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1. Introduction

The number of species within a given habitat is often large, and the way they inter-
act may be very complex. This applies to terrestrial as well as to marine ecosystems.
Nevertheless, in most cases man utilizes just a few of the species. This is probably
one of the reasons why scientists often use relatively simple models to study the
population dynamics and other aspects of renewable resources. Another important
reason is, obviously, that simple models are easier to analyse than complex models.

Examples of predator-prey relationships are: shark — fish (D’Ancona 1926),
whale — krill (May et al. 1979), sea mammals — fish (Flaaten 1988), polar bear —
ringed seal (Larsen 1986a and 1986b), wolf — reindeer (Ingold 1980) and lynx —
hare (May 1974). Studies of these predator-prey systems include, inter alia,
mathematical, ecological, economic and anthropological aspects of the
management of the resources.

Since the semine! work by Gordon (1954), theoretical bioeconomic studies have
focused on the difference between open-access harvesting and socially optimal har-
vesting. Multispecies analyses of these kind are to be found in Quirk and Smith
(1970), Anderson (1975), Clark (1976), and Silvert and Smith (1977), all of whom
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mainly use generally formulated growth equations. Hannesson (1983) utilizes
Lotka-Volterra types of growth equations from Larkin (1966) to study open-access
and socially-optimal harvesting of the combined resources.

The aim of this paper is to review ecological and economic aspects of predator-
prey harvesting within the framework of a simple bioeconomic model. The focus is
mainly on sustainable yields and comparative statics, rather than on the dynamic
behaviour of the system. In addition to this simplified approach to the ecological
and economic theory of predator-prey harvesting, we will also develop the condi-
tions under which it is possible to have an increasing optimal resource stock as a
function of the social rate of discount.

In the next section we review a simple but robust predator-prey model. Open-
access harvesting of the resources is studied in Section 3, and optimal management
is studied in Section 4. Our findings are summarized briefly in the final section.

2. Predator-Prey Relationships

It is many years since theoretical biologists started studying ecological systems by
means of mathematical models (e.g., Lotka 1925 and Volterra 1928). In the classical
Lotka-Volterra model, the size of the two stocks oscillates with a period determined
largely by the parameters of the model, while the amplitude is determined solely by
the initial conditions (May 1981, 79). The model is "structurally unstable", meaning
that the slightest alteration in the functional form of the growth equations will tip
the dynamics towards a stable point or towards a stable limit cycle. Structurally un-
stable models are considered to have no place in biology, but nevertheless the
Lotka-Volterra model highlights one of the general properties of predator-prey
models, namely the propensity to oscillate.

Most two-species predator-prey models analysed in the literature can be shown
to have either a stable point or a stable limit cycle (May 1981, 81). A simple model
capturing the essential elements of a predator-prey system is that of May et al
(1979). In this model, as opposed to the classical Lotka-Volterra model, the growth
of the prey is density dependent in absence of the predator, and the predator has a
positive intrinsic growth rate. The carrying capacity of the prey is constant,? and the
model has a stable point. This predator-prey model was used by May et al. (1979)
particularly to discuss the Antarctic ecosystem. Maximum sustainable yield proper-
ties of this model were studied by Beddington and May (1980) and further elabo-
rated by Beddington and Cook (1982). The latter also investigated the stability

2 Larkin (1966) analyses a predator-prey model where each of the two species has its own con-

stant carrying capacity. This expands the sustainable yield region of the system, especxally for low
levels of the prey stock.
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properties of various harvesting regimes. Since the model is simple but still captures
the essential elements of a predator-prey system, it will be used in this paper.

Let W, and W, denote the stocks of the prey and the predator, respectively.
Then, the model is specified as

(1) W, =dW/dt=r W1 - W/K)-aWW,,

() Wz = dW /dt = r,W,(1 — WjaW)),

where r, and r, are the intrinsic growth rates of the respective species. K is the car-
rying capacity of the total system, the level to which the prey will settle in the ab-
sence of both predator and harvest.

In case of no predators, the per capita® growth rate of the prey decreases from
r,, for stock levels close to zero, to zero for stock levels equal to the carrying capac-
ity. If predators exist, the per capita growth rate for the prey equals zero for a stock
level lower than the carrying capacity. The presence of predators reduces the per
capita growth rate in proportion to the biomass of the predator. The predation co-
efficient, a, tells how much the per capita growth rate of the prey is reduced per unit
of the predator. Or to put it another way, a tells which share of the prey stock one
unit of the predator is consuming per unit of time. The total rate of consumption is
expressed in the term aW W, .

The predator’s per capita growth rate decreases from r,, when its own stock
level is close to zero, to zero for a stock level equal to its own carrying capacity,
which is proportional to the level of the prey stock. The proportionality coefficient is
a.

The equilibrium values for the prey and the predator populations, W, and W,
respectively, are obtained by letting dW,/dt = 0 and dW,/dt = 0 in equations (1) and
(2). Without harvesting there is a unique, stable equilibrium solution:

(B)  Wr=K(1+v),
(4) . W, =aK/(1+v),

where v = aaKJr,.

It should be noticed that the intrinsic growth rate of the predator, r, , does not
affect the equilibrium values of either of the two species. The equilibrium values of
both species increase with any increase in 7, or K, ceteris paribus. From (3) and (4)
it follows:

3 The term *per capita” is used, even though we mean per unit of biomass.
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6) WrWr=a.

In equilibrium, a expresses the relative size of the predator stock to that of its
prey.

Even though r, does not affect the equilibrium values of the two stocks, it is of
importance to the behaviour of the system outside equilibrium. That is, r, will affect
the time the predator will need to reach equilibrium from a higher or lower level.

We shall now, in a simple way, introduce harvesting as a factor in the model.
Suppose that the fish stocks are harvested independently with constant effort per
~ unit of time, F;, scaled such that F, = 1 corresponds to constant catchability coeffi-

cients equal tor. Then the catch rates will be

6)  h =rFW,

@) h,=rF,W,.

The introduction of harvesting will influence the growth rates in (1) and (2),
which will be changed to ‘

® W, =rW(l-WJK)-aWW,~rFW,

)  W,=rW,(1-WjaW)-rFW,.

It may be useful to rewrite the variables Wx and W, into a dimensionless form.
Defining X, = W /K and X, = W,/aK, we can rewrite equations (8) and (9) as
(10) X,=rX,1-F,-X, -vX),

1) X,=rX,1-F-XJX).
Recall that the dimensionless parameter v is defined asv = aaK/r,.

The equilibrium properties of this ecological system depend only on the fishing
efforts, F, and F,, and v. The dynamics additionally involve r, andr, .

The phase-diagram for the system (10) and (11) is shown in Figure 1. The
isoclines are found by setting dX/dt = 0 and dX,/dt = 0in (10) and (11). This gives
(12) X, =(IVM)(1-F, - X)) fordX /dt =0,

(13) X,=(1-F)X, for dX/dt = 0.
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FiG. 1. The phase diagram for the predator-prey model.

If positive equilibrium levels of X, and X, , denoted by X,F and X, , exist si-
multaneously, they are found where the isoclines intersect:

(14) XxF=Q1-F)n1+v(1-F))

(15) XS=(Q-F)Q-F)[1+v(1- F)}

With harvesting taken into account relative stock size is
(16) XfixF=(01-F)

It can be seen from (14) that only for F, < 1 will there exist a positive equilib-
rium value of the prey. If F| = 1 the prey-stock will be extinct, and so of course will
be the predator, as seen from (15). The latter expression shows that only for F, < 1
and F| < 1 will the predator survive. ’

The equilibrium values of both species, as would be expected, increase with de-
creasing fishing pressure on the prey, i.e. for reduced F,. The larger prey stock re-
sults in an increased carrying capacity for the predator, thus implying a higher equi-
librium level of the predator stock.

On the other hand, the effects on the prey and on the predator from decreased
fishing pressure on the predator are the opposite of each other. From (14), the
equilibrium value of the prey will decrease, and from (15), the equilibrium value of
the predator will increase. The increased stock level for the predator means heavier
predation on the prey, and thereby a reduced equilibrium level for the latter.
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In Figure 1 the pre-harvesting stock levels of the prey and the predator are de-
noted by X,° and X.°, respectively. This figure illustrates that, in the case of har-
vesting, the equilibrium level of the predator will always be below its pristine level.
This result is independent of whether we harvest only the predator, only the prey, or
both are harvested simultaneously. On the other hand, the equilibrium level of the
prey will increase with the harvesting of the predator. In Figure 1, the relative
strength of the predator harvesting to that of the prey is such that the net result for
the prey is a higher stock level with harvesting than without. The sustainable yield
area in Figure 1 is the triangle ABC. Combinations of stock levels outside this trian-
gle are not possible to maintain.*

3. Open-Access Harvesting

In the preceding section we have seen that a predator-prey system may be capable
of being harvested on a sustainable yield basis for both of the species. When the
species are open-access resources, we may be interested in knowing what the equi-
librium levels of the stocks will be and the corresponding harvest rates. This in-
cludes the possibilities of extinction of one or both of the stocks. It is also interesting
to study the dynamics of the stocks and the harvest industries to see whether the
equilibrium point is reached or not.* However, in this paper we shall concentrate on
analysing equilibrium points by means of comparative statistics.

Given the Schaefer production function of equations (6) and (7), and assuming
constant costs, ¢; , per unit of rescaled effort, E, = rF, the unit harvesting cost be-
comes

an @)=, @ =12).

The demand for each of the two species is assumed to be independent of the
price of the other one and infinitely elastic with respect to its own price. Thus, p,
and p, are the consiant prices of the prey and the predator, respectively.

The net profit per unit of harvest under these assumptions is®

4 Essentially all deterministic two-species models will have a bounded sustainable yield area, but
it need not be a triangle. The isoclines could be curves instead of straight lines, or the area could be,
€.g. a quadrangle. The latter is the case for the predator-prey model designed by Larkin (1966) wherc
the abundance of the predator has a lower limit in the absence of the prey.

5 Beddington and Cook (1982) have studied the stability properties of this model for various
harvesting regimes, from a biological point of view.

6 ¢, includes the alternative cost of capital and labour. That is to say that normal profit on capital
and normal renumeration of labour are included in the costs. The net profit in equations (18) and
(19) is therefore the pure resource rent.
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(18)  bX)=p,~c/X, @ =12),

and the total profit for each of the species is

(19) = (p, - c/X)y, @ =12)

wherey, = h /K andy, = h /aK are the normalized harvest rates of the prey and the
predator, respectively.

Bioeconomic equilibrium is defined as a situation in which we simultaneously
have

(20) m=0, X,=0 (i=12).

When there is zero net profit, no potential harvester has the incentive to enter
the industry and no existing harvesters have the incentive to leave the business.

Let us denote the open access stock levels of the prey and the predator as X,
and X, , respectively. From equation (19) it is seen that, unless y, = 0 for either of
the two species, we have the following simple expression for the open access stock
levels:

(21) X> =c,/p, @i =12).

The open-access stock level of a species depends solely on the ratio of own ef-
fort cost to own price of the yield. The corresponding harvest rates are found by
substituting X, from equation (21) into the growth equations, (10) and (11). Under
our assumptions, the biological parameters have no effects on the open-access stock
levels. However, they will affect the harvest rates, as seen from equations (10) and
(11).

Figure 2 shows the open-access stock levels derived from the ratio of the cost of
effort to the price of harvest given in equation (21). The two sloping, broken lines
are the corresponding isoclines for F, = F,® and F, = F,” , and of course they in-
tersect at the equilibrium point.

As noted above, equation (21) is valid provided that an open access solution
exists with simultaneous harvest of the prey and the predator. If that is not the case,
if, for example, only one of the two species is harvested at the equilibrium, the stock
level of that particular species is given by equation (21). The stock level of the other
species, however, has to be found in another way. We distinguish two cases: first, the
case with no harvest of the predator, and then the case with no prey harvest.
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Fic. 2. Interior open-access equilibrium with simultaneous harvest of the prey and the
predator.

No Predator Harvest

In general there will never be open-access harvesting of the predator if its own price
is lower than the unit harvesting cost at the pristine stock level. Thus we have

(22) p,<c,/X° »F,=y,=0.

Therefore, a necessary condition for open-access harvesting of the predator is
that the ratio of the cost of effort to the price of harvest must be lower than the pris-
tine stock level. However, this is not a sufficient condition. The following example
illustrates this. If the prey is a low-cost, high-price species, as shown by X; = ¢, /p, in
Figure 3, the predator stock will be reduced below its profitability level, ¢, /p,, and it
will not be harvested at the equilibrium point (X,*, X,* ).]

Since the predator’s carrying capacity is proportional to the prey stock in this
model, we will always have ’

@) X, =X =c/p, -

when the predator is unharvested, i.e. when F, = 0. This is likely to happen when
the prey is "inexpensive-to-catch and valuable” compared to the predator. The

T1f the predator had its own, constant carrying capacity, as in Larkin (1966), the chances increase
that it could economically sustain a harvest even if the prey stock is reduced through harvesting.
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open-access stock level of the unharvested predator depends solely on the effort
cost of prey/price of prey ratio.
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F1G. 3. Open-access equilibrium with no harvesting of the predator.

No Prey Harvest

When the preyis an" expensive-to-catch trash" species compared to the predator,
the possibility emerges for this species being unharvested under open access. In this
case we have

(24 X,=G  F,=0.

Using equations (10), (24) and (21) for i = 1, we derive the open-access unhar-
vested prey stock,

(25) X\® =1-vX,” =1-vc)p,,

when the predator is harvested. Equation (25) shows that the open-access level of
the prey is a linear, decreasing function of the predator stock, which is determined
solely by the predator’s cost of effort — own price ratio. In other words, the unhar-
vested prey stock is greater, the more "inexpensive-to-catch and valuable" the
predator is. As seen from Figure 1, harvesting of the predator increases the prey
stock. Therefore, it might well happen that a prey species which is not able to sup-
port an open-access harvest industry of its own when the predator is unharvested,
can do so if the predator is harvested. This is illustrated in Figure 4 where the prey’s

~
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cost of effort — price of harvest ratio is ¢, /p,. With ¢ /p, = A4 there will be no harvest
of the predator-prey system, i.e. the open-access stock levels equal the pristine
levels, X,° and X,°. If, for one reason or another, the c,/p, ratio decreases from A to
B, the predator becomes economical to harvest, but the prey is unharvested at the
stock level X' I", since the equilibrium point is on the border of the sustainable yield
triangle. When the ¢ /p, ratio is further reduced to C, the predator will be harvested
at the stock level ch. The reduced predation pressure on the prey now makes it
economical for the prey to support an open-access harvesting with the stock at the
level X .

So far we have not considered the possibility of extinction. This is because the
harvest function in equations (6) and (7), together with the assumption that total
cost is proportional to fishing effort, imply that the unit harvesting cost in equation
(17) approaches infinity when the stock approaches zero. Thus, with a constant
price of harvest, the net profit per unit of harvest in equation (18) becomes negative
for a positive stock level, and we have

(26) X,>0.
X, c1/'?'1
11v '
I
N ittt v Gl Sl U Sl
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: 1 1
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F1G. 4. Open-access equilibria with and without harvesting of the prey.

Extinction under open-access harvesting in this model only occurs either if
2N ¢=0 (=12

or
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28) p,>c0) (i=12)

for one or both of the species. The expression ¢(0) is the cost of harvesting the last
unit of the stock. If equation (27) or (28) is fulfilled for the predator, only this
species will be extinct, while in the case of extinction of the prey, the predator will
be extinct as well.

4. The Optimal Harvest

Given joint management of predator and prey, we assume that the social manager’s
objective is to maximize the present value of the rent from the two resources. The
joint rent function is '

(29)  R(?) = b,(X))y,(&) + by(Xp) y,(t) = my(8) + m,(0),
using the same notation as in the preceding section. The objective functionale is

¢oy pr= [ s R()de.
0

The social manager will choose the harvest rates, the y’s, so as to maximize the pre-
sent value of the rent, given the biological restrictions implied by the growth equa-
tions, (10) and (11).® Rewriting the growth equations somewhat gives

(Bl) X, =G,X.,X)-y(, 0sy,

(32) X,=G,(X,,X)-y,1), 0sy,.

The following notation for the first order derivatives will be used:
(33)  G;=3G, ()X Bj=12).

From equations (10) and (11) we derive

(G4 G,=r(1-2x

L - X)) 30ifX, $ (1)1 - 2X),

(35) G,=-vrX,<0, G, =r,X}X2>0,

8 Whether one uses the effort rates, the F's, or the harvest rates, the y's, as the control variables,
is simply a matter of convenience. In this section it is most convenient to use the latter.
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(36) G, =r(1-2X/X)30ifX,$X,/2

It is now received knowledge that if an interior solution exists, there are two
joint equilibrium equations that must be satisfied at the maximum (Clark 1976,
318). They are:

BN G,y + X )b,(X)] Gy + [b, (X )b (X1 G () =3,
(38) G+ [b,(X )b, X,)] G, + b, X)X () =3,
where b, (X,) = db(X)/dX,.

The economic interpretation of the result of the predator-prey analysis is quite
similar to that of the single-species model. The left-hand side of equation (37) is the
prey’s own rate of interest, which should equal the social rate of discount, given on
the right-hand side. The first two terms on the left-hand side together form the in-
stantaneous marginal product of the species. It consists of two parts, where the di-
rect one, G, , is equivalent to the one in a single-species model. The second part is
the indirect part of the instantaneous marginal product via the predator. The last
term on the left-hand side of equation (37) is the marginal stock effect; that is, the
cost-reducing effect an increase in the stock level of the prey has on its own har-
vesting.’ The interpretation of equation (38) is similar.

Equations (37) and (38) implicitly give the optimal equilibrium stock levels of
the predator and the prey, X, = X,* and X, = X *, respectively.

A common economic interpretation of the singular path of single-species mod-
els can be generalized to cover the predator-prey case. Let

(39) R, X)) =b,X)G,(X,, X)) +b,(X,)G,X,, X,).

R(.) is the total sustainable rent associated with a sustainable harvest at given stock
levels. Then

(40)  AR()OX,=b/(X)G,()+ Zb(X)G, (i=12).
J

Now equations (37) and (38) can be rewritten as

(41)  (UBYIR()AX, = b(X) (i=12).

? Because b(X)) = p, — c,(X)), we have: b, (X)) = = ¢, (X)).
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The left-hand side is often referred to as the marginal user cost, which gives the loss
in present value of sustainable harvesting when the capital asset, the resource stock,
is reduced by one marginal unit. The right-hand side is the net current value of har-
vesting the stock at the margin. In other words, optimal harvesting of the predator-
prey system requires that for each of the stocks, which can be thought of as the as-
sets of the social manager’s resource portfolio, the present value of future losses
from reducing the stock through harvesting should equal the current net benefits
from that harvesting. -

In the single-species model the optimal stock level will always be larger than the
open-access level, given a positive rate of discount. This also holds for the prey in a
predator-prey model. If the prey stock were below the open-access level,'? i.e.
X, <X,”, equations (19) and (21) would imply m, < 0. The loss from harvesting
the prey may be avoided simply by abolishing the harvest of this species. As shown
in Section 2, this will increase the level of the prey stock, thereby increasing the
carrying capacity and the surplus growth of the predator. The net profit from the
harvest of the predator is therefore increased. Thus, the optimal stock level of the
prey can never be below its open-access level. However, it is quite possible that the
optimal predator stock level might be lower than the stock level under open-access
harvesting. To see this, rewrite equations (40) and (41) for the predator:

(42)  (18)b(X)G,, = by(X,) — (1/8) [b,(X,)G, + by (X)G].

The left-hand side of equation (42) is the loss in present value of sustainable
harvesting of the prey when the predator stock is marginally increased. The right-
hand side is the net gain of the combined current and present value of harvesting
the predator, when the stock level of this species is marginally increased.

From equation (35) and what is said above it follows that the left-hand side of
equation (42) always is negative when the prey is harvested. For the right-hand side
we have that the last term in the parenthesis can never be negative, whereas the sign
of G, depends on the relative size of the predator stock compared to the prey
stock, as shown in equation (36). When the prey is "inexpensive-to-catch and valu-
able", i.e. ¢, is low and p, is high, and the predation préssure on the prey is signifi-
cant, i.e. v is large, it can easily happen that b, on the right-hand side of equation
(42) becomes negative. This is likely to happen when the predator is "expensive-to-
catch trash", i.e. ¢, is high and p, is low. Then it will be optimal to reduce the preda-
tor stock below its open-access level, i.e. X,* < X,*. Private harvesters cannot be
expected to harvest the predator resource at a loss. Therefore, the social manager
would offer them a bounty to harvest a predator that is "expensive-to-catch trash"
which preys on a species that is "inexpensive-to-catch and valuable".

10 Assuming X,” =c,/p, < X,°.
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It is easy to show that when the discount rate goes to infinity, the optimal stock
level will approach the open-access level. If we make the reasonable assumption
that dR(.)/dX; is bounded, then equation (41) implies that when & —c we have
X.* - X.°, where X, is derived from

(43) p;i- C,'(}(,'m) =0.

When the optimal predator stock level is below the open-access level, i.e. when
X,* < X,®, then an increase in the discount rate will increase the optimal predator
stock. In other words, we have shown that!!

(44) 3X,*/85 > 0 when  X*<X,".

This result contradicts the analysis of single-species models where an increased
discount rate makes it more costly to keep a large resource stock. Therefore, the
optimal single-species stock is reduced when the discount rate increases. In the
predator-prey model this is also the case for the prey stock, while the increase in the
optimal predator stock caused by the increased discount rate helps reduce the prey
to its new lower optimal stock level.!> As noted above, a rise in the discount rate
makes it more costly to keep a large prey stock; therefore a part of it is transmuted
into capital in general. Another part is transmuted into predator resource capital.
Thus the losses from harvesting the predator are reduced, because of the lowered
unit harvesting cost and/or increased revenues.

To see how the stocks at the optimum are affected by marginal changes in
prices and costs, equation (41) can be differentiated with respect top, , p, , ¢, , and
¢, respectively, to find the partial derivatives of the optimal stocks with respect to
each of the parameters (see Flaaten 1988, ch. 7). As in the single-species model, it
can be shown that the optimal level of each of the two stocks is negatively affected
by an increase in the own price:

(45) aX*/ap, < 0 (=12).

Also, it can be shown that

11 Since the state variables in equation (41), the X;*s, are implicit functions of the biological and
economic parameters, this result can also be found by differentiating the equation with respect to 8
and solving for X */d5 and 3X,*d5 (Flaaten 1988, 64—65). Such a method provides a general
analysis of the effects of marginal changes in the discount rate on the optimal stocks.

12 Hannesson (1983) asserted: "Increasing the discount rate may, at "moderate” levels, imply that
the optimal standing stock of biomass increases instead of decreasing” (Hannesson 1983, 329).
It seems as if he did not notice that this only applies to the predator species.
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(46) aX,*/ap, > 0 i # j, when b,(X,) << 0.

This is to say that when the predator is a great nuisance, an increase in the price
of the prey will lead to a larger optimal stock of the predator, and vice versa. The
case of an increase in prey price may be explained the following way. Such a price
change initially augments the value of the resource capital of the prey proportion-
ally to the price increase. However, it pays to transform some of the increased
wealth into capital in general, rewarding the social manager with the interest repre-
sented by the discount rate. This transformation may be controlled directly through
harvesting the prey, or indirectly by letting the predator harvest the prey. Hence, the
effect of an increased price of the prey is an increased optimal stock of the preda-
tor. The investment in the predator stock is rewarded by increased revenues and re-
duced harvesting cost of this species. The effects of increased effort costs are the
opposite of the effects of increased prices.

So far it has been implicitly assumed that the optimal solution is an interior one.
This is shown in Figures § and 6. In the former, the star indicates the interior
solution for the case when both species are "inexpensive-to-catch and valuable". In
this case both stock levels are higher at the optimum than under open access. Figure
6 illustrates the case where the prey is "inexpensive-to-catch and valuable", while the
predator is "expensive-to-catch trash". In this case the optimal solution is to subsi-
dize the predator harvest so as to reduce the stock, thereby increasing the har-
vestable surplus production of the prey. The star in Figure 6 indicates that it is op-
timal to harvest at a predator stock level below the unharvested open access level.
On the other hand, the optimal level of the prey stock is higher than the open-
access level of this species. ‘
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F1G. 5. Open-access and optimal interior solutions.
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FIG. 6. Interior optimal solution and open-access solution with no harvest of the predator.

As noted above, so far the optimal solution has implicitly been assumed to be
an interior one, i.e. the optimal stocks may be derived from the "golden rule”
equations, (37) and (38). It is, however, possible that the optimal solution will in-
volve no harvest of either the predator or the prey. Intuitively, it might be uneco-
nomical to harvest the prey if it is "expensive-to-catch trash", or it might be uneco-
nomical to harvest the predator if this species is "expensive-to-catch trash” and its
predation pressure on the prey is insignificant, i.e. v is small. The former case im-
plies an optimal combination of stocks, indicated by the star on the prey’s isocline in
Figure 7, while the latter implies the combination of stocks indicated by the star on
the predator’s isocline in Figure 8.

To find whether the solution given by the “golden rule" equations, (37) and
(38), really is the optimal solution, the following procedure may be used. First, it
should be checked whether or not the golden rule solution implies positive harvest
rates of both species. If it does, the solution is inside the sustainable yield triangle
(AABC in Figure 1), and the interior solution is the solution to the maximization
problem. If it does not, one of the restrictions on the harvest rates, the y’s in equa-
tions (31) and (32), becomes binding.!* Then it is necessary to substitute the rele-
vant golden rule equation with the corresponding growth equation. For example, if
the predator harvest rate becomes binding, the optimal steady state stocks are im-
plicitly found from equations (32) and (33) (y, = Xz = 0 in the former). Inserting the

13 Mathematical analysis of constrained optimization is found in Kamien and Schwartz (1981)
and Seierstad and Sydsaeter (1987). Application of the theory is found in Flaaten (1988).
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optimal stock levels into the prey’s growth equation, equation (31), will give the har-
vest rate of the prey,y, > 0. This example corresponds to what is shown in Figure 8.

X2

FiG. 7. Open-access and optimal stocks when the prey is “expensive-to-catch trash®.

X

FIG. 8. Open-access and optimal stocks when the predator is "expensive-to-catch trash” with
insignificant predation pressure on the prey.
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5. Conclusion

In this paper we have combined a simple biological predator-prey model from May
et al. (1979), reviewed in Section 2, with two economic independent harvest sectors,
one for each of the species. In Section 3 we derived the equilibrium solutions of
open-access harvesting of the two species simultaneously, and a corner solution with
cither of the species left unharvested. The ratio of cost of effort to price of harvest
can be so unfavourable for both species that they are best left unharvested under an
open-access regime.

Maximizing the present value of the joint economic rent from the predator
and the prey may imply an interior solution with simultaneous harvest of both
species, as shown in Section 4. The optimal harvest strategy could also be to harvest
only the most valuable species, and leave the other unharvested. With a positive dis-
count rate, the optimal level of the prey stock will always be larger than the open-
access level. However, this need not be the case for the predator. If this species’
predation pressure on the prey is significant, the predator is a low-valued species,
and the prey is a high-valued species, it was shown that it may be optimal to reduce
the predator stock to below its open-access level. This can be done by subsidizing
the harvesters of this species.

The major finding of this paper is that the optimal predator resource stock may
increase with an increase in the social rate of discount. This was shown to be the re-
sult when the predator’s negative effect on the prey’s growth rate is significant, the
predator is "expensive-to-catch trash", and the prey is "inexpensive-to-catch and
valuable”.
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