Weibull distributed with the scale

parameter λ and shape parameter κ. Similar to the exponential PH regression

model, the log cumulative hazard function can be used to test if the Weibull

distribution assumption holds (Machin et al., 2006). The log of the cumulative

hazard function is

log[H(t)] = (λt)κ ⇒ log[H(t)] = κ log(λ) + κ log(t).

Here, the log of the cumulative hazard function is also linear with κ log(λ) as the

intercept, κ as the slope and the x axis in log(t) (Machin et al., 2006).

5.3.1 Cox PH models

Cox PH regression model is a semi-parametric regression model that is often used

to analyse survival time. It differs from the Weibull and exponential PH regression

models since the model does not place any restriction on the parametric shape

of the survival function, apart from the proportionality of the hazard rates. As a

result, Cox PH model has wider applicability than the fully parametric regression

models (Liu, 2012; Machin et al., 2006).

Estimation of the effects of the covariates in the Cox PH regression models with

an arbitrary parametric shape of the baseline hazard rate depends on the no-

tion of partial likelihood. Given all the individuals at risk at time ti, <(ti), the

probability of an individual encountering an event at time ti is given by

P (ti|<(ti)) =
hi(tj)∑

k∈<(ti)
hk(tj)

=
exp(

∑J
j βjxij)∑

k∈<(ti)
exp(

∑J
j βjxkj)

.
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Since the time without events do not provide information about the model pa-

rameters, the focus is turned towards the event times (Cox, 1972). the likelihood

of the conditional probability above is known as partial likelihood for the {β}
and is given by

L(β) =
d∏
i=1

exp(
∑J

j=1 βjxij)∑
k∈<(ti)

exp(
∑J

j=1 βjxkj)

The log likelihood is then

l(β) =
d∑
i=1

[ J∑
j=1

(βjxij)−
d∑
i=1

log

( ∑
k∈<(ti)

exp(
J∑
j=1

βjxkj)

)]
,

where d is the total number of events encountered. The values of {β} that

maximize the partial log likelihood, give the estimates of parameters in the Cox

PH model. Due to the absence of the baseline hazard function in the partial

likelihood, making assumption about its parametric form is not necessary (Cox,

1972).

The partial likelihood can be used to compute the effects of the covariates without

having to get to the baseline hazard rate. Since the introduction of Cox PH

model, there has been several suggestions on how to approximate the baseline

hazards rate such as the piecewise log-constant baseline hazard rate introduced

by Breslow (1972).

5.3.2 Cox PH in the GLM Framework

In the piecewise log-constant hazards model, the time axis is subdivided into

0 = s0 < s1 < . . . < sK , where sK > t, with constant baseline hazard λk for

k = 1, . . . , K in each interval. Consequently, the hazard rate in the kth time

interval becomes,

hi(t) = λk exp
(∑
j=1

βjxij

)
= exp

(∑
j=1

βjxij + bk

)
= exp(ηjk),
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where bk is log λk and ηjk =
∑

j βjxij+bk for the ith individual. The log likelihood

for a date point in the Kth interval is

l = log(f(t)) = log
(
h(t)S(t)

)
= log(h(t))−

∫ t

0

h(u)du

= δηK − (t− sK) exp(ηK)−
K−1∑
k=1

(sk+1 − sk) exp(ηk),

where δ = 1 if the data point represents death and δ = 0 if it is censored.

(Breslow, 1972).

The log likelihood of the piecewise log-constant hazards model is the same as

the log likelihood of K Poisson distributed points with K − 1 of them having

rate λk = (sk−1 − sk) exp(ηk) and the observation equal to zero and the last

observation with rate λK = (sK−1 − sK) exp(ηK) and the observation equals to 1

if the survival is not censor and 0 if it is censored (Laird and Oliver, 1981).

The formulation of the Cox PH regression model in the form that has been dis-

cussed so far can not be applied using the INLA methodology. However, Martino

et al. (2011) introduced a rearranging of the data points into K Poisson dis-

tributed data points so that they can be modelled using the LGM framework.

There will therefore be K piecewise log-constant baseline hazards (b1, . . . , bK)

that are Poisson distributed. Assuming that the difference between any two con-

secutive baseline hazard rates is iid N(0, τ−1), a scale RW1 smoothing prior in

(3.18) assigned as a default to the aforementioned hazard rates (Martino et al.,

2011). Using the INLA framework, one can also model non-linear effects of co-

variates by assigning RW1 and RW2 models. Then, the PC prior in (3.21) is then

assigned to the precision parameter τ of the models.

Using INLA the piecewise log-constant Cox PH model is fit to the data in table

2.5. Since some similarity between adjacent age and time period is assumed,

the scaled RW2 prior in (3.19) is assigned to the age and time effect. The hy-

perparameter is then assigned the PC prior in (3.21). The predictor piecewise

log-constant cox model used here is
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h(t) = h0(t)exp
(
α + βg + ϕage + γyear

)
, (5.10)

where α is the intercept, βg represents the fixed gender effect, ϕage represents the

age effect and γyear represents the effect of time period at the incidence of MI

. The time axis stretches upto 1808 weeks and it is partitioned into 70 equally

space time intervals. Each time interval represents therefore about six months

(26 weeks).

5.3.3 Results

Assuming the exponential distribution for the hazard rate implies that the hazard

rate does not change with time. This in turn leads to the log(Ĥ(t)) plotted on

the log(t) to be linear with a as the slope. While the Weibull distribution allows

monotonic changes in the hazard rate with time. This distribution also produces

a linear log(Ĥ(t)) curve on a log(t) horizontal axis. In figure 5.7, the log(Ĥ(t)) is

plotted against log(t) for different time periods (top left), sexes (top right) and

age groups (bottom). None of the curves in the figure are linear. Therefore, the

Weibull and exponential distribution can not be used to model the survival time

of the participants who suffered MI.

In addition, figure 5.7 displays that the log(Ĥ(t)) curve is parallel for the various

age groups (bottom) and sexes (top right). The log(Ĥ(t)) curve for the different

period (top left) is less parallel than the to other plots. It must however be noted

that age at the time of MI varies substantially in across periods.

The parallel log(Ĥ(t)) curves in figure 5.7 suggests that the hazards in the various

groups do not vary with time. This property is essential for modelling the survival

time of those who suffer from MI using the proportional hazards model. In

addition, figure 5.7 shows that the Weibull and exponential regression models are

inappropriate in this case. The semi-parametric Cox PH model with a piecewise

log-constant baseline hazards is preferred.



5.3. PROPORTIONAL HAZARDS MODELS 89

-2

-1

0

1

0 2 4 6 8

log(Weeks after MI)

lo
g

(H
(t

))

1962-1980 1980-1990 1990-2000 2000-2014

-1

0

1

0 2 4 6 8

log(Weeks after MI)

lo
g

(H
(t

))

F M

-2

-1

0

1

0 2 4 6 8

log(Weeks after MI)

lo
g
(H

(t
))

Total
U50

5060
6070

7080
80+

Figure 5.7: log(Ĥ(t)) curves obtained from the Kaplan-Meier survival curve for

the various time periods (top left), sexes (top right) and age groups (bottom)

In figure 5.8, the marginal posterior mean of the log-baseline hazard (left) and the

transformed base line hazard (right) of the of survival data presented in table 2.5

is presented with the solid line. The dashed lines show the 95% credible interval.

Each step in figure 5.8 represents 26 weeks, since the time axis was partitioned
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into 70 equally space time intervals. The hazard is the highest at the time of

MI (first 26 weeks) and drops abruptly in the second 26 weeks. It then stays at

the same level for the preceding 1000 weeks. It increase steadily for the next 500

weeks.
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Figure 5.8: The marginal posterior mean of the log baseline hazard presented

by the solid line (left) and the posterior mean of transformed baseline hazard

presented by solid line (right). Time axis divided into 70 equally spaced intervals.

95% credible interval marked by the dashed lines

The marginal posterior mean of the age effect is presented in figure 5.9 with the

solid line (left). The shaded region marks the 95% credible intervals of the age

effect. An increasing age effect is observed from the age of 50 to 100. To the left

in figure 5.9, the marginal posterior mean effect of time of the MI is displayed by

the solid line. The 95% credible interval of the effects of the time of MI is marked

by the shaded area. A constant trend in the effect of time of MI is observed

between 1980 and 1995. It is then followed by a slightly decreasing trend beyond

1995 is observed.

The fixed gender effect βg is normally distributed with marginal posterior mean
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Figure 5.9: The Posterior mean of the age effect (left) and time of MI effect

(right) presented by the solid line and the shaded area display the 95% credible

interval intervals.

equal to 0.23 and the 95% credible interval is (0.15,0.32). Since the hazard ratio

(HR) between males and females is

HR =
h0(t) exp (βm)

h0(t) exp (βf )
= exp (βm − βf )

= exp(0.23) = 1.26.

The risk of death after MI is about 25 % higher for the males compared to females

The results are discussed further in chapter 6.
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Chapter 6

Discussion and concluding

remarks

The datasets analysed in this thesis only contained information on gender, age,

dates of MI and dates of death. The analysis show a decrease in the incidence

rate of MI since about the year 2000. This trend is seen in all the age groups

between the ages of 40 and 80 and for both sexes. To further study the causes

of this trend, we would need more covariate information, for example tobacco,

alcohol consumption, body mass index, other life style diseases and preventative

medical drug use . The analysis confirms that there is a higher incidence rate of

MI among males than females, and that the mean age at the time of the incidence

of MI among males is significantly lower than among females. The multivariate

BAPC model showed a high correlation in the period effect of males and females.

This indicates that covariate information might influence the incidence rate of MI

of both sexes in a similar way. The difference between the sexes in the average

risk of MI decrease with increasing age. The analysis did not reveal any birth

cohort related effect in the average relative risks.

Covariate information would also be interesting in analysing the survival time

after an MI. However, here we can only analyse the hazard rate in terms of

gender and the age and year at which the participants had an MI. Using a Cox

93
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PH model within the Bayesian framework, both the age and year effect can be

incorporated as non-linear random effects. The results illustrate a close to linear

effect for age at the time of MI, while the effect of year at the time of MI is

less clear. However, a slight decrease in the hazard rate is observed for those

who experienced MI after the year of 2000. As expected, the baseline hazard

estimate illustrates a high risk of dying right after the MI and then the hazard

rate increases with age. Especially, the oldest age group has a increased risk of

dying with the first week of an MI compared to the other age groups. The risk

of death after MI is significantly higher for males than females. Note that we do

not have information on the actual cause of death.

The statistical methods used in this thesis is versatile and can easily be adapted

to study other issues. These could for example include longitudinal data analysis

if we had access to time varying covariates. It could also be interesting to study

the differences between geographical regions if we had access to data beyond the

Tromsø study.
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