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SUMMARY

1. Introduction

This is a thesis on the utilization of renewable resources with species interactions,
within the field of natural resource economics. It comprises theoretical analysis as well
as empirical application of the theory to the fisheries of the Barents Sea and adjacent

areas, and consists of the following monograph and two papers:

1. The Economics of Multispecies Harvesting — Theory and Application to the Barents
Sea Fisheries. Springer-Verlag. Berlin-Tokyo (1988).

2. The Economics of Predator-Prey Harvesting, in Rights Based Fishing (eds. P.A.
Neher, R. Arnason and N. Mollett) 485-503, Kluwer Academic Publ. Dordrecht-
London (1989).

3. Bioeconomics of Sustainable Harvest of Competing Species. J. of Environm. Econ.

and Managem. Forthcoming.

In this text we shall refer to these as Papers 1, 2 and 3, respectively.

Within the field of fisheries economics especially two kinds of questions are raised.
First, what does an open access harvesting regime imply for the levels of the resource
stock, fishing effort and harvest rate? Second, what is the economic optimal resource
stock, fishing effort and harvest rate, and furthermore, how can this economic solution be
implemented by means of harvest fees, effort taxes or quantitative control of the fishing
activities? To answer such questions it is common to assume that the Pareto-criterions
are fulfilled for the rest of the economy. That is, the only externality to be considered is
the one in the fishing industry, therefore the problem is of a "first-best” nature.

It is well-known from the theory of ”second-best” that if one of the conditions for
Pareto-optimum for one or another reason is not fulfilled, neither should the others be in
general (Lipsey and Lancaster, 1956). As noted above it is quite common in the field of

fisheries economics, as well as in natural resource economics in general, to assume that
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the problem considered is one of "first-best” nature. This, however, does not mean that
the real economy is in such a state, but the assumption should rather be looked upon as
a simplifying one to keep the analysis within a reasonable limit. When interpreting the
results of the analysis, one obviously must take account of the limits the assumptions
impose, in particular if the implications for management are going to be applied to the
industry.

The assumption that the resource management problem is of first-best” nature may
be compared to that of the normative theory of taxation where the state of comparison
very often is a "first-best” economy with lump sum transfers as the system of taxation.
Nevertheless, every economist knows that such a system hardly exists in the real world.
The advantage of this approach is, however, that problems of efficiency can be handled in
a stringent way. The literature on economics of fisheries nearly always consider problems
of "first-best” nature. This thesis follows that tradition. The next section classifies the
literature on fisheries economics and places this thesis in the proper group. Each of the

three parts of the thesis are summarized and discussed in the subsequent sections.

2. Classification of fisheries economics models and analysis

Fisheries economics models and analysis may be classified in several ways, for example
in static and dynamic, or, theoretical and empirical, or, deterministic and stochastic
models. Figure 1 illustrates a classification suitable for this particular thesis. The main
distinction is between singlespecies and multispecies models. Singlespecies models are
further divided into autonomous and non-autonomous models, where the former are
characterized by their time invariant parameters. The multispecies models may have
biological or harvest technological interactions. In the front of figure 1 the deterministic
models are classified as dynamic or static depending on whether they discount future
benefits and costs or not. Stochastic models explicitly take care of the uncertainty

prevalent in most biological and economic systems.



Singlespecies Multispecies
Autonomous | Non-autonomous | Biological Harvest
interaction | interaction
Static 1 4 7 10
Dynamic 2 5 8 11
Stochastic 3 6 9 12

Figure 1. Classification of fisheries economic models and analyses.

Let us now go through the 12 groups of fisheries economics models and briefly discuss
some of the main works in the field.

Models in the first group, static, autonomous singlespecies models, are the classics

in fisheries economics theory. Gordon (1954) and Schaefer (1957) are the most famous
ones. A Scandinavian thesis ought to mention the work of Warming (1911) as well, which
includes the major elements of the theory of open access harvesting, later known under
the heading "the tragedy of the commons”.

Group 2, dynamic, autonomous singlespecies models, has its forerunner in non-

technical analysis in Scott (1955) and Gordon (1956). Crutchfield and Zellner (1962)

is the first attempt on mathematical formulation and solution of the dynamic harvesting
problem by means of classical calculus of variation. This was a part of an empirical ana-
lysis of the Pacific-halibut fishery in the northeast Pacific. In the late 1960s and early
1970s optimal control theory became a standard tool in economics (Dorfman, 1969),
especially in capital theory. Also in fisheries economics theory this tool was applied at
an early stage (Plourde 1970, 1971; Quirk and Smith, 1970). Several papers applying
control theory followed, with Clark and Munro (1975) and Clark (1976) among the most
well-known. The former treats the resource stock as capital, and the interpretations of
the solutions are similar to that of capital theory.

In the 1980s there has been an increasing interest in stochastic, autonomous single-

species models of Group 3. Every fish resource shows smaller or greater variations in

recruitment, growth and/or natural mortality. Also economic parameters such as market
prices, ex-vessel prices, input prices etc. are important. Therefore, it is not a surprise

that such variations more and more are explicitly included in fisheries economic models

5



and analysis (see e.g. Lewis, 1981; Andersen, 1982; Charles, 1983 a and b; Andersen and
Sutinen, 1984; Clark, Munro and Charles, 1985; Spulber, 1985; and Hannesson, 1989).

Static, singlespecies models with non-autonomous parameters in Group 4 are, in a

way, contradictory and have hardly any place in the literature. However, such models
might be of pedagogical value to show how the optimal, or open access stock level, vary
with the time variant parameters.

Dynamic, non-autonomous singlespecies models in Group 5, are of interest for the

management of natural resources with intra- or inter-annual variations in biological
or economic parameters. Papers on theoretical analyses of such phenomena includes
Hannesson (1974) ch. 5.4; Clark and Munro (1975), Clark (1976) and Flaaten (1983).
Henriksen (1986) is an application of this theory to the Barents Sea capelin fishery where
non-autonomous biological as well as economic parameters are prevailing.

A model with stochastic recruitment and intra-annual, or seasonal, growth of a fish

species would be an example of a singlespecies, stochastic, non-autonomous model in

Group 6. Little has been published on this type of models yet, but elements in e.g.
Flaaten (1983) and Hannesson (1989) may be integrated to form such models.

Group 7 comprises multispecies models with biological interaction between the spe-

cies. Such interactions may be of predator—prey type, competitive or a combination of
predator—prey and competition. Bioeconomic analysis of multispecies fisheries is fairly
new, however, Larkin (1963) includes some economic elements. Maximizing combined
yield of two species, having given constant weights to each of them, is equivalent to
maximizing gross revenue from the combined fisheries. Hannesson (1974) ch. 3 and
Anderson (1975) include fish prices as well as harvesting costs and maximizes the net
economic yield from the combined harvest. Pikitch (1988) gives a thorough review of
papers on fisheries with biological and technical interactions, mainly in the field of natural
sciences.

Dynamic multispecies models with biological interactions, Group 8, explicitly take

notice of the timelag between the investment/disinvestment in a natural resource and

the altered harvest possibilities this gives. To make comparisons of revenues and costs
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at different points in time it is necessary to discount to the same point in time. Quirk
and Smith (1970) is an early paper on this subject, but the somewhat complex model
| used does not make the interpretations of the results simple.

The two species model and the bioeconomic analysis in Clark (1976) ch. 9 is complex |
enough to include the biological interesting points, but still he manages to make the
economic interpretations easy to compare with these of the singlespecies models. Other
papers of interest in this group includes Silvert and Smith (1977), Hannesson (1983) and
Conrad and Adu-Asamoah (1986). In the field of mathematical ecology there are several
papers extending the analysis in the former. The latter includes, i.a. empirical analysis
of the tuna fisheries in the eastern, tropical Atlantic, using a model of two competing
species.

Group 9 comprises stochastic multispecis models with biological interactions.

Mendelssohn (1980) and Yeung (1986) are examples of papers on this subject.

Static multispecies models with harvest interactions, Group 10, are valid for analys-

ing fisheries where the gear simultaneously catches more than one species. Anderson
(1975) is one of the very few bioeconomic papers in this group. European Communities
(1987) gives a thorough review of fisheries where such externalities are prevalent.

The models of Group 11, dynamic multispecies models with harvest interactions, ext-

end the analyses undertaken by Group 10 models by including the discounting of future
revenues and costs. Clark (1976) ch. 9 includes dynamic analysis of technological inter-
dependent fisheries.

Stochastic multispecies models with harvest technical interactions, Group 12, are non-

existing in the bioeconomic literature. Elements from the models in Group 9 may be
useful in the analysis of Group 12 models.

All three parts of this thesis belong to Group 8, dynamic multispecies models with
biological interactions. The subsequent sections of this summary are brief reviews of the
three parts of the thesis with special emphasis on the question raised, the results found,
the connections between the papers and how they are related to the literature in this

field.



According to the introduction in Paper 1 the aim of that monograph is to give a

. methodological and quantitative analysis of multispecies fisheries, with
an application to the Barents Sea fisheries.

(Paper 1, p. 5.)

This is essentially the purpose of this thesis as well. To be more specific, the questions
raised include: What are the open access equilibrium solutions for the fish stocks, fishing
effort and harvest rates, and what are the corresponding optimal solutions? How are these
solutions affected by changes in the economic parameters such as the ex-vessel prices of
fish, harvesting costs and the discount rate? When are the implications for management
of the two species models equivalent to that of singlespecies analysis? What is the
adequate concept of multispecies models to be compared to the concept of maximum
sustainable yield (MSY) known from the singlespecies models? What are the implications
for management of different biological and economic objectives for the fisheries? Does
a three species model add something to the analysis compared to that of a two species
model?

In Paper 1 some of these questions are answered within a theoretical as well as an
empirical context. The theory is applied to an investigation of the fisheries of the Barents
Sea and adjacent areas. The three species Barents Sea model (the TSB-model) includes
species at three different ecological levels: plankton preying fish, fish preying fish and
fish preying sea mammals. At each ecological level two or more species are aggregated
into one. In the following section is given a brief review of the 11 sections of Paper 1 and
comparisons are made to the relevant literature on dynamic multispecies models with
biological interactions. The subsequent two sections of this summary discuss Papers 2
and 3, respectively, which are purely theoretical, partly supporting the analysis of Paper
1 and partly extending the analysis of the latter by raising other related questions.



3. The economics of multispecies harvesting — theory and appli-

cation to the Barents Sea fisheries

This monograph consists of 11 chapters and 12 appendices. The introduction gives a
review of relevant biological and economic literature (published before 1986/87) and the
purpose of the work is put forward. To understand the relative great emphasis put on
the applied part of the work, including Flaaten (1984 a—c), it is of importance to stress
the lack of an empirical based biological multispecies model for the Barents Sea when
this work commenced. Biologists and other natural scientists are, however, currently
working on such a model (see Tjelmeland and Bogstad, 1989).

Chapter 2 presents a fundamental predator—prey model from Leslie (1948) and May
et al. (1979). In Ch. 3 the two species model is extended to include a top predator preying
on the two other species, and whose carrying capacity depends on the total biomass of
its preys. Selective harvest technology for each of the three species is introduced, and
equilibrium stock levels are derived to be functions of biological and harvest technological
parameters.

Hannesson (1983) is a theoretical analysis of a predator—prey system, and it is easy to
show that the model he is using has the same isoclines as the model in ch. 2 of Paper 1.
However, the dynamics of the two models are different. The questions raised in Paper 1
include the ones asked in Hannesson (1983), but the ways they are answered are different.

The three species model designed in ch. 3 is an extension of the three species models
in May et al. (1979). This has been done to include the top predators of the Barents Sea,
seals and whales, in the TSB-model. The sea mammals prey on the plankton feeders,
capelin and herring, as well as on their main predators, cod, haddock and saithe. The
three aggregated stocks are called sea mammals, capelin and cod. Another extension of
the analysis compared to May et al. (1979) is the deduction of the equilibrium stocks as
well as the conditions for equilibrium and stability, shown in appendices 1 and 8.

Based on Beddington and May (1980) it is shown in ch. 4 how to derive the limit to

sustainable harvesting in a two species model. This limit proves to be a concave curve in



the yield plane of the two stocks, and it is named the maximum sustainable yield frontier
(MSF). This compares to the production possibility frontier, known from the economic
welfare theory, and is the two species model’s correspondent to the MSY concept of
singlespecies models. It is also shown in ch. 4 how to derive the MSF for the two stocks
at the lowest ecological levels for a given stock level of the top predator. The alternative
would be a possibility plane in the room of yields for the three species. The MSF curves,
and the combination of stocks giving MSF, proves to be useful in the analysis of different
economic and biological harvesting regimes in Paper 3.

Ch. 5 of Paper 1 gives a short review of the ecosystem of the Barents Sea, from
phytoplankton and zooplankton to fish and sea mammals. In a global context this
ecosystem is considered to be a simpel one, despite nearly 150 species of zooplankton
and 115 species of fish. Of the approximately 25 species of sea mammals most of the
whale species utilizes the Barents Sea, the coastal areas of Norway and the Norwegian
Sea as feeding grounds in the summertime. Herring, capelin and cod make the larger
part of the total biomass of fish, and these species have been the most valuable ones from
a commercial point of view.

Ch. 6 explains the process of ”"guesstimating” the biological parameters of the TSB-
model. The available set of data was too poor to use a standard estimation procedure
to find the nine biological parameters. For some species reiiable time series data were
lacking, as well as precise estimates of the stock sizes. The main types of biological
interactions among the stocks of the TSB-model have to some extent been known, in
the meaning of which species eat which and how much, but not to such an extent that
we could defend using traditional statistical methods. Instead we used what we called a

"guesstimation” procedure:

By ”guesstimation” is meant, in this connection, that relevant biological liter-
ature is studied and information essential to our problem is extracted. When
two or more sources give somewhat different figures for the same variable,

parameter etc., a choice is made as to which to rely on or the average of
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them is used. All the steps and assumptions made are explained in detail so
that the reader can critically appraise and modify them if that is felt to be

desirable.

(Paper 1, pp. 35-36.)

To limit the attainable set of biological parameters of the TSB-model we demanded
there should be some constraints on the yield and stock sizes of the model. The biological
limits of the ecological system are the limits to sustainable economic development of the
fisheries based on these resources. The set of biological parameters finally arrived at
imply sustainable yields that do not contradict received biological knowledge for the
species in the Barents Sea and adjacent areas.

Among the cited papers in Grdup 8 abové,i only Conrad and Adu-Asamoah (1986)
include an empirical analysis of multispecies harvesting. It has been done partly by
exogenous assigning of parameters and partly by using parameters estimated in single
species contexts. Unless adjusted for, such use of parameters from single species models
may cause distortions in the multispecies model. In Paper 1 the interactions between
the three stocks have been taken notice of in the "guesstimation” procedure. Possible
sustainable yield of one stock is therefore in tune with the possible sustainable yields of
the other two stocks. Increasing the reliability of the biological part of the TSB-model,
or other simple multispecies models, requires more methodological as well as empirical
work. However, this research effort should rather be left to biologists, statisticians and
other natural scientists. Nevertheless, recent literature in these fields seem to indicate
that a partial approach to empirical multispecies modelling will still prevail for some
time, see e.g. Magnusson and Palsson (1989).

Ch. 7 is a theoretical bioeconomic analysis of multispecies harvesting. For a two
species predator—prey model it is shown how the optimal equilibrium stocks are affected
by changes in harvest prices, harvest costs and the social rate of discount. It is found
that the optimal predator stock may increase by an increase in the discount rate. The

effect on any of the stocks from an increased harvest price of the other species may be
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positive or negative depending on the biological interactions and the net unit value of
the harvest rates at the optimum. The effects on the optimal stock levels from changes
in the economic parameters are analysed also in Hannesson (1983), but the model and
the method used are different from what we have used in ch. 7. It is also shown in ch. 7
what to do when the optimal solution is not in the interior of the sustainable yield area.

The economic parameters of the TSB-model are calculated in ch. 8 by using data from
i.a. the Norwegian accounting surveys for fishing vessels. These parameters are used in
the bioeconomic analyses in the subsequent chapters of Paper 1.

The TSB-model’s optimal equilibrium stock levels, harvest rates and economic rent
are derived in ch. 9. Optimal harvest and effort taxes are also found. The basic case
biological and economic parameters from the preceding chapters, the TSB-model implies
a long run optimal equilibrium solution with the cod fishery as the dominant fishery.
Capelin should not be harvested, but rather be left in the sea as feed for the cod. The
sea mammals’ consumption of cod and capelin is so significant that it pays to harvest
them heavily. The optimal equilibrium stock level of the sea mammals is below the open
access stock level, and therefore the harvest of these must be subsidized. Losses in this
branch of the fishery is more than offset by he gains to be reaped in the cod fishery.

The conclusion that capelin should not be harvested at the optimum changes when,
ceteris paribus, the price of capelin increases somewhat. Ifthe total harvest could be sold
for prices paid for roe-capelin and capelin for other consumption purposes, the optimal
solution would be to keep the cod stock at a loss giving level and let the capelin fishery
be the rent yielding one.

In scientific papers using control theory it is very often assumed that the optimum is
an interior solution, i.e. that the parameter set is such that the optimum is not at the
boundary of the attainable solutions. As shown in ch. 9, and noted above, the TSB-
model implies an optimal solution at the boundary of the attainable set of solutions
for the "basic case parameters”. The test used to reveal such cases is described and
explained, and the desired optimum is found.

The optimal equilibrium stock levels, harvest rates and the net present value of rent
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(NPV) from the combined fisheries are functions of biological and economic parameters.
To investigate how sensitive these solutions are to changes in the parameters, we take
the elasticities of these endogenous variables with respect to each of the parameters. We
found that NPV is sensitive to changes in most of the biological and economic parameters
related to the capelin and cod stocks, but rather insensitive to changes in the parameters
related to the sea mammals. The optimal equilibrium stock of sea mammals increases
with an increase in the social rate of discount.

As noted above boundary solutions are of interest in models such as the TSB-model.
Other kinds of boundary, or corner solutions may arise in single species models, for
example when there are several cohorts to be fished wholly or partly selectively, or when
there are two or more types of vessels or gear fishing in a biomass model. The former
type of corner solution arises in Hannesson (1978), while an example of the latter is found
in Clark and Kirkwood (1979). The lack of examples in the fisheries economics literature
on the kind of boundary solutions analysed in section 9 is probably because of the lack
of applied multispecies models.

The optimal stock level for capelin derived in ch. 9 is, for the basic case parameters,
greater than the pristine level. Such a result clearly is not possible to have in single species
models. Henriksen (1984) found the optimal spawning biomass of capelin (Mallotus
villosus) in the Barents Sea to be approximately 30% of the pristine stock level, using
a 7% social rate of discount. Kristmannsson (1980) found the optimal spawning stock
level of herring ( Clupea harrengus) off Iceland to be 25-30% of the pristine level, using
a 7% social rate of discount. Bjgrndal (1987 and 1988) arrived at an optimal level of
spawning biomass of North Sea herring equal to 40% of the pristine level in case of
costless harvesting and 60% in case of stock dependent harvesting costs. In both cases
the discount rate was 6%. All of these applied analyses of plankton preying fish stocks
conclude with optimal relative equilibrium stock levels far below what we found for the
stocks of the TSB-model. This should not come as a surprise knowing the important role
of herring and capelin as transformers of plankton to fish in the north Atlantic.

In a bioeconomic analysis of cod (Gadus morhua) in the Barents Sea, Hannesson

13



(1978) does not explicitly state the optimal and the pristine stock levels, but implicitly
they can be found. The former is somewhat larger than the MSY stock level, when
using 10% social rate of discount. There are, to our knowledge, no published papers on
bioeconomic singlespecies analysis to the Barents Sea area’s stocks of seals and whales,
but for other areas there are some. Clark (1985) pp. 25-27 analyses an aggregated stock of
whales in the Antarctic and find the optimal equilibrium stock level to be approximately
35% of the pristine level, given a 5% social rate of discount. In a bioeconomic analysis of
the harp seals ( Pagophilus groenlandicus) in the northwest Atlantic Conrad and Bjgrndal
(1989) calculated the optimal stock level to 35% of the pristine level, given 6% discount
rate and no stock dependent harvesting costs. Stock dependent harvesting costs would
have increased the optimal stock level. In these two bioeconomic singlespecies analysis
of sea mammals the optimal stock levels are significantly higher than found in the TSB-
model, but still lower than the MSY stock level. The TSB-model includes the costs of
predation which the sea mammals impose the capelin and cod fisheries, therefore, our
results are reasonable compared to the results of the singlespecies analysis.

In ch. 10 of Paper 1 is shown the open access solution for the stock levels and harvest
rates, provided that the Schaefer harvest function is valid in all three fisheries. Compared
to the optimal solutions discussed in the preceding chapter there are especially two results
which ought to be mentioned. First, the capelin stock is too heavily fished under an open
access regime. Second, the sea mammals are harvested too lightly. Through history
the relative rates of harvesting of the three ecological levels have changed dramatically,
towards greater emphasis on the plankton preying species. This is probably a result of
changes in relative prices and harvest costs of the three stocks.

Given the assumption of Schaefer harvest technologies in all three fisheries, none of
the stocks of the TSB-model will be extinct under open access harvesting. This is in
accordance with historical facts, with a couple of exceptions. However, with the current
fish finding and gear technology, relying on historical facts and open access harvesting
in the future may prove disastrous to many real fish stocks. An empirical analysis of

the North Sea herring by Bjgrndal and Conrad (1987) indicates that this stock probably
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would have been extinct unless the fishery had been closed after the 1977-season. This
despite their calculation of the long run open access equilibrium spawning stock level to
approximately 10% of the pristine level. The reasons for this being partly the difference
of the vessels adaptation in the short and in the long run, and the time delay between
spawning and recruitment.

In the TSB-model each of the stocks is an aggregate of two or more real species
close to each other in the ecological system. The question of extinction or not under
open access harvesting should rather be answered for each of the real species since there
are significant differences among some of them related to animal behaviour and gear
technology. For example, the minke whale (Balaenoptera acutorostrata) is probably less
vulnerable to extinction than the harp seals of the Barents Sea. The reason being that
the former is distributed over a greater part of the sea, individuals are relatively small,
and furthermore, they are difficult to spot when they come to the surface to breath for
a very short time. The harp seals, however, congregate on the ice to give birth to pups
and are easy to harvest during this period.

For a ”high” price, or "low” harvesting cost of capelin it is shown in ch. 10 that open
access harvesting will reduce this stock to such a low level that it can not sustain the
cod stock at its open access level, implying that there will be no cod fishery in this case.
Such cases were analysed theoretically in ch. 7. Obviously, it is not possible to have such
results in deterministic singlespecies models, except for the trivial case when even the
pristine stock level is below the minimum rent yielding level.

Ch. 11 summarizes Paper 1 and points out possible extensions of this work. Papers
2 and 3 extend the theoretical analysis of Paper 1. They will be briefly reviewed in the

two following sections.

4. The economics of predator—prey harvesting

This paper, Paper 2, extends the predator—prey analysis of Paper 1 ch. 7, especially

by investigating solutions at the boundary of the sustainable yield area. By using com-
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parative statistics, the analysis, including the graphics and the calculus, could be kept
very simple.

In section 3 is shown for which conditions the open access harvesting implies equilibria
at the boundary of the sustainable yield area. Even if the pristine stock level is too low
to economically sustain open access harvesting, this may change if the stock level of the
predator is reduced by harvesting. Decreased stock level of the predator increases the
stock size of the prey. On the other hand, profitable harvesting of the predator may
become unprofitable if increased harvesting of the prey reduces this stock as well as that
of the predator. Cases like this may occur because of exogenous changes in market prices
and harvest costs.

In section 4 is shown that the optimal stock level of the prey can not be less than
the open access level, whereas the optimal stock level of the predator may be below its
own open access level. The latter case arises when the predator is a ”trash” and the
prey is an "inexpensive-to-catch valuable”. It is also shown that increased discount rate
implies increased optimal stock level of the predator when it is below its open access
level. Increased discount rate always implies decreased optimal stock level of the prey.
As noted above it is quite common in bioeconomic theory to assume that the optimal
solution is an interior solution. In the case of predator-prey harvesting this would imply
a solution within the sustainable yield area with positive harvest rates of both species. If
the stock levels derived from the golden-rule equations do not satisfy these constraints,
the optimal solution has to be found the way reviewed at the end of section 4.

Clark (1985) ch. 5.3 analyses predator—prey harvesting in general and shows that the
optimal stock level of the predator may be below its open access level, whereas the prey
species have to be above its open access level. As we have shown, the results may be
different when solutions at the boundary of the sustainable yield area are allowed.

In Paper 1 ch. 7 we claimed to have found that the optimal stock level of the prey
might increase with increased discount rate, whereas in Paper 2, section 4 it is found
that the prey species always decrease with increased discount rate. The reason for these

seemingly contradictory statements is that in the former case we did not distinguish
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between interior and boundary solutions. When the optimal solution is at the boundary
of the sustainable yield area with the predator as the only harvested species, increased
discount rate implies decreased stock level of the predator and increased stock level of
the prey. It is only in this case with no harvesting of the prey at the optimum that this
species may increase with an increased discount rate. This also implies that even if a
prey is left unexploited by man at a low rate of discount, it may be optimal to harvest
this species at a higher rate of discount. The optimal solution in this case changes from
a boundary solution to a solution in the interior of the sustainable yield area. Except for
the cases of extinction of one species, boundary solutions have received little attention

in the bioeconomic literature (see e.g. Hannesson (1983) and Clark (1985) ch. 5).

5. Bioeconomics of sustainable harvest of competing species

This paper, Paper 3, extends the two species analysis of Paper 1 ch. 7 to the case
of two competing species. The main question asked is what are the implications for
management of different biological and economic optimization criteria? The solutions
found are compared both between them and with solutions from singlespecies analysis.

In section 3 is shown that the maximum sustainable yield frontier (MSF') is of the same
importance in this Gause model of two competing species as the MSY is in singlespecies
modeis. The combinations of stocks giving MSF form a hyperbola branch through the
area of sustainable yields of the phase plane of the two species, whereas the MSY-stock
level in singlespecies models is a single point at the biomass axis of the yield-biomass
plane.

In section 4 is shown that economic rent may be earned for some combinations of
stocks in the sustainable yield area. Given the Schaefer harvest functions the isoprofit
lines prove to be ellipses. In case of costless harvesting it is shown that the graph through
the points of maximum economic yield from the combined harvest of the two species is
a part of a hyperbola branch lying outside the MSF hyperbola. In section 5 is shown
that for various price ratios of the two species the graph through the points of maximum

present value (MPV) of equilibrium rent is part of a hyperbola inside the MSF-hyperbola.
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It is also shown that optimal harvesting may imply harvesting any of the two competing
species at a loss at the equilibrium. The optimal equilibrium stock levels depend on the
biological and economic parameters, and it is shown how the optimum is affected by
changes in each of the economic parameters.

Compared to Paper 1, Paper 3 is different not only because of the analysis of two
competing species instead of the predator—prey interactions analysed in the former. More
important is the investigation of implications for management of various optimization
criteria. Ecological conditions put restrictions on the sustainable economic development
of the resource industries. In such a connection the ecological MSF criterion is merely a
special case of the MPV criterion.

Paper 3 does not, like Paper 2, put emphasis on boundary solutions, except for
the terminal points of the MSF, MEY and MPYV graphs. The isoprofit ellipses and the
hyperbolas of the MSF, MEY and MPYV stocks have not been shown in the cited literature
of Group 8. Neither has the result of the two hyperbolas making upper and lower bound

of sustainable economic harvest of the two competing resources.
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PREFACE

The aim of this study is twofold: to provide a theoreti-
cal and an applied analysis of multispecies fisheries. The
theoretical part will include concepts and analysis which,
hopefully, will be of interest not only to economists, but also
to biologists and ecologists. The application of the theoreti-
cal model and analysis to the Barents Sea fisheries gives empiri-
cal content to the analysis, which is important for the advance-
ment of fisheries management science. It is also my firm belief
that this kind of work in the end will be beneficial to the
people trying to make a living from harvesting marine resources.

For thousands of years man has been whaling, sealing and
fishing in these cold and harsh surroundings. The relative
importance of the different species in the ecosystem has changed
throughout history. In the seventeenth century the abundant,
slow-swimming Greenland right whale and the Biscayan right whale
in the Barents Sea area were so valuable, especially to English
and Dutch whalers, that the intensive exploitation of these
common property resources probably were the main reason for the
extinction of these two stocks. The two species are, however,
still present in other parts of the North Atlantic Ocean.
Except for these two stocks of whales there is no knowledge of
other stocks of sea mammals or fish in this area being extinct
in historical time.

With the immense development of harvesting technology,
especially in our century, man has been increasingly aware of
the possibility of depletion of some stocks under a "free for
all" harvesting regime. For the same reason the knowledge of
the biological interdependencies of the species has become in-
creasingly demanded by those having an interest in better manage-
ment of the living resources of the sea. The traditional object
of study for economists is the use of limited resources for com-
peting ends. In our context the limits of the resources lies
within the ecosystem and because no multispecies model of the
Barents Sea area was available, I had to design my own and



implement this by use of existing statistics. Being especially
concerned with the main principles for optimal harvesting of
the ecosystem, this study is carried out on a highly aggregated
level with just three stocks involved. The work to be presented
is an economist's contribution to a hopefully better under-
standing of how the ecosystem should be managed. Maybe it should
be called an interdisiplinary study rather than an economic one,
since to a great extent it has been necessary to integrate eco-
logical, biological and economic knowledge to give an answer to
optimal management.

OLA FLAATEN

Tromse, Norway
December, 1987
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1. INTRODUCTION

It is many years since interested theoretical biologists
started studying ecological systems by means of mathematical
models (e.g. Lotka, 1925 and Volterra, 1928), and studies of
single species models are even older (e.g., Verhulst, 1838).

The breakthrough in the use of mathematical models in
applied marine-biological research should be especially credited
to the English biologists R.J.H. Beverton and S.J. Holt (Beverton
and Holt, 1957) and the Canadian M.B. Schaefer (Schaefer, 1954
and 1957). The Beverton-Holt model is a one species model in
which the relations to other species are not explicitly formulated.
However, in a way these relations are implicitly taken care of:
The mortality rates include mortality due to predation by other
species; growth rates and recruitment will depend on availability
of prey and on the presence of competitors, etc.

One species models of this kind have many advantages com-
pared to more complex ecosystem models. They are quite simple,
the parameters have specific biological meaning and can in many
cases be estimated from catch and effort data, and the models
have proved to be sufficiently reliable for management purposes.
The latter is especially the case when the harvesting has con-
centrated on just one or a very few species in an ecosystem, or
when the level of fishing effort directed against different
species has been changing slowly with time.

The technical and economical developments have led to
commercial exploitation of more and more fish stocks, and stocks
which sustained fisheries for a very long time have been severely
depleted. This is probably the main reason for the increased
interest biologists and others have taken in the use of multi-
species models in applied research. As far as we know the most
comprehensive study undertaken until now is the North Sea model
(Anderseh and Ursin, 1977). It can be described as a multi-
species extension of the single-species Beverton-Holt model. The
interactions between fish stocks are taken care of by natural
mortality and growth rates, based on the principle of "one man's
loss is another man's gain".
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Although the main report on the North Sea model (op.cit.)
is primarily a theoretical study, the model has been used for
simulation of the history of North Sea fisheries and also for
prognostic purposes. The computer simulations tell i.a. that
the increase of cod and other demersal species during the 1970s
were due to a decrease of the herring and mackerel stocks at the
end of the 1960s. Mackerel, in particular, preys hard upon the
fry of herring, cod and other species, and when the mackerel
stock was depleted from 3 to 1 million metric tons by heavy purse-
seine fishing within a few years, the niches for other stocks
were expanded. All-in-all, this change in exploitation pattern
has increased the total fish harvest in the North Sea from
1.5 million m.t. in 1960 to more than 3 million tons in 1976
(Ursin, 1974, 1977 and 1978). To get more reliable estimates of
the model's coefficients, The International Council for Exploi-
tation of the Sea (ICES) has started a large research project
based on stomach sampling (ICES, 1982).

Beyond the North Sea model there have been several biologi-
cal studies of parts of fish stock interactions in larger eco-
systems. Some of these will be mentioned here. T. Laevastu and
other scientists at the Northwest and Alaska Fisheries center in
Seattle have done several studies on multispecies interactions
in the Bering Sea area by means of computer simulation models.
Contrary to the North Sea model, which is based on number of
fish, Laevastu et al. work on biomass level (Laevastu and Larkins,
1981). They are especially concerned with

“fisheries-oriented ecosystem simulation and its evaluation"

(op.cit., p. 2),
and the models include the predatory effects from marine mammals.
Laevastu and Favorite (1978) is a study of predation on herring
from marine mammals and fish in the Bering Sea. They found that
the predators' comsumption was more than 1 million m.t. per year,
while on the other hand the fishing amounted to only 40 thousand
tons.

Ponomarenko et al. (1978) studied the predation effects on
capelin in the Barents Sea from cod and haddock. They found that
the annual consumption amounted to between 6.6 and 9.8 million
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m.t. in the years 1974-76. In comparison, annual catches were
1.4 million m.t. in the same period, or only 15-20% of the con-
sumption by cod and haddock.

Interactions between seals and fish stocks in the Atlantic
ocean were studied by Sergeant (1973 and 1976). He found that the
Harp seal in the Northwest Atlantic consumes food at a daily
rate of 5% of its own body weight. Parrish and Shearer (1977)
studied interactions between seals and fish in Scottish waters
and concluded that the predation-consumption of fish by seals
amounted to 200 thousand tons per year.

Theoretical bioceconomic studies have focused on the dif-
ference between open access harvesting and socially optimal
harvesting. Multispecies analyses of these kind are to be found
in Quirk and Smith (1970}, Anderson (1975) and Clark (1976).
All of them use generally formulated growth equations, whereas
Hannesson (1983a) utilizes a Lotka-Volterra type -of growth
equations. By this specification of the model, he is able to
show how the optimum stock levels are effected by changes in
discount rate, relative prices and harvesting costs. The para-
meters used are assumed values and not estimated from empirical
data. However, in Hannesson (1983c), which uses a two species
Beverton-Holt model with the growth of individual cod being a
function of the capelin biomass, some of the parameters are
estimated from Barents Sea data. Conrad and Adu-Asamoah (1986)
have partly estimated the parameters and partly assigned values
to the parameters of the models in their multispecies analysis
of tuna in the Eastern Tropical Atlantic.

Balchen (1979) describes a large research program, Oceano-
graphic Biomodels (OBM), whose aim is

.... to establish the capability of producing mathematical/

numerical models of a total marine ecological system of the

Barents Sea, ...
The study would include physical and chemical oceanography,
phytoplankton, zooplankton and fishes. So far a submodel of
capelin is completed (Reed and Balchen, 1981) in addition to
oceanographic parts of the study. Regarding the applicability
of the project it was said:
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An operational set of models is planned to be available
around 1985. The most obvious applications of this system
will be in estimating present and future states of the
system, particularly those representing the quality,
quantity and distribution of the most important species
of commercial fish. It is expected, however, that the
system will also have important applications in oceano-
graphic and biological research and in studies of ocean
pollution as a consequence of offshore oil activities.
(Balchen, 1980, p. 67)

Concerning the fisheries the aims of the OBM of the Barents Sea
are very much like those of the North-Sea model even though
methods and the way of approaching reality are different. How-
ever, as the quotations demonstrate, the general aims of the
former models are much wider than just being tools for fisheries
1) .

management.

At the Institute of Marine Research, Bergen a research pro-
ject on "A multispecies model of the Barents Sea" (The MSB-model)
has been initiated (Tjelmeland, 1986). The aims are to make the
project an integrated part of the institute's marine biology
research and to develop the multispecies model into an opera-
tional management tool for the Barents Sea fisheries.

Both the North-Sea model, the OBM- and the MSB-model are
large, complex, resource consuming research projects with inputs
from biologists, mathematicians, cyberneticians, statisticians
and other groups of scientists. So far, no economists or social
scientists have been involved.

Compared to the three models above our study is less
ambitious regarding aims and quantitative extent on the applied
biological level. We shall develop a three species model of the
Lotka-Volterra type and use this for economic studies of multi-
species fish communities. Hoping that our work can be of some
help for better mahagement, it will be applied to the Barents
Sea fisheries. An operational model of the ecosystem does not
yet exist. Therefore we will have to rely on several sources
to get the necessary data for estimating the biological inter-
dependencies of the relevant species. As will be clear later,

1)The OBM project seems to have come to an end without having

reached the goals with respect to operational models of "the
most important species of commercial fish".
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this is not at all an easy task. Biological data gathered for
use in the Beverton-Holt type of models obviously can be used to
estimate parameters of other kinds of models, e.g. the Lotka-
Volterra type we are going to use. However, this may raise some
methodological problems, and even though they can be overcome to
some extent, scientifically based data on biological interactions
among species is often lacking. Therefore we will have to rely
on "guesstimation" and simulation techniques to complete the
three species Barents Sea model.

The aim of this study is twofold: methodological and quanti-
tative analysis of multispecies fisheries, with an application
to the Barents Sea fisheries. Even though some of the data are
scanty and the methods to be used in the estimation of biologi-
cal parameters are rough, the quantitative analysis should not be
considered merely as an illustration of the method. If we were
required to make decisions and take actions in connection with
relationships covered by this study, we would (in the absence of
more reliable results, and without doing more work) rely to some
extent in our results. Thus, the quantitative analysis does not
solely serve the purpose of illustrating a method, but we think
they also give a description of some important biological and
economic relationships of the Barents Sea fisheries.

A brief outline of the bdok is as follows. A two species
biomass model is reviewed in Section two, and Section three pre-
sents a three species model based upon the former one. The con-
cept of maximum sustainable yield frontier (MSF) is defined and
presented in Section four, and a method for deriving this in the
three species case is developed.

A brief description of the marine ecological system of the
Barents Sea area is included in Section five. Since a fully
developed and implemented multispecies model of the Barents Sea
fisheries did not exist, an attempt has been made to estimate
the nine biological parameters of the three species model. The
"guesstimation" procedure is explained step by step in Section

six.
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The three stocks in the applied model are aggregated
stocks with "capelin" consisting of capelin and herring, "cod"
consisting of cod, haddock and saithe, and "sea mammals" con-
sisting of 14 species of whales and two species of seals.

Economic aspects of multispecies fisheries studied in
Section seven includes optimal harvesting as well as open access
harvesting. The economic parameters of the model are derived
from Norwegian data in Section eight.

In Section nine are shown the optimal solutions of the
three species Barents Sea model (TSB-model), and the open access
solutions are derived in Section ten. Finally, Section eleven
comprises the summary and the conclusion of this study.
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2. A TWO SPECIES MODEL

First we shall give a review of the two species model ana-
lysed in May et al. (1979), since our three species model will
be based upon this. Suppose there is a prey, W1, on which the
existence of a predator, Wz, is based. w, and W2 can be thought
of as biomasses. A simple model describing the dynamics cf such

a system is

W W (2.1)

dW1/dt = r1y1(1 - w1/x) - aW,

1 2

W

2 dwz/dt

r2w2(1 - Wzlaw1) v (2.2)
 where r, and r, are the intrinsic growth rates of the respective
species. K is the carrying capacity of the total system, at
which the prey will settle in the case of no predator and no

harvest.

1)

The per capita growth rate of the prey decreases from r

for stock levels close to zero, to zero for stock levels‘equal1
to the carrying capacity in case of no predators. If predators
exist, the per capita growth rate for the prey equals zero for

a stock level lower than the carrying capacity. The presence of
predators reduces the per capita growth rate in proportion to

the biomass of the predator. The predation coefficient, a, tells
how much the per capita growth rate of the prey reduces per unit
of the predator. Or to put it another way, a tells which share
of the prey stock one unit of the predator is consuming per unit
of time. The total rate of consumption is expressed in the term

aW1W2.

The predator's per capita growth rate decreases from r, when
its own stock level is close to zero, to zero for a stock level
equal to its own carrying capacity, which is proportional to the
level of the prey stock. The proportionality coefficient is a.

Mathematical stability properties of the model (2.1)-(2.2)

2)

will not be discussed here. (It can be found in the literature

Y ohe term "per capita" is used, even though we mean per unit of

biomass.

2)F‘or the three species model to be studied, the stability con-

ditions are derived in Appendix 8.
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of theoretical ecology, e.g. in Beddington and Cook (1982), May
(1974) and May (1981).) However, it is easy to see, by letting
ﬁ1 and ﬁz equal zero in (2.1) and (2.2), that if an equilibrium
point exists with both species being positive, the stock levels
will be ‘

* r, 1)

- , (2.3)

K ,
W, = — lim W, =
1 T+v ! Koo 1 an
r 1)
* aK . * 1
W, = — lim W, = — : (2.4)
2 T+v ! X 2 a
where v = 235.

r
It shoJld be noticed that the intrinsic growth rate of the
predator, Ty, does not affect the equilibrium values of either
of the two species. The equilibrium values of both species
increase with any increase in r, or K, ceteris paribus. From
(2.3) and (2.4) it follows

*  * 5
W2/W1 = a . (2.5)

In equilibrium o expresses the relative size of the predator
stock to that of its prey.

Even though r, does not affect the equilibrium values of
the stocks, it is of importance to the behaviour of the system
outside equilibrium. Defining the "natural return time", TR, of
the species as

TiR = 1/rg i=1,2, : (2.6)

r, will affect the time the predator will need to reach equi-
librium from a higher or lower level.

Suppose that the fish stocks are harvested independently.
with constant effort per unit of time, Fi' scaled such that

1)In a logistic single species model the equilibrium stock level

with no harvesting always equals the carrying capacity. 1In the
two species model, however, (2.3) and (2.4) demonstrate that an
increase in the carrying capacity towards infinity, increases
the stock levels towards limits fixed by other parameters than
the carrying capacity.
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F
1
to ri. Then the catch rates will be

= 1 corresponds to constant catchability coefficients equal

h, = r

1 1Fq W . (2.7)

= r2F2W2 . (2.8)

N
[l

With harvesting introduced it will influence the growth rates in
(2.1) and (2.2) which will be changed to

W, = £, W, (1 - W,/K) - aW,W, - r F,W, ‘ (2.9)
Wy = £, (1 - W,/aW,) - r,F,W, . (2.10)
If positive equilibrium levels of W1 and W2 exist simultaneously,
* %*
using W1F and W2F as symbols, they will be:
* K(1-F1)
W (2.11)

1F - 1 + v(T-F,)

«  OK(1-F,)(1-F,)

WZF_= T3 v(1-F2) . (2.12)
With harvesting the relative stock size is
* * . .

It is seen from (2.11) that only for F, <1 will there exist
a positive equilibrium value of the prey. If F1 21 the prey-
stock will be extinct, and so of course will be the predator, as
seen from (2.12). The latter expression shows that only for
F2 < 1 and F, <.1 will the predator survive.

The equilibrium values of both species increase with de-
creasing fishing pressure on the prey, i.e. for reduced F1.
of the prey gives increased carrying capacity for the predator
which can be kept on a higher level.

More

371



On the other hand, the effects on the prey and on the

predator from decreased fishing pressure on the predator are the
opposite of each other. From (2.11) it is seen that the equi-
librium value of the prey will decrease, and from (2.12) that
the predator will increase. The increased stock level for the
predator means heavier predation on the prey, and thereby a
reduced equilibrium level for the latter.

Defining X1 = w1/K and Xz = wz/aK we can rewrite equations
(2.9) and (2.10) as

dX1/dt r1X1(1 -F, - X - VXZ) (2.9")

Here the dimensionless parameter v is defined as v = aaK/r1.

The equilibrium properties of this ecélogical system depend
only on the fishing efforts, F, and F2' and v. The dynamics
additionally involve r, and r,.

The phase-diagram for the system (2.9')-(2.10') is shown in
Figure 2.1. The isoclines are found by setting dx1/dt = 0 and
dxz/dt = 0 in (2.9') and (2.10'). This gives

X, '-\-‘\
o
PRy
(l/V)(l"FI) . /
27
. o
&@S/ o]
o/ _—
60\/ ? ‘\\ *1‘
Q\Q/ @ Q<2
‘ﬁodm
3\
x‘ -....)4.{ -------- ?‘a
: / :\ Prey isocline: X,=0
. x1
Xy *

(1-F4)

Figure 2.1. Phase diagram for a predator-prey model.

58



[
o

(2.13)

(1/v)(1 - Fy - X;) for dx1/dt =

[l
o
L]

X (2.14)

, = (1 - FX, for dX,/dt =

The equilibrium values of X, and X2 are found where the isoclines

intersect, that is for

1 - F1
- ]
1 71 + v(1-F2) (2.117)

«  (1-F)(1-F,)

2 ° 771 + V(1-F,) (2.12")

* * I
X, and x2 both equal T%; in the absence of fishing, and zero in
*

the case of F1 = 1, In addition, X2 will equal zero if F2 = 1.

The three species model to be designed and presented in the
next section is an extension of the two species model shown in
Equations (2.1)-(2-2) and discussed in this section.
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3. A THREE SPECIES MODEL

The aim of this study is, as noted earlier, to develop a
three species model of the Lotka-Volterra type, and apply it into
a bioeconomic study of the Barents Sea fisheries. The model we
have in mind should take care of those aspects of the Barents Sea
ecology of most importance to fisheries management. Thus it
should include the most important species like cod and capelin.
However, we know that whales and seals also are large consumers
of fish and that they compete with fishstocks over food like
plankton, krill etc. If possible, therefore, 6ne_should include
the marine mammals too in a multispecies model for this area.

An illustration of such a model is shown in Figure 3.1.

Fishstocks Harvest

Sea mammals [ h,

.

t

Capelin > 1,

Figure 3.1. Structure of a three species model.

The marine mammals, such as whales and seals, are preying
upon both demersal and pelagic species, in Figure 3.1 called
cod and capelin. On the other hand cod is preying upon capelin.
Limits to growth of the system are set by limiting the environ-
ment's carrying capacity for the lowest ecological level, the

capelin.

The complete model on biomass form is:

dw1/dt r1W1(1 - W1/K) - a12w1w2 - a13w1w3 - h1 (3.1)

dwz/dt

Yo



dW,/dt = Wyl - W3/(B(W, + Wy))) - hy . (3.3)

The symbols are:

wi(t) = Biomass of species i at time t.

dwi(t)/dt = Growth rate of species i.

r, = Intrinsic growth rate of species if

a = Carrying capacity coefficient for species 2.

8 = Carrying capacity coefficient for species 3.

aij = Preying coefficient, species j>preying upon
species i. '

h = Harvest rate for species i.

We assume that the three trophic levels can be harvested
independently of each other, that is, the fishing effort targeted
at one species catches just that one. It is also assumed that
the catch rate are functions of the target fishstock:

hi = hi(Fi,wi) (3.4)

where Fi is the fishing effort for species i.

The specific harvest functions are, as was the case in the
two species model, assumed to be homogeneous of degree two in
fishing effort and stock level. To simplify the growth equations,
the scaling of fishing effort is such that Fi = 1 corresponds to
constant catchability coefficient equal to the respective intrinsic
growth rates, L. The harvest functions are

h, = riF.w. i=1,2,3. (3.5)
By subtracting the harvest rates on the righthand side of the

growth equations (3.1)-(3.3), this three species model can be
written in a dimensionless form which can be of help when
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analysing the behaviour of the system. Defining X, = W1/K,
Xy = wz/ux, Xy = w3/a6K and A,
by equations (3.1)-(3.3) is changed to

1 - Fi, the system described

dxz/dt = r,X,(A, - x2/x1 - Yy3%3) | (3.7)
dx3/dt = r3X3(A3 - ax3/(x1 + axz)) ' (3.8)

where v,, = a12aK/r1, Yi3 = a13aBK/r1 and Y,y = a23aBK/r2.

One of the important questions raised in the ecology litera-
ture is how to predict what will happen to a disturbed ecosystem.
Ideally one would like to be able to measure certain properties
of such systems before they are disturbed, and then on the basis
of these results to be able to predict how the system will
respond to disturbance.. The latter tells which properties of
ecosystems tend to enhance stability against external disturban-
ces, while the former includes concepts like global asymptotic
stability, neighbourhood asymptotic stability, structural sta-
bility, resistance and resilience. Discussions on stability
indicators are found in e.g. Halfon (1979) and May (1974).
Often there can seemingly be a missing link on the way from pure
theoretical ecology to applied studies in the field. A gquota-
tion from the ecology literature tells it this way:

A shortcoming of much of the theoretical work in ecology
is that results are often not expressed or expressible as
relations among readily measureable quantities. A familiar
example is the often-quoted result that a necessary and
sufficient condition for asymptotic stability of a system
described by a community matrix is the negativity of the
real parts of all the eigenvalues of that matrix. While
mathematically rigorous, this result unfortunately is not
very useful in situations of practical concern such as
environmental impact prediction or assessment. (Harte,
1979, p. 454)

The aim of this study is to develop a rather simple eco-
logical model, as represented by the system (3.1)-(3.3),
and to apply it into a bioceconomic study of the Barents Sea
fisheries. The problem is, however, that no one has yet studied
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this ecological system in a way that directly can give us esti-
mates of the biological parameters in the model. The way to handle
such a problem will be dealt with later on in this study.

If the system (3.6)-(3.8) has an equilibrium solution,

(X 2,X ), and Y ij + 0 for all i,j, it is shown in Appendix 1

that the solution for X1 is

« - D :/012 - 4a,D,

where D1 and 02 are

D

-
|

A3Yy3 = 1 - YAy - Aj(1/a)Y 3 - AjAgY4,

A3(1/a)Yy,Y53 = A3Ypg -

N
1]

* *
; and X3 expressed as functions of X1 are

* *
* (Az - A3(1/Q)Y23x1)x1
X, = * (3.10)
1+ A3Y,y3%

*
. AXi((1/a) + 8y

(3.11)

w
L
L ]

1 + ALY X*
3723
From (3.11) it can be seen that x; is increasing w1th increased
values of X1, while (3 10) shows that the effect on x2 from
increased values of x1 can be positive or negative. The former
is due to the fact that the top-predator, X3, is preying on both

. %*
X1 and xz. Increased x1 directly gives a larger food base for

*
the top-predator as well as for the intermediate species, X2.
* %
However, this increase in X3 may cause trouble for xz. If the

* *
predation effect on xz from increased x3 is greater than the

* *
prey effect from increased X4 the total result on X2 will be
negative.
In the case of no harvesting, that is A =1 fori-=="1,2,3,

it is seen from (3.10) that a necessary condltlon for X2 >0 is
that
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*
X, < a/Y23 = r2/a238

This can be explained the following way. A large Ly given all
other parameters being constant, gives species 2 a higher
chance to survive than a small r,. The law of the survival of
the fittest implies in this context that species 2 belongs
to the fittest if, ceteris paribus, its intrinsic growth rate
is large enough. On the other hand, species—Z's chance of
being positive, decreases with an increase in species 3's
preying pressure and its carrying capacity as represented by
a,s and B, respectively.

It is easy to see that the three species model described
by equations (3.1)-(3.3) includes the two species model of
equations (2.1)-(2.2). By setting a4 and ay3 equal to zero in
(3.1) and (3.2) we have the two species model. The three species
model is also seen to be a general form of a three species
ecological system, since it includes the cases shown in Figures
3.2 and 3.3. In the former one there is no predation from
species 3, here called polar bears, on species 1, which could
be fish, but only on 2, seals. Our general three species
model is fitted to this system by letting ay3 = 0 and by letting
the carrying capacity of species 3 depend only on the biomass of
species 2.

Polar bears
Sperm-

t _ whales Seals
Seals t;, ‘t
f Fish

Fish
Figure 3.2. The structure of Figure 3.3. The structure of
a three species predator- combined competition and
prey model. predation in a three species

model.
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The model illustrated in Figure 3.3 is a case of combined
competition and predation. Species 2 and 3, here called
sperm whales and seals, are competing for their joint prey, the
krill. Our general three species model is fitted to the
competitive-predation model by letting ayy = 0 and by adjusting
the carrying capacity of species 3 to depend only on the bio-

1)

mass of species 1.

Equilibrium and stability conditions of the model described
by Equations (3.6)-(3.8) are derived in Appendix 8. 1In the applied
part of this study it is assumed that the main features of the
ecological system can be described by the three species equi-
librium model. It is not, however, obvious on apriori reasons
that an ecological system should have a stable equilibrium. One
could as well think of a perpetual cyclicél movement of the fish
stocks in preharvesting time. Such a system might be described
by a limit cycle model of the kind found in Lotka (1925) and
Volterra (1928).2)
ducting a multispecies analysis of fishing was by means of limit

In fact, the first attempt ever done on con-

cycle models. Empirical studies of the Upper Adriatic Sea's
fisheries before, during and after the first world war found in
D'Ancona (1926) were an important source of inspiration to the
theoretical works by V. Volterra as demonstrated by this quota-
tion:

Doctor UMBERTO D'ANCONA (D'Ancona, 1926) has many times
spoken to me about the statistics which he was making in
fishery in the period during the war and in periods before
and after, asking me if it were possible to give a mathe-
matical explanation of the results which he was getting in
the percentages of the various species in these different
periods. This request has spurred me to formulate the
problem and solve it, establishing the laws which are set
forth in § 7. Both D'Ancona and I working independently
were equally satisfied in comparing results which were

1)The models in Figures 3.2 and 3.3 are equivalent to the ones
described in notes 58 and 51, respectively, in May et al. (1979).
There is only a minor difference in the numbering of the species.
2)Limit cycle models also played an important role in the early
development of mathematical business cycle models. (See e.g.
Frisch, 1933; Frisch and Holme, 1935; Kalecki, 1935; Tinbergen,
1935; and Goodwin, 1951.)
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revealed to us separately by calculus and by observation,
as these results were in accord; showing for instance that
man in fisheries, by disturbing the natural condition of
proportion of two species, one of which feeds upon the
other, causes diminuition in the quantity of the species
that eats the other, and an increase in the species fed
upon. (Volterra, 1928, p. 4.)

Based upon his empirical studies of the fisheries of the upper
Adriatic Sea, D'Ancona (1326) concluded that the predators of
this sea, the sharks, ought to be decreased by increased harvest
intensity. That would make it possible to increase the yields
of more valuable prey stocks.

Having designed a three species model in this section, it
will be of interest, from a theoretical point of view} to ana-
lyse the limits to growth and harvest of such an ecological
system. This is the aim of the next section of this study.
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4, THE MAXIMUM SUSTAINABLE YIELD FRONTIER

In the case of the two species model (Equations (2.9')-
(2.10')) it can be of interest both from a biological and from
an economical efficiency point of view to maximize the sustain-
able yield of one species for a specified constant level of
sustainable yield of the other. This problem is equivalent to
that of welfare economics: deriving the proddction possibility
frontier by maximizing the output of one good for a specified
amount of output of the other, for a fixed amount of factors of
production. In the two species biological system the limited
amount of factors of production are embodied in the carrying capa-
city and the intrinsic growth rates of the model. In the real bio-
logical world of the seas, the limited factor of production used
for "production" of the two fish species usually will be the zoo-

plankton communities.

The problem of maximizing

yq = 5;X (1 - X, - VX)) (4.1)
subject to the constraint

Y, = r2x2(1 - x2/x1) = constant , | (4.2)

can be done by using the Lagrange-method. As shown in Beddington
and May (1980), this problem gives the following quadratic
equation for X1 as a function of x2:

Xy = (/) [1-(4-0)%,] £ (1/8){[1+(4-v)x,]?

:
1
- 8x,[2-3vx,]12 . (4.3)

For each level of x2 we calculate x1 from (4.3), and the result-
ing yields, Y4 and Yy, are given by (4.1) and (4.2). The locus
combining the yields of the two species is shown in Figure 4.1
for v = 2. Such locuses shall be called the maximum sustainable
yield frontier (MSF) to emphasize the connections to the concepts
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used in welfare economics. MSF gives the absolute sustainable
yield of either population for a specified yield of the other.
All combinations of yields on or below this curve are sustain-
able, whereas yields to the north-east of the curve are possible
for some period of time, but they are not sustainable. The star
in the north-east corner corresponds to a combination of the
largest possible yield of the prey and the largest possible
yield of the predator, but such a combination of yields is
definitely not sustainable.

8 — A '
14

12 —

(0

.08 -

.08 -

04 4

.02

<00 ) { T T T N T T T T T IBSY
.00 .08 .10 .8 .20 .26 .30 .38 .40 .46 .80 'l

Figure 4.1. The maximum sustainable yield frontier (MSF)
of a two species model shows sustainable
combinations of yield of species 1(SY1) and
species 2 (SYZ). Parameters used are r, =
2.0, r, = 1.15 and v = 2.0.

From the single species logistic growth model it is known
that a given sustainable yield less than the maximum sustain-
able yield (MSY) can be harvested at two different stock levelé,
above or below the MSY level. These two ways of harvesting are
called biological underexploitation and overexploitation, respec-
tively. From a biological point of view the best way of har-
vesting is to harvest the MSY, whereas the economical optimal
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yield stock level, also depend on product price, harvesting cost
and discount rate in addition to biological factors.

Unit harvesting cost is usually assumed to be a decreasing
function of stock level, leading to the conclusion that the
resource should be biologically underexploited to reduce costs.
On the other hand, a positive discount rate leads to the conclu-
sion that the resource should be biologically overexploited since
a given amount of net revenue "today" is preferred to the same
amount "tomorrow". 1In other words, from an economic point of
view, harvesting below, at or above the MSY stock level can all
be optimal; it is a question of prices, costs and discount rates.

The lower branch of Equation (4.3) corresponds to a biologi-
cally inefficient harvest level, either underexploitation of the
predator, or overexploitation of the prey. In the former case
the predator is kept on the highest stock level of two possible
ones, both giving the same sustainable yield of the predator.

A higher predator stock means more consumption of the prey,
thereby removing a potential prey yield. To get the highest
possible sustainable yield of the prey for a given predator

yield it is therefore obviously best to overexploit the predator.
For similar reasons it is efficient to underexploit the prey to
give‘more food to the predator. MSF harvesting thus means that
neithér shall the predator be underexploited, nor shall the prey
be overexploited.

The terminal points of the MSF locus in Figure 4.1, A and
B, are related to specific stock levels of the predator and the
prey. At point A the predator is extinct and the prey is at
its single species biological optimum level:

= 1/2 . (4.4)

At point B the corresponding X1 and X2 can be found by using
Equations (4.5) and (4.6), corresponding to (3.8) and (3.9) in
Beddington and May (1980): A

1 + v - R

Y = I /v — % (4.5)
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*}
]

1 = (1 + v + R)X2 (4.6)

whefe R T+v.

At point B we have F, = 0, thus Equation (4.6) gives

X2 _ = T+ v+ R ° (4.7)

Substituting Equation (4.7) into Equation (4.5) gives the corre-
sponding absolute maximum sustainable yield of the predator:

MSYZI = (R - ]2 L (4.8)
F1 =Y, = 0 :

When X2 is known, the corresponding value of X1 is
F1 =y, = 0
found by setting Equation (4.1) equal to zero, after having

substituted for X2 from (4.7). This gives

1 + R
X = — (4.9)
1'F =y, =0 T +# v + R
1 1
It should be noted that the following relation between X1 and
Vv holds:
> , < 7
x1| < 1/2 if vy 3. | (4.10)

Fp =yy =0

This states that the absolute maximum sustainable yield of the
predator occurs for an unharvested prey stock above, at or below
its single species biological optimum depending on the size of
the dimensionless combination of parameters, v. The smaller v
is, the higher will be the prey stock level.

For the three species model the MSF locus (Figure 4.1)
might be substituted by a maximum sustainable yield plane. 1In
principal this can be done by using the Lagrange-method on the
problem of maximizing Yy subject to the constrainté Yy = constant
and Y3 = constant. Since much of the discussion on sea mammal



harvesting and/or preservation is focused on stock size, we
choose to perform the maximization subject to the constraint
X3 = constant rather than Yy = constant. For each level of the
sea mammal stock one MSF can be drawn for the two other species.
With the three species system (Equations (3.6)-(3.8)) in equi-

librium with harvesting we have

Xz = r2X2(1 - F2 - xz/x1 f y23x3) =0 (4.12)
X3 = r3x3(1 - F3 - ax3/(x1 + uxz)) =0 . (4.13)

By keeping species 3 constant, X3 = 23, it is seen from
Equations (4.11) and (4.12) that this has a similar effect as
the levels of fishing effort, F, and FZ’ have. Substituting

Fy = F1+ Y13X3 (4.14)

and

|
N
1

= F2 + Y23X3 (4.15)

into (4.11) and (4.12), we get

e
—
|

X, r2X2(1 - F, - xz/x1) . (4.17)

Equations (4.16) and (4.17) are the same as Equations (2.9')
and (2.10') except for the notation of Fi' Therefore, exactly
the same procedure as used for arriving at the MSF locus in the
two species model can be used now, remembering the condi-
tion that X, is kept constant at ?3. (This is done by varying
the harvest rate, y3.) The problem now is to maximize the gross
vield of one species
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subject to a constant gross yield of the other

y\2 = r,F X, = ryX, (1 - X2/X1) = constant . (4.19)

This is exactly the same problem as that in Equations (4.1) and
(4.2), and the former results are valid here too.

Substituting Yq2 for v in Equation (4.3) gives the same
quadratic equation of X1 as a function of XZ:

2
Xy = (/) [1+04-v,)%,] £ (/) { [1+(4-v,,)%,]

1/2
- (8X2[2-3y12X2]} /2 (4.20)

’ 1 .
For each level of X2 € [é, T:??;Tﬁ] ’ x1 is calculated from

(4.20) and the resulting gross yields, ;1 and ?2, are given by
(4.18) and (4.19). The yields harvested by man are given by:

Yy = ¥y - r1y12X123 ’ (4.21)

Yy = ¥ = LyYy3%,%5 . (4.22)
The yield of species 3 follows from

Y3 = r3%501 - aX5/ (X, + aX,)) , (4.23)

and will vary with the x1, Xz combinations given by (4.20).

The procedure for finding MSF for a specified stock level
of species-. 3, 23, can be summarized as follows

1. Choose a fixed value of 23 z 0.

2. For X2 € [0, ! ], compute X1 from (4.20).

1+Y12+R

3. Substitute for X1, X2 into (4.18) and (4.19) and further
into (4.21) and (4.22) to derive the yields, Yy and Yoe

4. Compute y3 from (4.23).
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A computer program designed for doing these calculations is shown

in Appendix 2.

In Figure 4.2 are shown MSF locuses for three different

levels of X3.1)
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Figure 4.2. The map of maximum sustainable yield frontiers
of a three species model shows sustainable
combinations of yield of species 1 (SY1)‘and
species 2 (SYZ) for given stock levels of
species 3 (x3).

The guestion of economic optimal harvesting of the three species
is left to be answered in Section 7. The next section,
Section 5, gives a brief description of the ecological system
of the Barents Sea, to which the three species model shall be
applied.

1)Sc-:oen from the origin X3 is equivalent to W3 = 1500; 853 and 0

thousand tons, respectively. The parameters used are: rq =
1.2704, rg = 1.1617, r3 = 0.0614, a = 0.9, Y13 = 2.6566,

Y13 = 0.3571 and vp3 = 0.8646. (For estimation of the para-
meters, see Section 6).
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5. THE ECOLOGICAL SYSTEM OF THE BARENTS SEA

The Barents Sea occupies 1.405 million square km between
the coast of North Norway, Svalbard, Novaja ‘Semlja and the
Murman Coast. The greater portion of the sea occupies depths
ranging from 200 to 400 m, with a mean depth of 229 m. Due to
the warm Atlantic waters continually flowing into the sea from
southwest, the ‘'southwestern part of the Barents Sea never
freezes to ice, and the northern and eastern parts are ice-free

for part of the year.

W .eaeee ~ ) V\fa_f?
T
w; . 3 - __——-'\‘:IlyQ P
3 A \"‘a. Zealys *
I =
S a h'!-,_ R ;?{P"
u=F=-=-s==- e, ~ ;EEN\_
'Y 3 Q
s ¥ The Barents ses
S

The Norwe-

gian sea

Figure 5.1. The Northeast Atlantic Ocean, including
the Barents Sea.
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The rich biological productivity of this area is determined
by the phenomenon of vertical circulation. With cooling, the
saline Atlantic water being denser sinks, bringing oxygen from
the uppermost water masses bottomward. This creates an upward
countercurrent bringing nutrient salts needed for the phyto-
plankton organisms. The production of phytoplankton is especially
strong in spring in the border areas of ice-free and ice-covered
sea. When the ice melts and the ice edge gradually moves to
the north and northeast, the primary production is at its peak
(Zenkevitch, 1956, and Gjesater et al., 1983).

The total number of zooplankton species of the Barents Sea is
relatively few, consisting of 145 species (Zenkevitch, 1956). The
copepoda make up the main zooplankton biomass: 90% in the south-
west part of the sea. The total biomass of zooplankton is very
high:

We can assume that the total quantity of zooplankton .in
the Barents Sea makes up in summer approximately 100
million tons of raw material. Basically, the quantity,

as we know, is produced by Calanus finmarchicus, yielding
one generation a year. Thus the total zooplankton produc-
tion of the Barents Sea can be assumed to equal the above-
mentioned magnitude. Just for the feeding of the zoo-
plankton mass there is needed not less than 1000 million
tons of phytoplankton which compensates for the colossal
consumption by its exclusive capacity to propagate at a
high rate. (Zenkevitch, 1956; p. 247)

The rate of production of phytoplankton is very high, but with
a comparatively small standing biomass:

Indeed, when taking into consideration the overall bio-
mass which hardly exceeds 50 million tons, the annual
production of the Barents Sea phytoplankton must be of a
huge order of several thousand million tons, i.e. the
ratio of the annual production to the biomass of the
Barents Sea plankton in summer cannot be smaller than 50.
(Zenkevitch, 1956; p. 247)

As in other seas of the world, the copepods are the basic food
components for fish and other inhabitants.

In addition to the zooplankton, there is another important
main source of food for the fish: the benthos inhabiting the
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sea bottom. The biomass density of these varies with the type .
of bottom as well as with depth.

The total biomass of benthos in the entire Barents Sea
is expressed by a magnitude of the order of 130 to 140
million tons. (Zenkevitch, 1956; p. 256)

In Table 5.1 are shown variations with depth in density of benthos.

Table 5.1. Variation with depth in the density of bottom
population of the Barents Sea (in g/mz).

The mean The mean
Depth in m biomass Depth in m biomass
in g/m2 in g/m2
0-100 310 400~ 600 20
100-200 170 600-1000 2-10
200-300 90 1000-2000 1-2
300-400 50 (in the
Greenland
Sea)

Source: Zenkevitch, 1956; Table 49.

‘ 114 species of fish are known to inhabit thé Barents Sea,
of which the most important families are: the cod family (12
species), flounder (11 species), viviparous blenny (13 species),
goby (10 species) and white fish (7 species). The greater part
of the families are, however, represented by one or two species
in the commercial fish catches.

In the Barents Sea there are especially two species of
zoo-plankton preying species of fish which have been of great
commercial value: capelin (Mallotus villosus) and herring
(Clupea harengus). In addition to these the pelagic species

Polar cod (Boreogadus saida) has been commercially harvested

since 1970. The pelagic fish species are important food sources
for larger fish species, sea mammals and birds. So also is
krill (Euphauciacea), feeding primarily at the second trophic

Ny



level. 1In the transference of energy from phytoplankton through
the food web to fish, krill is an important link (Mauchline and
Fisher, 1969).

Larger fish of high commercial value are ¢od (Gadus morhua),
haddock (Melanogrammus aeglefinus) and saithe (Pollachius virens).
On average for the years 1950-1980, these three species yielded
more than 90% of the total annual catch of demersal and semi-
pelagic species (excluding pelagic species like herring, capelin
and polar cod). Other demersal species of commercial value are:
red fish (Sebastes viviparus), Norway haddock (Sebastes marinus),
halibut (Hippoglossus hippoglossus), Greenland halibut (Rein-
hardtius hippoglossoides), plaice (Pleuronectes platessa). Of
high-valued species, deep water prawn (Pandalus borealis) and

salmon (Salmo salar) are the most important ones.

The main food sources of cod are to some extent known:

The main food of cod consists of small pelagic fishes:
herring, capelin, yound cod, haddock and Polar cod. The
food of cod consists of 60% of fishes. Then follow large
planktonic crustaceans such as amphipods, euphausiide and
decapods. In the eastern part of the sea, a considerable
portion of food is made up of bottom animals, such as
crabs, hermit-crabs and various other sizable representa-
tives of amphipods, isopods and cumaceans, to a lesser
degree worms and mollusks. (Zenkevitch, 1956; p. 259)

Regarding the preys of haddock, the same source says:

"Haddock, in contrast to cod, feeds on benthos, such as
mollusks, worms, crustaceans and echinoderms."

The seals of the Barents Sea and adjacent areas are great
consumers of fish, krill, zooplankton, benthos, etc. Like other
living resources of the sea, each species of seal occupies its
own niche in the ecosystem with respect to prey selection,
geographical distribution, etc. The most important species for
commercial purposes has been harp seal (Pagophilus groenlandicus

Its opportunistic feeding behaviour is probably a very important
explanation of the large stock to be found in the Barents Sea,

1)Aggregated catch statistics for the period 1868-1980 are shown

in Appendix 4.
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including the White Sea. Dorofeev (1956) estimated the pre-
harvesting stock level at 3-3% million animals. Cod, capelin,
herring and Polar cod are the most important preys among the
commercially valuable fish species. Among other food sources
reported for the harp seal are krill, deep sea prawn, flatfish,
redfish and molluscs (see e.g. Bjorge et al., 1981; Kapel, 1973;
Myers, 1959; Sergeant, 1973).

The hooded seal (Crystophora cristata) in the Barents Sea
area is especially found in the thick, drifting ice around Sval-
bard. Compared to other seals in the North Atlantic the hooded
seal dive deeper and for that reason probably have a higher
share of deep water species on its menu (Reeves and Ling, 1981;
Sergeant, 1976). Due to its preference for deep water and thick,
drifting ice, the segment of the North Atlantic stock found in
the Barents Sea area is not very great. The number of animals
in the mid 1950s in the total stock has been estimated to be
1/2 million animals (Reeves and Ling, 1981). Walrus (Odobenus
rosmarus) is the largest of the seals in these areas, but the
number of individuals are small (references in Fay, 1981). So
are also bearded seal (Erignathus barbatus), grey seal (Hali-
choerus grypus) and common seal (Phoca vitulina). The smallest,
and probably the most abundant, seal in the northeast Atlantic
and the Arctic Ocean is the rihged seal (Phoca hispida). Esti-
mates of stock size vary widely, from 2.5 million to 6-7 million
animals (Frost and Lowry, 1981; Stirling and Calvert, 1979). It
is not known how many of these are present in the Barents Sea.
About half of the ringed seal's food consists of fish of which
polar cod (Boreogadus saida) is definitely the most important
species (Gjertz and Lydersen, 1986). '

Contrary to fish and seals which occupy the Barents Sea
area all the year round, most of the whales utilize the area
through intensive feeding in summer. In fall they migrate
south to warmer parts of the Atlantic Ocean to breed and have
their calves. These migratory patterns also are most efficient
from a physiological point of view. The intensive summer
feeding in the Arctic gives the animals a surplus of energy
which is stored mainly as blubber. The storage of energy is
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gradually decreased during winter time when food resources are
scarce. The warmer climate of the temperature zone helps to
save energy for purely life processes.

Despite earlier years intensive hunting of the big baleen
whales, all species are still found in the Barents Sea area: Blu
whale (Balaenoptera musculus), fin-whale (Balaenoptera physalu:
humpback whale (Megaptera novacanglia) and sei-whale (Balaenopte
borealis). In addition to these rare big baleen whales the

smaller minke whale (Balaenoptera acutorostrata) still is

plentiful with stock estimates for the early 1980s ranging
between 50 000 and 100 000 individuals, with an average weight
of 4 tons (Rervik, 1981).

The blue whale and the sei-whale mostly feed on krill and
other crustaceas animals, but they have also been observed
preying on small pelagic fish like herring and capelin.

Small pelagic-fish seem to form a higher share of the die
of the fin and humpback whales than for the other two species
of big baleen whales. The humpback also preys on other kinds
of fish like cod. The total number of big baleen whales in th
Barents Sea is uncertain, but guesstimates say 2-3000 with a
biomass of 80-120 thousand tons (references in Holm, 1983).

In addition to the five baleen whales described here,
there used to be two other species in this part of the Arctic.
The black right whale and the Greenland right whale were two
plentiful, slow swimming species in the Barents Sea, especiall
around the islands of Svalbard. These stocks have, however,
disappeared, probably because of heavy harvesting of them in
the 17th century by English and Dutch whalers.

The toothed whales in the Barents Sea consist of 12 speci
of which 3 are rare. The group is very heterogeneous with
respect to individual size, with the sperm whale (Physeter
catodon) as the biggest (30-40 tons) and the porpoise (Phocaen
phocaene) as the smallest (less than 100 kg). Common species
include: pilot whale (Globicephala melaena), white whale
(Delphiapeterus leucas), white-sided dolphin (Lagenorhynchus
acutus), bottlenose whale (Hyperoodon ampullatus) and killer

whale (Orcinus orca). The total biomass of sperm whales in tt
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Barents Sea area - in summer time - has been guesstimated to
vary between 150 and 175 thousand tons in the 1950s, 1960s and
1970s. The biomass of smaller toothed whales has been guessti-
mated to be 50 thousand tons in the same time period. (See
sources in Holm, 1983.)

The sperm whale's diet consists primarily of squid and
deep water fish, but also a certain amount of cod fish. Food
sources for the bottlenose, the most plentiful of the small
toothed whales in this area, are much like those of the sperm
whale, whereas the killer whale and the others mainly feed on
fishes, such as cod and other demersal species and on pelagic
species like herring and capelin.

A brief description of the ecological system of the Barents
Sea area ought to include the polar bear (Ursus maritimus).
The population biology of this species is well documented
(Larsen, 1986a). The total population in the area from east
Greenland to Franz Josef Land and Novaya Zemlya is now (mid
1980s) more than 5000 animals, of which 2500 are in the Svalbarc

area (Larsen, 1986b). Ninety percent of the polar bear's food
is ringed seal, 5% other seals and the rest is fish. An impor-
tant chain in the ecological system in this part of the Arctic
seems to be polar cod - ringed seal - polar bear. Nevertheless
it will not be included in this study since these species'
commercial value has been of minor importance compared to many
other living resources of the Barents Sea.

One of the main objectives of this study is to quantify
to which extent each of the trophic levels of the marine eco-
logy system should be harvested. Despite the complexity of
such a system we shall consider just some of the species on
the following three trophic levels: (1) plankton preying
pelagic fish species, (2) carnivore fish species and (3) fish
consuming sea mammals. The species considered are, howevef,
among the most important with respect to biomass in the eco-
logical system and with respect to value for the fishing
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6. ESTIMATING BIOLOGICAL PARAMETERS OF THE THREE SPECIES
BARENTS SEA MODEL

Before presenting the parameter estimates of the three
species Barents Sea (TSB) model, we shall briefly describe some
of the problems of parameter estimation in single species models
Almost all population analysis of North Atlantic fish stocks
have been carried out on the basis of Beverton-Holt types of
models (Beverton and Holt, 1957). The use of aggregated biomas
models to assess North Atlantic stocks is almost non-existent i
the literature. However, it is possible to estimate parameters
in the latter types of models from parameters in the former typ
of models.

Applied fish population analysis of demersal species is
usually based upon assumptions like: the existence of a stock-
recruitment relation, age specific growth functions and constar
natural mortality. Estimation of parameters is done on the
basis of catch and effort data by means of e.g. Virtual Popu-
lation Analysis (VPA). For cod in the North Atlantic Ocean
estimates of biological parameters for several stocks are giver
in Garrod (1977). Some of the estimates for the three largest
stocks are shown in Table 6.1. (The complete table is shown ir
Appendix 5.)

Table 6.1. Some characteristics of the 'largest Atlantic cod
stocks.

1 2 3

Recruits Maximum sustain- 1)

7]
2 year old able yield per MSY

(in million

(in millions) recrult (kg) metric tons)
Iceland 300 1.56 2.28
Arcto-Norwegian 1250 0.57 4.13
East New Found- 2000 0.40 v 316

land/Labrador

Source: Garrod (1977) (also see Appendix 5).

1)WMSY = Necessary stock level to produce maximum sustainable

yield.



" The single species logistic growth equation is the one used
in the Schaefer model (Schaefer, 1954 and 1957):

W= rW(1 - W/K) . . (6.1)

r is the intrinsic growth rate, and K is the carrying capacity
of the ecological niche of the stock. The maximum sustainable
yield (MSY) in this model is:

MSY = rK/4 for W = K/2 . (6.2)

MSY
The growth curve, and therefore the sustainable yield curve, is
symmetric around W = K/2. '"Skewed" growth models, where the
yield curve is asymmetrical and has its maximum at W # K/2,
also have been used in fish population analysis (Pella and
Tomlinson, 1969). However, we shall stick to the symmetrical
growth model since this is the simplest one to handle and since
the biological studies in this field do not contradict such a

presumption regarding cod (Garrod, 1977).1)

Using the data on
maximum yield per recruit (Y/R), number of recruits (R) and MSY-

biomass (W ) in Table 6.1, the MSY figures can be calculated

MSY
from the formula:

MSY = (Y/R)R . (6.3)
With the additional Assumption that the yield pattern of the

stock may be described by the logistic growth equation, r and
K can be found from the formulas:

r - 24X (6.5)
MSY

where MSY is from (6.3).

1)In a Beverton-Holt model with constant recruitment and age

specific growth, yield per recruit and total yield are deter-
mined by the age of capture and the effort level. For a given
age of capture and effort level a corresponding stock level
exists. Therefore, it is possible to have a yield-stock rela-
tionship in a biomass model without assuming den51ty dependent
recruitment and growth.
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Using data from Table 6.1 and the Equations (6.3)-(6.5),
the calculated MSY, r and K are shown in Table 6.2.

Table 6.2. Calculated logistic growth equation parameters for
three cod stocks.

MéY 12 2
k(million tons) (million tons)
Iceland 0.468 4.46 0.41
Arcto-Norwegian 0.713 8.26 0.35
East Newfound- 0.800 6.32 0.51

land/Labrador

The parameters in Table 6.2 can not be directly used in
two or three species models since they are derived on the
assumption that sustainable yield is a "net sustainable yield" of
which the total can be harvested by man. In contrast the prey-
related parameters in a multispecies model must take care of the
prey's production of food for the predator in addition to the net
sustainable yield which can be harvested by man. Nonetheless
the single species model and the calculated parameters in Table
6.2 can be of interest in the case of a stable environment for
the cod stocks, i.e. for stable stocks of preys and predators
and moderate variations in harvesting. In the case of increased
harvesting of the preys or the predators of the cod stock we
would expect a change in single species model parameters such
that the sustainable yield estimates (included MSY) are also
changed. For these reasons the calculated parameters of the
single species model cannot be directly used in the three specie:
model. We shall therefore have to rely on other methods where
some of the parameters of the three stocks are "guesstimated"
simultaneously, or where the interrelationships between para-
meters are taken care of in other ways.

By '"guesstimation" is meant, in this connection, that
relevant biological literature is studied and information essen-
tial to our problem is extracted. When two or more sources
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give somewhat different figures for the same variable, parameter
etc., a choice is made as to which to rely on or the average of
them is used. All the steps and assumptions made are explained
in detail so that the reader can critically appraise and modify
them if that is felt to be desirable.

In the TSB-model there are 9 biological parameters:

The predation coefficients : a,,, a;5 and a,,
Intrinsic growth rates oLy, T, and r,
Carrying capacity related coefficients: K, a and 8

In the introductory part of this study references are given to
some works by fisheries biologists on predators' consumption
rates of preys. The methods used vary from very detailed and
comprehensive stomach sampling surveys, e.g. ICES (1982) and
Ponomarenko et al. (1978), via indirect methods using the
received knowledge of the species' physiology, metabolism, etc.,
e.g. Sergeant (1969), to guesstimation and simulation technique,
e.g. Christensen (1982), Laevastu and Favorite (1978) and Reed
and Balchen (1981).

Based on several biological studies the predation coeffi-
cients have been guesstimated by the author elsewhere (Flaaten,
1984b; and Flaaten, 1984c). When stocks are measured in thousand
tons the guesstimates are

a _ . -6

ag4 = 0.25 10

A . 1n-6

ayg = 0.14 10 A ‘ (6.6)
- _ . -6

a3 = 0.31 . 10

The consumption functions used, C = a, . W.W., are based

on the assumption of opportunistic iiedin;{ lT?'xat is, each unit
of predator always eats a constant portion of the prey stock.
The "opposite" would be when one unit of the predator eats a
constant quantity of the prey, independent of the size of the
prey stock (provided that the prey stock is big enough to meet

this demand). Such feeding can be termed specific feeding.
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After having calculated the predation coefficients, there
still remain six parameters to be estimated. Looking at the com-
plete model in Equations (3.1)-(3.3) it should be noticed that
the parameters Lyr O B, and K, occur in pairs in the three
equations: r, and K in the first, r, and o in the second and
ry and 8 in the third. 1In other words there are only two un-
known parameters in each of the three equations (with the aij
now known). This is an important observation which will be used
to simplify the estimation procedure. 1In equilibrium, that is
when dwi/dt = 0 in Equations (3.1)-(3.3), all stocks and harvest
rates are constant. In this case Equation (3.1) gives the
following relation between r, and K, with equilibrium stocks and

harvest rates denoted W1 and 51, respectively.

S
r, = — (6.7)
1 - w,/x
where S1 is a constant equal to
Sy = ag, Wy + ag,W; ¢ 53/W3 . ‘ (6.8)

The equilibrium relation between r, and a follows from (3.2):

r, = 2 (6.9)
1 - wz/aw1
with S2 equal to
52 = a23w3 + Hz/w2 . (6.10)
Finally, the relation between ry and B is:
S .
r3 = — 3_ — (6.11)
1 - w3/e (W, + wz)
with S3 equal to
s3=h3/ 3 - (6.12



Wwith Equations (6.7), (6.9) and (6.11) the original problem of
estimating six independent parameters have been reduced to that of
estimating just three with the other three being given by the said
equations. This result will be used later on in the guessti-
mation process, which will proceed in several steps.

First approach

As a first approach to guesstimation of the biological
parameters, a couple of assumptions are made with respect to
the equilibrium situation of the TSB-model:

1. The three species model has an equilibrium with catches
and stock sizes equal to the averages for the years 1951-
80, except for the stock of sea mammals where 1950-54
figures are used since more recent data are lacking for
some of the whale stocks included in the sea mammal stock.

2. The values of the predation coefficients are as shown in
(6‘6).

Assumption 1 does not say that the ecological system of the
Barents Sea has been in equilibrium in the period 1951-80, but
it puts a restriction on the size of the system and its produc-
tion capacity.

The equilibrium values of catches and fish stocks are
shown in Table 6.3. In the last column of the table are shown
the equilibrium consumption rates calculated from the other
data in the table.

By using the data in Table 6.3 in Equations (6.7), (6.9)
and (6.11) the following specific relationships between
pairs of parameters are found:

__1.5557
Iy * 72 9.465/K (6.13)

with K measured in million metric tons.

0.4771

Ly * 77-0.5496/a (6.14)
. 0.0216

'3 = 7 -0.0582/8 ° (6.15)
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Table 6.3. Assumed equilibrium stocks and catch rates and
derived consumption rates for the TSB-model.
First approach.

= 1) = 2) » —
Wi By _3) Cij
i | ('000 metric | ('000 metric aij ('000 metric
tons) tons per year) tons per year)
T
1 9465 1285.6 a5 = 0.25 10 C12 = 12 309
- -6 13
2 5202 1105.7 a3 = 0.14 10 C13 = 1 130
| ) 6=
3 853 18.4 a23 = 0.31 10 C23 = 1 376

1)Average stock sizes 1951-80 for i
Source: Flaaten (1984a and b).

Average catches 1951-80 for i = 1,2,3. Source: Flaaten and
Holm (1984).

From (6.6).

1,2 and 1950-54 for i = :

2)

3)

Given the assumptions made, we know that all combinations of
parameters, with (6.13)-(6.15) fulfilled,will give the same
equilibrium values of the fish stocks, Wi' However, it is not
known for which combinations there will be a stable equilibrium
and for which there will be an unstable equilibrium. Neither ¢
we know for which combinations the dynamic behaviour of the
'system will be best. Intuitively we will prefer the ones wher
the simulated stocks behave as similarly as the actual fish
stocks as possible (we shall return to this point later on).

It is reasonable to demand that the TSB-model with a spec
fic set of parameters should fulfil the following two require-
ments:

1. With the annual harvest rates for 1868-1980 put into the
simulation model the simulated stock levels for 1980 shoul
be positive for all three species.
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2. Without harvesting, i.e. for Ai =1 in (3.6)-(3.8), there
should be a locally stable equilibrium (or two or more equi-
libria) with positive stock levels for all three species.

The first requirement is reasonable since none of the three
stocks have been extinct during the actual time period. The
second one is reasonable since there probably was a pristine
equilibrium1) in the ecosystem before man started his harvestin
It also can imply that if all harvesting came to an end, the
system again would return to its former equilibrium.

A simulation model

The three species model described by the differential
Equations (3.1)-(3.3), or even by the reduced form in (3.6)-(3.8)
is too complex for an analytical solution to the system to be
found. Such a solution would imply that for known initial leve
of the three stocks and for the known biological parameters of t
model, the stocks at any point in time could be expressed as
functions of initial stock levels, parameters and harvest rates
Even though an analytical solution can not be found, it is quit
easy to find approximate solutions by use of computer simulatio

models.

By use of the computer program DYNAMOZ) (Pugh III, 1980) a
program for simulating the system (3.1)-(3.3) (see Appendix 7)
has been designed. The model has been implemented on a CYBER
171MP computer at the University of Tromse. For an initial set
of stock levels the model computes, in discrete time, the change
in the stock levels during a short period of time and adds this
to the initial levels. By repeating this computation many times
the model can describe the development of the stocks for any peri
of time., By making the steps small enough the model simulations

1)However, see p. 17 for a brief discussion on limit cycle models
2)DYNAMO is a compiler for translating and running continuous
models (models described by a set of differential equations).
It was developed by the industrial dynamics group at M.I.T.
for simulating dynamic feedback models of business, economic,
and social systems, but there is nothing in its design that
precludes its use for any continuous system.
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can be as accurate as desired. However, accuracy will be at the
expense of using more computer resources.

For running the computer model it is necessary to know the
initial stock levels, parameter values and harvest rates for the
simulation period. It has been possible to find annual harvest
rates of the Barents Sea area back to 1868 (Flaaten and Holm,
1984). Since the stock levels of capelin, cod and sea mammals
are unknown for the initial year, 1868, they had to be chosen
somewhat arbitrary to start with. 1In the final simulations
the initial stocks are put equal to the equilibrium stock levels
shown in Table 6.9.

For a specific set of values of the righthand side para-
meters of (6.13)-(6.15), K, a and B8, the lefthand side para-
meters, ry, I, and ry, can be calculated. It should be noted
that the ri's are decreasing functions of the r.h.s. parameters.
Based on some knowledge of the ecosystem of the Barents Sea and
information provided by studies based on one-species models,
we have chosen to start with the set of parameters shown in
Table 6.4.

Table 6.4. Parameter values based on (6.13)-(6.15).
First approach.

Exogeneous _ 108 - =
chosen: K = 3010 a = 0.90 B = 0.08
Calculated: r, = 2.2728 r, = 1.2254 ry = 0.0793

The parameters in Table 6.4 are put into the simulation model.
The problem of evaluating the results still has to be solved.
One possibility is to use the sum of squares of differences
between the simulated stocks and actual stocks. However, only
the capelin and the cod stocks are known for a long enough period
of time (1951-80), and even those data might include some errors
(Flaaten, 1984b). For the sea mammals complete time series data
are lacking, even though there are estimates for some stocks at
some points in time (Flaaten, 1984b and c).
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To explain the sum of squares method the following symbols

are used:
o)

Wit

wit Simulated stock level of species i, at time t,

Known stock level of species i, at time t

The sum of squares of the differences of relative stock sizes
is defined as

2

0% = & o ,2
i

i (Wyp - WO ) /W< . (6.16)
The aim of the simulation procedure should be to find the com-
bination of parameters, which, via wit' minimizes QZ. By using
relative stock sizes instead of absolute sizes, we give each of
the three species the same weight in the objective functional.
Otherwise the species on the lowest trophic level would in prac-
tice be given a higher weight since it usually maintains a higher
stock level than species on lower trophic levels do.

As an experiment the stocks of capelin and cod shown in
Appendix 3 have been taken as given, while the stock of sea
mammals has been excluded from (6.16). With the parameter-
formulae (6.7), (6.9) and (6.11) put into the simulation model,
the Wit's (for capelin and cod) can be found for all s??cified
combinations of the exogeneous parameters K, a and Ly. A
system of computer programs has been written to make these simu-
lations and computations automatically. The chart flow in
Appendix 6 shows the programs involved when the model is run.

As examples of the kind of results we get, Tables 6.5 and
6.6 show computed Qz-values for different combinations of K and
@, for B = 0.08 and 8 = 0.10, respectively.

Experimenting with the simulation models has given us some
insight to the problem of finding the best combination of bio-
logical parameters in the TSB-model. However, new questions and
problems have also arisen as a result of these experiments.
First of all, it does not seem possible to get Q2 to reach a

1)For historical reasons (in the evolution of this work) r,,

instead of B in (6.11) is exogeneous in the simulation model.
This of course makes no change in the results.
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Table 6.5. Computed Qz-values for_B = 0.08 (r3 = 0.0893).

First approach.

’ 0.80/0.82{0.84{0.86(0.88{0.90{0.92|0.94(0.96{0.98(1.0
Ke10"°

24 7.75{7.77({7.80{7.82|7.85{7.86(7.90{7.92]7.95(7.98,8.0
26 7.7217.73|7.76|7.80(7.82|7.85(7.88(7.92|7.95|7.99|8.0
28 7.68(7.71(7.74|7.77|7.80}/7.83|7.87]7.91|7.96/8.00/8.0
30 7.66|7.69/7.71|7.75|7.78|7.83|7.86(7.92{7.97|8.02(8.0
32 7.63|7.67(7.70[7.73{7.77|7.82|7.87|7.93 7.98 8.04/8.1
34 7.61/7.64/6.68{7.72|7.77{7.82|7.88}7.93/8.00{8.08}{8.1
36 7.59|7.63[7.67]7.71|7.75]7.81 7.88‘7.95 8.02|8.11(8.1

s
Note: Using formula (6.16), with Wit's in Appendix 3 for capeli
and cod for the years 1951-80. Wit's are computed by mean
of the DYNAMO simulation program shown in Appendix 7.

Table 6.6. Computed Q%-values for 8 = 0.10 (ry = 0.0517).
First approach.

’ 0.8010.82|0.84(0.86(0.88(0.90/0.92{0.94/10.96}0.98{1.C
K10~ |
24 7.73{7.75|7.76|7.7917.8017.82{7.85{7.86|7.89(7.91]7.¢
26 7.6917.7117.73{7.74|7.77{7.80{7.83|7.85{7.88{7.91]7.¢
28 7.66{7.6817.70(7.72{7.74(7.78/7.80|7.84|7.88]7.93|7.¢
30 7.63|7.64|7.67{7.70{7.73|7.76{7.81|7.85{7.88]7.93]7.!
32 7.60|7.62|7.65[7.67{7.71{7.75|7.79]7.84]7.90|7.95|8.1
34 7.57(7.6017.6217.66(7.7017.74[7.79{7.85{7.91|7.97}8.
36 7.5617.58|7.61{7.6517.6917.74{7.7917.8617.92}8.00/8.
Note: See note to Table 6.5.
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minimum value for an interior set of parameter combinations.1)
Secondly, it might be that the use of just two species in the
objective functional, while the model also has a third species,
produces some unsolved and unfortunate problems. Thirdly, the
model framework we are working with might be too general to
expect good empirical results. Fourthly, the stock estimates ,
of cod and capelin are based on single species model. As noted
earlier, such estimates could be biased because of changes in
the harvest mix of species. Finally, the predation coefficients
in (6.6) could be wrong. In a simulation framework this could
probably be checked for by also varying these coefficients. If
the restrictions put upon the parameters by (6.7), (6.9) and
(6.11) were abolished, a larger simulation program could be made
where all nine biological parameters in the TSB-model could be
‘varied independently. 02 could then be calculated for a very
large number of parameter combinations. This, however, is
reckoned as being too time consuming and resource demanding to
be included in this study. Leaving the simulation framework
here we shall now return to the maximum sustainable yield fron-
tiers (MSF) derived in Section 4.

The parameters in (6.6) and Table 6.4, which are the first
approach values, can be used for computing the terminal points
of the MSF. The procedure for this is described in Equations
(4.18)-(4.23), and the computer program designed to do the proper
calculations is shown in Appendix 2. The results for capelin
and cod of course depend on the stock level of the top predator,
the sea mammals. Table 6.7 shows the results for the absolute
maximum sustainable yields of capelin and cod for three different
stock levels of sea mammals.

1)'I‘his might be because of computer programming difficulties.

For unknown reasons the program would not run more than a
limited number of simulations. Several attempts have been
made to solve these problems, included inquiries to the
supplier of DYNAMO, but all in vain so far.

12



Table 6.7. Computed absolute maximum sustainable yields of

capelin and cod. Million metric tons. First

approach.
s 1
g2 mamma-’s Extinct: 1950-54 levels: High level:
stock 0 0.853 1.200
level : '
Species
Capelin 17.05") 15.25") 14.53")
Cod 4.98%) 3.072) 2.35%)

1)
2)

Provided that cod is extinct.

Provided that capelin is unharvested by man.

Even though they are terminal points‘on the MSF locus, the
results in Table 6.7 seem to be high compared with actual harvest
rates. From the stock data in Appendix 3 it is clear that there
has been a decrease in both capelin and cod stocks in the period
1951-80, In other words, the stock levels of capelin and cod
have been reduced during this period by the fishermen's harvest
and the sea mammals' consumption.

Let us pick an arbitrary point on the MSF locus for w3 =
0.853 million m.t., say SY1 = 10.18 million m.t. and SY2 = 1.98
million m.t. (at this point SY3 = 0.02 million m.t.). This1§s
obviously far beyond the estimates given in the literature.

Even a point like §Y, = 9.29 million m.t. and SY2 = 1.69 million
m.t. on the MSF locus for w3 = 1.200 million m.t. (SY3 = 0.0
million tons) is significantly more than would be expected
according to the biology literature. So far we seem to be trappe«
in the guesstimation procedure since we do not know if all nine
parameters in firét approach should be corrected, or just some
of them. However, recent research‘on the feeding habits of cod
in a North Norwegian fjord (Eliassen and Grotnes, 1985) gives
some ideas as to which direction the guesstimation procedure
should proceed.

1)See Garrod (1977); Hamre and Tjelmeland (1982); Dragesund et

al. (1980); Satersdal (1984); and references given in Flaaten
(1984Db).
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Second approach

Balsfjorden in Northern Norway is a sheltered subarctic
fjord which constitutes a miniature Barents Sea with respect to
fish communities. Feeding habits of fish species in the fjord
can therefore be expected to have much in common with the equi-
valent species in the larger ecosystem of the Barents Sea.
Results in Eliassen and Grotnes (1985) and from work gquoted
therein (e.g. Klemetsen, 1982) might indicate that the first
approach guesstimate of the coefficient ay 5 for cod's predation

V) s too high. The guesstimate, 512 = 0.25'10°6, in

on capelin
(6.6) is based on data from a period (1974-76) when the herring
were practically extinct in the Barents Sea and adjacent areas.
Becausg)of the lack of stock estimates in Eliassen and Grotnes
(1985)

guesstimates given in (6.6) in the same way as predation results

and Klemetsen (1982), their data cannot be used for the

in Ponomarenko et al. (1978) were used in Flaaten (1984c).
We shall therefore choose to reduce ag, somewhat arbitrarily and
see what the implications are for the TSB-model.

As noted earlier there are several reasons to believe that
aj, in (6.6) is too high. However, we have not come across
information that would lead to changes in aj; and asge

In this second approach of the guesstimation procedure we
shall make the following two changes in the assumptions compared
to the first approach:

1) a,, = 0.125.10°°

12 )

2) With average stock sizes and catch rates shown in

Table 6.3 the annual relative growth rates of the
three species are:

1)Remember that capelin in this report means capelin plus

herring.
2)Stock estimates will be published later (Eliassen, personal
communication).
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dw./dt ~
— -0.0359 -0.0247 0.01

Assumption 2 is based on the observation-of a decrease in the
capelin and the cod stocks, as shown in Appendix 3. For thé
period 1950-80 the capelin stock decreased on average 3.59% p.a.
and the cod stock 2.47% p.a.1) As noted before, we do not know
the changes in the sea mammal stock as well as those of the two
others. An annual increase of one per cent in the period may
be right, but it could just as well have been an average of zerc
(for references to relevant literature, see Flaaten (1984c)).

With the assumptions made and by using the same method as
described in the text concluding with (6.13)-(6.15), the specif:
relations between pairs of parameters now become:

. 0.8696 :

Ty T T -9.465/K (6.17)
. 0.4523

Y2 * 7-0.5496/a (6.18)
___0.0316

T3 7T -0.0582/8 ° (6.19)

By a somewhat arbitrary choice of values of the r.h.s. para-
meters, (6.17)-(6.19) may be used to calculate the values of th
l.h.s. parameters. The results are shown in Table 6.8.

Using Equations (3.9)-(3.11), the normalized stock levels
equilibrium without harvesting (i.e. when Ai =1 for i =1,2,3)
can be computed. With the second approach set of parameters fr
Table 6.8 the stock levels derived are shown in Table 6.9, for
ordinaty stocks as well as for normalized stocks.

1)The figures are found by linear regression on the formulas

.t
Wo(t) = wi‘95° 1% for i = 1,2: a;= -0.0359 and a, = -0.0247
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Table 6.8. Parameter values based on (6.17)-(6.19).

Second approach.

Exogeneous K = 30+10° @ = 0.90 B8 = 0.12
chosen
Calculated 1.2704 1.1617 0.0614

Table 6.9. Equilibrium stocks without harvesting,
Second approach.

|
=)
|

v X, ", 2 3 3

10.069" 1 0.336 | 4.759" | 0.176 | 1.779") | 0.549

1)Million metric tons.

If the Second approach parameters are correct, the equi-
librium stocks shown in Table 6.9 are the pristine levels of
Barents Sea area. For obvious reasons there are no stock
assessment figures from pre-harvesting time to check our results

against.

We are also interested in the stability of the pre-harvestinc
equilibrium. According to the criteria given in Appendix 8, there
exists a unique non-harvesting equilibrium with all stocks posi-
tive if

Yo3 SO+ Yq3 - (6.20)

Using the second approach parameters the following values of the
y's are derived:

Yy, = 2.6566
Y13 = 0.3571 (6.21)
Yy5 = 0.8646 ,

o



and the inequality (6.20) is satisfied since a = 0.9. Accordinc
to Appendix 8 this equilibrium is locally stable if

2 (6.22)

1

B

B1 = a1 + Y12) - Y13(1'+ a) + a Ys3 (6.23)

in the non-harvesting case.

Inserting the values from (6.21) into (6.22) and (6.23) give

x = 0.5965

and inequality (6.22) is satisfied. The non-harvesting equi-

librium therefore is a locally stable equilibrium.1)

Having used the sum of squares method (see (6.16)) with the
second approach parameters, the computed Q2 values are shown in
Tables 6.10 and 6.11. '

Comparing the results in Tables 6.10 and 6.11 to those in
Tables 6.5 and 6.6 makes it clear that according to the sum of
squares criteria the second approach parameters perform better
than the first approach parameters. This, however, is definitely
not to say that the second approach is the best of all thinkable
sets of parameters. Since time series data for the sea mammal
stock are lacking, we should not expect to find the biological
optimal set of parameters by use of the sum of squares method. As
seen from Tables 6.10 and 6.11 the Qz-values are lower the smalle
a is and the greater K is. Going down and to the left of a = 0.9,
K = 30 in the tables would, however, imply that r, <r2, accordir
to Equations (6.17) and (6.18). This would contradict received
knowledge saying that the intrinsic growth rate of a species

1)In the same way it can be shown that with the first approach
set of parameters the model has a locally stable equilibrium
(without harvesting) with stocks:

Wy = 9.018, W, = 5.699 and W3 = 1.177 (all in million tons).
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Table 6.10. Computed Q2 values for 8 = 0.10 (r3 = 0.0756).

Second approach.

" |0.80]0.82]0.84[0.86{0.880.90|0.920.94]0.26]0.98|1.00
Ke10"°
24 6.26(6.40(6.55/6.70]6.87|7.05|7.25|7.48[7.72|8.00]8.30
26 6.21(6.36(6.526.70{6.88/7.09]7.31|7.57|7.85|8.16|8.51
28 6.16(6.32/6.50(6.69]6.90[7.13|7.38/7.65|7.96|8.31|8.71
30 6.12|6.30(6.49|6.69]6.92|7.16]7.43|7.7318.07/8.46/8.91
32 6.09|6.28|6.48/6.70[6.93[7.19|7.48(7.81|8.18/8.60/9.09
34 6.06(6.26|6.48]6.70|6.95(7.22|{7.54|7.88|8.29/8.74|9.28
36 6.04/6.25]6.46]6.71|6.97|7.26]7.59|7.96|8.38/8.87|9.46
Table 6.11. Computed Q° values for 8 = 0.12 (r, = 0.0614).
Second approach.
a 5
0.80[0.820.84[0.86(0.880.90{0.92[0.940.96{0.98|1.00
Ke10°
24 6.24|6.39(6.54]6.72]6.90(7.11|7.33{7.58|7.86|8.16(8.52
26 6.19]6.36(6.53]6.72]6.92|7.15|7.41|7.68(8.008.35 8.75
28 6.15|6.33(6.52|6.74|6.96(7.20|7.48|7.78|8.14|8.53 |8.9¢
30 6.12]6.31(6.516.73]6.97|7.24{7.54[7.88(8.25|8.69 |9.2C
32 6.09/6.29(6.51(6.74[7.00|7.28|7.61(7.97(8.38|8.87 9.4z
34 6.06(6.28/6.50(6.76[7.03|7.33|7.67[8.05{8.51(9.02|9.6:
36 6.04|6.27(6.51|6.76|7.05[7.36|7.723(8.14(8.63[9.17 |9.8¢
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usually is higher the lower the species is on the trophical
ladder. Instead of spending more resources on refining the set
of parameters, we shall therefore stick to that in Table 6.8

and call this the basic case. A summary of the basic case bio-

logical parameters is shown in Table 6.12.

Table 6.12. The basic case parameters of the TSB-model.

Sy 243 a3 1 )

6 6 6

0.125¢107" 1 0.14107 " {0.3110 " {1.2704 | 1.1617 | 0.0614 | 30°10 0.9 | 0.12

Sources: See the text.

With the basic case parameters the model's maximum sustain-
able yield frontier is shown in Figure 6.1 for four levels of

the sea mammal stock.

SY2
(Thous. tons)

3500 -
000 —
2500
2000 -
1500 —
1000

500

¥ 4 1 1
O (000 2000 8000 4000 5000 ©000 7000 ecoo sooo | SYj (Thous.tons)

Figure 6.1. Maximum sustainable yield frontiers (MSF) for the
TSB-model with basic case parameters.
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The outermost MSF for cod and capelin is for sea mammal
extinct (W3 = 0), while the next one is for sea mammal at the o
1950-54 level (W3 = 0.853 million tons). The two other MSFs are

for W3 = 1.200 and W3 = 1.700 million m.t., respectively.

In the case of no harvesting of the two predators, cod and
sea mammals, the traditional sustainable yield locus for capelin
is shown in Figure 6.2. ‘

STy Wy Wy
(Thous. tons)
6000 —
5000 L)
4000 — ’."’

-
. ,'
4
o

3000 — e

2000 —

{000 —

L) .
o 2000 4000 8000 8000 10000 12000"1 (Thous . tons)

Figure 6.2. The sustainable yield curve (SY1) for capelin in
case of no harvesting of the predators in the TSB-
model, with Basic case parameters. .WZ and W3 are
the corresponding unharvested stocks of cod and sea

mammals respectively.

In this case the MSY for capelin is approximately 2.6 million
m.t. for a stock level of 4.4 million m.t. To each level of the
capelin stock the two corresponding stock levels of cod and sea
mammals are also shown in Figure 6.2. Comparing Figures 6.2 and
6.1 makes it clear that a harvesting strateqgy leaving cod and
sea mammals unharvested and only harvesting the basic prey, the

g0



capelin, is not a good strategy. Such a strategy implies not
only loss of cod and sea mammal yields, but also less capelin
yield than is possible from the ecological system if more than
just the lowest level of the system were harvested. The questic
of finding the best way of harvesting the three species is a
question of economics, and the answer will depend on relative
harvesting costs and product prices, as well as the discount

rate.
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7. ECONOMIC ASPECTS OF MULTISPECIES FISHERIES

The harvest rates introduced to the biological model
represent a kind of predation effect from mankind. Since the
beginning of time mankind has been harvesting natural resodrces
both on land and offshore. 1In some cases the land resources,
like grazing fields, hunting areas etc., have been common
property resources. However, in most "civilized" cultures such
resources have been private property, including governmental or
collective forms of ownership where laws or social rules
limit the individual's access to the resource. The 1living
resources of the high seas on the contrary have a very long
history of being common property, meaning that any member of
the society who wanted to utilize the resource were free to do
so. The only factors that influenced the number of participators
were private benefits and costs.

In particular two kinds of questions regarding the use of
common property resources have been raised by economists. Firstly,
what will be the results of free access to the resource?
Secondly, what would be the optimal utilization of the resource?
The former involves questions of extinction, stock level, harvest
rate, fishing effort, costs, benefits etc., and so also does the
latter, but in addition other questions are raised: How to
regulate the use of the resource, what will the rent be and,
perhaps also, how to distribute the rent?

Studies of the economic use of fisheries resources have
become numerous after the seminal article by the Canadian economist
H. Scott Gordon (Gordon, 1954). Even long before that the
Danish economist J. Warming wrote an article,'unfortunately in
Danish, on the same subject (Warming, 1911). An excellent
review of the fisheries eqonomics theory and literature is
the article by Munro and Scott, 1985. The main result
from the theory is that fishing effort should be limited by
fiscal or other means, in order to gain a rent from the resource
to the society.
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Optimal harvesting

We are now returning to our multispecies model for a thorouc
study of the economic optimal harvesting of such an ecological »
system. In addition to the symbols already defined, the followir
ones will be needed

= The social rate of discount.
= Price per unit standardized harvest of species i.

-

Cost per unit standardized harvest of species i.
= Net profit per unit standardized harvest of species 1i.

A O O "y o
1]

e e

= Total profit from harvesting species 1i.

Let the growth of the species of a general n-species model
be described by the following system of ‘differential equations

X- = Gi(x1'.....lxn) - y.

i i’ i=1...,n,. (7.1)

The following properties of the price, cost and profit functions
will be assumed:

P = constant , i=1,...,n (7.2)
cy = ci(Xi) ' i=1,...,n (7.3)
b, (X;) = p; - ci(X;) , i=1,...,n (7.4)
T = m(y; X)) = b (X)y, , i=1,...,n, (7.5)

The optimal harvesting of the ecosystem is assumed to be equiva-
lent to maximizing the objective functional

-8t
e (ibi(xi)yi)dt (7.6)

[
!
O 8

This is done subject to the state equations (7.1), as well as
the usual constraints, including the control variables

i=1,...,n (7.7

The following procedure for solving this optimization problem i:
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the same as the one used by Clark (1976, ch. 9), for a two-
species model.

Neglecting the abnormal case, the Hamiltonian is

Ho= e 82 b (x,)y,) + 2 (G (KyeenRy) -y (7.8)

i

The Ai are the adjoint variables. First we consider the case of

"multi-singular" control, where the coefficients of the control
variables ' vanish identically

oH

——y—i = 0 i = 1,...,1’1 (7.9)
r. = e St b (x.) i= 1 n (7.10)
i - i i d ’...' -

. st .

Xi = - Ge bi(xi)' 1 = 1’-.|'n . (7.11)

The adjoint equations are

¢ aH _ -Gt '
where
3G . (X, ,...,X ) ' db. (X.)
- b I n _ i
Gij = axi and bi (X.) = “‘32;“ .

i=1,..-'no

Substituting for A from (7.10) into (7.12) and using Yi =

G. (X1,...,X ) in equlllbrlum (i.e. for x = 0) we derlve
%, = - e %, (x,)a, (X X ) + £ b.(X.)G:.)
i SRS Mk B EL AR i o o Rits R & I
J (7.13)
i=1,...,n.
Equating Xi from (7.11) and (7.13) gives
; bj(Xj)Gij + bi(xi)Gi(x1""’Xn) = dbi(xi) ,
] (7.14)
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Thus the case of "multi-singular" control in the n-species
model corresponds to the case of singular control in the one-
species model, known from Clark and Munro (1975):

b(X)G'(X) + b'(X)G(X) = b(X) (7.15)
' dG(X) . . D
where G'(X) = 3% In particular equations (7.14) yield an

optimal equilibrium Xi = X:, i=1,...,n. Essential to the
multispecies model are the cross-dependencies, Gij’ which of
course do not appear in the single species model. The economic
interpretation of the result of the multispecies analysis is
quite similar to that of the single species model. Dividing
through (7.14) with b, (X;) gives

. . (. A X,
St i Ky Ky =
it 7 il

G.. + z
Sl DL FY!

(7.16)

i=1'o-¢’n-

The lefthand side is species i's own rate of interest, which
should equal the social rate of discount on the righthand side.
The first two terms on the l.h;s. together form the instan-
taneous marginal product of the species. It consists of two
parts, where the direct one (Gii) is equivalent to the one in a
single-species model. The second part is the indirect part of
the instantaneous marginal product via other species. The last
term on the l.h.s. is the marginal stock effect; that is, the
cost-reducing effect an increase in the level of one species
has on its own harvesting.

A common economic interpretation of the singular path of
single species models can be generalized to cover the multi-

species case. Let

TI'(X.],...,Xn) = i bi(xi)Gi(X-‘,ooo'Xn) - (7.17;

m is the total sustainable rent associated with sustainable

harvesting at given stock levels. Then
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am !
3%, = b, (X;)6; (Xy,evu s X)) + L by(X)G,

]
J (7.18)
i=1,...,n,
aG.(X1,...,Xn)
where G,. = ,! . Now (7.16) can be written as
ij axi
1230 b (x,) i=1 n (7.19)
d axi G T A reecr oo .

The lefthand side is often referred to as the marginal user cost
which is the loss in present value of sustainable hérvesting
when the capital asset, the fish stock, is reduced by one margi-
nal unit. The righthand side is the net current value of har-
vesting the stock at the margin. In other words, optimal
harvesting of the ecological system requires that, for each of
the stocks, which can be thought of as the assets of the social
manager's resouce portfolio, the present value of future losses
from reddcing the stock through harvesting should equal the
current net benefits from that harvesting.

It is well-known from the analysis of single species models
that an increase in the own price of fish has a negative effect
on the otimal stock, whilst the effect of a cost increase is
positive. These and other results of the single species ana-
lysis are shown in Table 7.1.

Table 7.1. Expected effects from parameter increases on optimal
stock (W) and net present value (NPV) in the Schaefer

model.
Parameter Effect on
W NPV

r + .
K . .
P - +
c . )

6 - —-—

8¢



The question is now - what will happen when there are two or
more biologically interacting species in the ecological system?
Since a n—species model usually is too complex for an analyti-
cal solution to be derived, we shall answer the question within
the framework of a two species model.

To simplify the notation, let

X

1 f(X1,X2) (7.20)

X,

g(X1,X2) . (7.21)

From (7.3) and (7.4) we have that the net profit per unit of
harvest is a function of own price, effort cost and stock size:

bi = bi(pi'ci’xi)' i=1,2. (7.22)

The partial derivatives of the unit profit functions have the
following signs

ab, (*) b, (*) 3 (*)
Pip = T, > % Pic T Tag, <% Pix T Tox, 0
i=1,2. - (7.23)

(7.23) tells that -the two species are harvested cost-independent
of each other and sold in separate markets.

Equations (7.16) and (7.17) implicitly give the state vari-
ables, the xi's, as functions of the biological and the economic
parameters. Differentiating (7.19) with respect to Pqr when
n = 2, and rearranging somewhat gives:

2 axX 2 ax

3T 1 3% 2

(T _ 5b. ) . = &b (7.24

x12 1x ap1 3X13X2 ap1 1p

aizgx 3X1 R (822 - 6b, ) ;fg =0 . (7.25
29%1 P4 3X5 X 9Py

Using- Cramer's rule we find from (7.24) and (7.25):

87



2
acr
b, (== - 8b._ )
3X, ! axg 2x _
] (7.26)
Py ID]
b 32n
3X “"F1p 3X,3X
2 2°M
5 - (7.27)
Py ID| ‘
an b BZW
2 1% 0X.0X
39X 1942
where D = 1 .
3%n 32w 5b
0X.0X 2 2x
2°M ax2

The second order conditions for the existence of an interior
solution to the maximization problem in (7.6) are, for n = 2

331 o azn
ax2 3% 3%, 5
>0 and 3—% <o,
32n 331 ax1
9X,3%y axg

and from this it follows that anlaxg < 0. The second order
conditions imply |D| > 0 since bix > 0. Assuming the second
order conditions are satisfied, it is seen from (7.26) that we
have 8X1/ap1 < 0, since b1p >0 and b, > 0. Thus, the effect
on the optimal prey stock from an own price increase is negative.
This result is the same as for the single species model. To
determine the effect from the increased prey price on the pre-
dator stock Equation (7.27) shows that it is necessary to know
the sign of azw/axzax1. Using the growth functions (7.20) and
(7.21) in (7.17) and differentiating twice gives

AT

TX,9%, = P1xfa * Pifar * By9ay ¢ By, (7.28)
A b, f. + b.f.. + b + b 7.29
3X,0%, T “1x'2 1592 2912 2x91 (7.29)
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3f(X1,X2) ‘ 8g(X1,X2) 3f(X1,X2)

where fi = '—'axi ’ gi = axl ’ fl] = ax_—'iaxj and»
9ij T “32;32;‘“

According to Young's theorem we have

= . (7.30)
3X1 3X2 3X23X1

Using the explicitly formulated growth functions from the two
species model, Equations (2.9') and (2.10'), the following
partial derivatives of first and second order are derived:

f1 = r1(1-2X1-vx2) f2 = - vr1x1

=r x2/x2 = r.(1-2X,/X.)
91 = Taf2/%y 92 = &2 2/
£11 = -2y £ = -vry

(7.31)

f21 = -\)r,' f22 = 0
9qq = -2r xz/x 9y, = 2r,X /x
9,1 = 2r,X /X 9yp = -2r2/X1 .

Using (7.23) and (7.31) it is seen that the first two terms of
(7.28) are both negative.. The sign of the third one, b2g21,
depends on whether the predator is valuable enough to be harves-
ted at a positive net profit or if the harvesting costs exceed
the proceeds. 1In the latter-'case, i.e. when b2 < 0, the optimal
solution requires payment of a bounty to the harvester to compen-
sate his loss from harvesting at a low stock level. When b2 << 0
at the optimum, the predator shall be called a "nuisance". Even
though the last term, b2x91' is positive, it lS likely that it

is outweighted by the three others, so that 9 n/ax 8X2 < 0, hence
axz/ap1 > 0. In other words, when the predator is a nuisance,

an increase in the price of the prey will lead to a larger opti-
mal stock of the predator. Such a price change initially augments
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the value of the resource capital of the prey proportionally to
the price increase. However, it pays to transform some of the
increased wealth into capital in general, rewarding the social
manager with the interest expressed by the discount rate. This
transformation may be controlled directly through harvesting of
the prey, or indirectly by letting the predatdr harvest the prey.
Hence, the effect of an increased price of the prey is an in-
creased optimal stock of the predator. The investment in the
predator stock is rewarded by increased revenues and reduced
harvesting cost of this species. ’

The possibility of azn/ax1ax2 being positive does exist.
To see under which conditions this is likely, we shall assume
that the unit profit function is of the Schaefer type

' i=1,2 (7.32)
where P is the price per unit of standardized harvest and cy is

the cost per unit of "fishing effort". N Using (7.23), (7. 31)
and (7.32) and inserting into (7.28) gives the following result:

2 c c 2r . X
3T 1 1 2 272
A% = - 3 V& X, - (py - ) vr, + (p, - =)
ax1ax2 Xg ™ 1 X, 1 2 XZ x?
c, rzxg r,X,(2p, - c2/X2)
+ =5 7= = 3 - pyvr, . (7.33)
X2 X1 X1

When b2 >> 0 at the optimum, the predator will be called a
"valuable". The likelihood of azn/ax1ax2 being positive is
greater the more of a valuable the predator is, and the lower
the price of the prey, Pqr is. The more inefficient the preda-
tor is as transmuter of the prey, that is the lower v is, the
more likely this result will occur. To summarize, if Py and r,
are large enough and/or Pqr Tqr V and c, small enough, it is
possible to have axz/ap1 < 0.

Having derived the partial derivatives of the optimal
stocks with respect to the price of the prey, it is now easy

1)Pr:ecisc-:‘ definitions will be given below in Equations (8.1},

(8.7) and (8.8).
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to verify that the effects of a change in the effort cost of
harvesting the prey are:

2
9w

% 6b1c :;T - 6b2x)

1 2
ac. (7.34)

1 D]

azn

BXZ 1c 3X25X1’ :
3c. . (7.35)

1 ID|

Since b1 and b 1p have opposite signs, the sign of (7.34) and
(7.35) must be opposite to those of (7. 26) and (7.27). In other
words, the effect on the optimal prey stock of an increase in own
effort cost is positive, whilst the effect on the predator stock
depends on whether the predator is a nuisance or a valuable.

The effect on the optimal stocks from a change in the price
of the predator is found by differentiating (7.19) with respect
to Pyr for n = 2, and solving the equations for 3X1/3p2 and
3X2/8p2:

-8b _QEE__
3X 2p 93X, 09X :
3 LI 12 ' (7.36)
P2 ID]
2
3°m
o (szp (;2' - 6b1x)
5 2 L ] (7.37)
P2 |p|

Since bZp >0, b1x > 0 and aznle < 0 we always have 3x2/3p2 < 0.
The optimal predator stock is a decreasing function of its own
price. Comparing 9X /ap2 in (7.36) to 3X /Bp1 in (7.27) it is
seen that they will always have the same sign, p051t1ve or nega-

1)

tive, depending on whether 3 n/ax axz lS negative or positive,

respectively. According to the previous discussion on the sign

1) 2 2
Recall 9 = 3




of 3%1/3X,9X,, it is most likely that if the predator is a nui-
sance a rise in the predator price causes a rise in the optimal.
prey stock (3x1/3p2 > 0). In this case the reduction in the
optimal predator stock leaves more of the prey to be harvested
by man at a lower unit harvesting cost caused by the increased

prey stock.

On the other hand, if the predator is a valuable and the
main value of the prey is as feed for the predator, we have seen
that 8X2/3p1 < 0, hence 3X1/3p2 < 0. When the predator is the
valuable resource, the optimal prey stock decreases as a result
df an increase in the predator price. 1In this case the optimal
prey and predator stocks move in the same direction.

The effects on optimal stocks from changes in the predator's
effort cost are:

-b azw
8X1 2c 9X,0X, ax2
=— = (7.38)
2 |D|
2
ki
b (—= - 6b,.)
3X2 2¢c Bxf 1x
e © . (7.39)
2 |D]

Comparing (7.36) and (7.38) it is seen that 3X1/3p2 and 3x1/8c2
have opposite signs since b2p and b2 are opposite in sign.

This is also the case for 3X /sz and 9X /Bc as seen from (7.37)
and (7.39).

To see how changes in the discount rate affect the optimal
stock levels, we may use the same method as used for studying
price changes. Differentiating (7.19) with respect to §, for
n = 2, and solving the equations for 3X1/36 and axz/aa gives
these results:

2 2
9°m 9T
b (— - 5b ) - b ———————
1 2 2x 2 3X,9X
IX, 3X5 1942
Y (7.40)
|D|
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2 2

3T 3°m
b, (—5 - $b,.) - b, =5—=
SXZ 2 ax% . 1x 1 ax23x1
= = . (7.41)
|D]

since 3%7/3X2 < 0 and b, > 0, it is seen from (7.40) that when
azn/ax1ax1 < 0 and b2 <0, 3X1/86 is unambiguously negative.
This is a likely result when the predator is a nuisance. The
optimal prey stock is reduced by an increase in the discount
rate, and this result is clearly a parallel to the single species
case. The increased discount rate makes it more costly to keep a
large stock, therefore a part of it is transmuted into capital
in general, yielding rent as expressed by the discount rate.

From (7.41) it is seen that since, by assumption, anlaxf
¢ 0 and by, > 0, 9X,/38 is positive if 3°m/dX 39X, < 0

and b2 < 0.'Y  1In the case where the predator is a nuisance,

Equation (7.41) states the optimal management strategy is to
increase this stock when the discount rate is increased. The
larger predator stock helps reduce the prey to. its lower opti-
mal stock level caused by the increased discount rate. As noted
above, a rise in the discount rate makes it more costly to keep
a large prey stock, therefore a part of it is transmuted into
capital in general. Another part is transmuted into predator
resource capital, thus the losses from harvesting the predator
are reduced because of the lowered unit harvesting cost and/or
increased revenues.

When the predator is a valuable, that is if b2>> 0 at the
optimum, the possibility of 3X2/36 being negative emerges. In
this case both types of resource capital, the predator and the
prey stocks, are reduced by partial transformation into capital
in general.

The possibility of simultaneously having azn/ax1ax2 >0
and b, < 0, or vice versa, cannot be ruled out. Therefore, it
may be possible to have 8X1/36 > 0. According to (7.33), the

case with negative unit profit of the predaﬁor, combined with a

1)The possibility of having 3X/3§ > 0 for one species have been

asserted in Hannesson, 1983a.
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positive, but low unit profit of the prey and poorly reproducing
prey might produce this result. ‘

The joint harvesting of a predator-prey ecological system
can give the traditional result of a rise in the discount rate,
decreased optimal stocks, or the untraditional result of an in-
crease in one of the stocks. The latter result is most likely
in cases where the predator clearly is a nuisance to be har-
vested not (only) for the sake of its own value, but to increase
the availability and the profitability of the.prey harvest.

Having derived the effects on the optimal stocks from par-
tial changes in prices and discount rate, it can now be shown
that there are close relationships between these effects. From
(7.26), (7.27) and (7.40) we £find

b 2 b 2
1 9w 2 ki
(—= - 8b. )éb - S§b
3X1 3b1p axg 2x 1p 6b1p axzax1 ip
38 =
|D|
= ==— (b, §x1 + b, ziz-) , (7.42)
1p Py Pq
since 2" = 32"
3X18X2 3X28X1
From (7.36), (7.37) and (7.41) we find
b 2 b 2
2 A 1 9T
5b (&= - 6b, ) - =—— &b L
sz Spr 2p axf 1x 5b2p 2p axzax1
38~
‘ | D]
X X
1 1 2
= —— (b — b __) . (7'43)
abzp 1 3p2 2 apz

As shown in connection with (7.26).and (7.27),3x1/8p1 and axz/apT
are negative and positive, respectively, when the predator is a

QY



nuisance. In this case (7.42) shows that ax1/ad unambiguously
is negative. 1In connection with (7.36) and (7.37) it has been
shown that ax1/3p2 is positive and axz/ap2 is negative when the
predator is a nuisance. From (7.43) it now follows that 8X2/36
unambiguously is positive in this case. This result, that the
optimal resource stock may increase with increased discount rate,
is contrary to received wisdom from single species models.

Having derived some analytical results of the two species
model, we now proceed with the three species model which will
be applied to the Barents Sea fisheries in the next section.
Rewriting Equation (7.16) in the three species case gives:

b, (X,) by (X,) by (X,)
Gip * b (X]) Gia ¥ b, (X)) Gi3 * b, (X7 Gqp(Xq) =8 (7.44)
b, (X, ) b (X.) b.(X.,)
1 (%4 3(%3 2%,
G,, + Gy, + ™o G, + =—™—="- G_(X,) = § (7.45)
B,(X,7 ©21 22 * B,(%,7 “23 * B,(%,7 “2'%2
b, (X, ) b (X.) bo(Xq) |
1o 2 2 + G 3 3 =8 . (7.46)

By(Xy) ©31 * B1X,7 932 * €33 * B TXy) G3(X3)
Equations (7.44)-(7.46) implicitly determine the three state
variables X1 = x:, X2 = X; and x3 = X; as functions of the
biological parameters in the ecological model (3.6)-(3.8) and of
the economic parameters in the price and cost functions (7.2)-
(7.3). In this respect the three species model gives the same
results as does the single species model: the optimal solutions
of the state variables are independent of time. Once reached,
the optimal combination of stock levels should be kept constant
and the harvesting accordingly take place on a sustainable'yield
basis. The optimal sustainable harvest rates are implicitly
given by the growth Egquations (3.6)-(3.8) since the net growth
of the stocks identically equals zero in equilibrium.

Because of the relatively complex dynamic properties of the
model it has not been possible to derive any explicit solution
for the optimal stocks from Equations (7.44)-(7.46). Therefore
it has been necessary to design a computer program to find the

as



optimal solution for a given set of biological and economic
parameters. The program OPT is shown in Appendix 11.

If the maximization problem does not have an interior
solution, for example because one of the constraints on the
harvest rates in (7.7) becomes binding, Equations (7.44)-(7.46)
do not give the solution to this constrained maximization
problem.1) In the long run there are few reasons to believe that
_the upper constraints should be binding in our case since the
harvesting capacity can be expanded by building more vessels.Z)
Since negative harvest rates have no biological meaning, the
lower constraints in (7.7) might well become binding. 1If, for
example, one of the three species has a sufficiently low price
or high enough harvesting cost, it may be that the optimal

solution implies no harvesting of that particular species.

Corner solutions can be checked for by use of the current
value Hamiltonian and the necessary conditions for maximum. The
current value Hamiltonian is defined by

o _ _6t, _ st
H = e®H = I b (X;)y; + "7 L A\ (G (X, ,X,,X3) - y,), (7.47)

i i
and the current value adjoint variables by
u, = e ) PR i=1,2,3. (7.48)
If y, = 0 becomes binding, Equation (7.44) has to be replaced by
G1(x1,x2,x3) =0 . (7.49)
The optimal stock levels can now be found from equations (7.43),

(7.46) and (7.49). To test whether Yy =0 belongs to the optimal
solution we have to check if -

1)Constrained optimal control theory can be found in Kamien and

Schwartz (1981).

For a discussion on problems involved when the upper constraint
becomes binding, see Clark and Munro (1975).

2)
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*
My 2 b1(x1) : (7.50)
* * * ' .
where X1, together with X2 and X3, are found from (7.45), (7.46)
and (7.49). It can be shown (Seierstad and Sydsater, 1987) that

ui(t) satisfies

. 3HO(*)
iy = - oK, * 6 u; . : \ (7.51)

In equilibrium, that is when ﬁi = 0, this implies for i = 1

My = (1/5)‘§ HyGyq(Xq,Xp,%q) (7.52)

since Y = 0.
We can now solve for M, and perform the test in (7.50).

So far we have been concerned about the optimal equilibrium
solution'(XT, X;, xg). The.problem of determining the best way
of moving from an initial point (X?, Xg, xg) to the afore-
mentioned optimal one still remains to be solved. However, this
seems to be a formidablé piece of work to be left to the mathe-
maticians. Even the case of two species is very difficult to
handle in a general way {(cf. Clark, 1976, Ch. 9.3). His conclu-

sion on "practical approach paths" for a two species system

is
Even the simplistic rule

ma

h _ if X > X
{ xlX X

. *

0 if X < X
similar for h,, although suboptimal is surely a practically
acceptable approach. The conclusion: if you know where
you want to be and if many feasible approach paths are
available, do not be concerned if the ideal path is not
apparent. (Clark, 1976, p. 323),.
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Open access harvesting

In the case of open access harvesting it is well known from
the fisheries economic literature that the resource rent will be
dissipated. When all species in an ecosystem are common property
resources, the equilibrium harvesting will take place such that
none of the fisheries are rent yielding.1) In addition to lack of
incentives to invest in the stock the individual fisherman also
does not have incentives to consider the interdependencies of
species. Necessary conditions for bioeconomic equilibrium are
therefore found by using Equations (7.4) and (7.5):

L (pi - ci(xi))yi =0, (i =1,...,n) . (7.53)
Unless Y;{ = 0, which will be the case when Py ¢ ci(Xi), we must

have
pi = ci(xi) . (i =1,...,n), (7.54)

in equilibrium,

With the simple price and cest functions we have assumed,
Equation (7.54) implicitly gives the open access equilibrium
stocks as functions of own price and cost:

x: = X (p;.cy) o i=1,...,n. (7.55)
This is to say that each of the stock levels only depends on own
price and harvesting costs. Substituting from (7.55) into (7.1)
gives the harvest rates in open access:

yi = Gi(X1(p1,c1),...,xn(pn,cn)) ’ 1 = 1"-'In’ (7.56)
The open access harvest rates depend on all prices and
effort costs, whilst the stock levels only depend on own price
and effort cost. This is in case of an interior solution with
all three species being harvested.

1 Sy .
)However, the possibility of having a consumer's surplus and/or

a producer's surplus does exist. See Copes, 1972.
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‘Whether the equilibrium point in (7.53) exists or not and
whether it is stable or not are questions that in principle can-

be answered.

With stocks and harvest rates known we can use the tests in
Appendix 8 to check if equilibrium and stability conditions are
met. '

In the case where
N (o]
: 7.57
Py < Ci(Xi) ( )

for one of the three species, the open access fishery implies no
harvesting of this species. Equilibrium stocks and harvest rates
can still be found, but the procedure will be somewhat different
from the case where the conditions in (7.54) are met for all i =
1,+..,n. Let us have a closer look at the three species model and
assume that harvest price and costs for species 2, cod, are such
that (7.57) is fulfilled in equilibrium. To find the equilibrium
stocks and harvest rates it is necessary to specify the cost
functions ci(xi). Assuming pure cod fish technology1) for all
three species the cost functions are

= | 7.58
where <y is the unit harvesting cost for catching the last fish
of the stock and is assumed to be constant. Using (7.58) and

(7.54) the equilibrium stocks of capelin and sea mammals are found:

X, = ci/pi (i =1,3) . , (7.59)

In addition to ﬁ? and iz we also know that

A, =1 - F, =1 - (7.60)

in equilibrium with no harvest of cod. By simple arithmetic the

1)We shall return to the concept of cod fish technology in

Section 8. :
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three species model in (3.6)-(3.8) gives the following equilibrium
solutions for XZ'FH and F3, with X1, X3 and FZ now known:

0 ' 0 0
<] o0 o0 o]
A1 = X, o+ y12(A2 - y23x3)x1 + 713X3 (7.62)
© =) o i .
A3 = aX3/(X1 + a(A2 - Y23X3)X1 . (7.63)

This is an example where the open-access stock size of one of the
species, cod, does not depend on own price and effort cost, but

on stock sizes of the two other species, capelin and sea mammals,
as shown in Equation (7.61). Substituting Ai and Xi (i =1,2,3)
from (7.59)-(7.63) into the harvest functions (3.5), and remember-
ing that Ai = 1-Fi, the open-access equilibrium harvest rates are
found for this special case.

In the next section are derived. the economic parameters
necessary for application of the three species bioeconomic
model to the Barents Sea fisheries. The optimal solutions will
be presented and discussed in Section 9, and the open-access
solution in Section 10.

loo



8. ESTIMATING ECONOMIC PARAMETERS OF THE THREE SPECIES BARENTS
SEA MODEL

The cod fisheries

Since 1968 the Directorate of Fisheries has conducted cost
and income surveys for the Norwegian fleet of fishing vessels
above 40 feet operaﬁing year round. In 1980 they also started
undertaking such surveys for the smaller inshore boats. '

In this study we use the average cod-fish vessel above 40
feet as the numeraire for fishing effort in the cod sector of
the three species model. The average cod-fish vessel is calcu-
lated from a very heterogeneous group which consists of inshore
and near-shore vessels as well as large sea-going freezing trawlers.
The latter are, according to usual profitability measures, the
most profitable vessels in the Norwegian fishing fleet for demer-
sal species. Therefore calculations will also be performéd with
the average freezing factory trawler as the numeraire.

The data needed for each class of vessels are

i) quantity and price of catch
ii) total costs (capital and operating costs, including
labour).

In the short run analysis hull, engine, electronic equipment,
gear etc. are fixed factors of production, while fuel, bait etc.
are variable. A bioceconomic study is primarily a long run
analysis; therefore the average vessel fully equipped and with
all factors of production necessary for one year of operation
will be used as the unit of fishing effort. 1In other words, the
total fishing effort targeted at the stock can be varied by
varying the number of standardized (average) vessel years.

Table 8.1 shows quantity, value and price figures for the
years 1978-80 for the average vessel in the cod fisheries and
for the average Norwegian factory vessel. Prices in the second
column include the price support from the Government to vessels
fishing for demersal species, except the factory vessels which

[ol
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are not eligible for such subsidies. The distribution of sub-
sidies between "producers" and '"consumers", which in this case
means the fish harvesting and the processing industry, respec-
tively, as usual depends on elasticity relations on the two
sides. In this case we have assumed infinitely elastic demand
for raw fish, so that all the subsidies go to the harvesting
sector. 80-90% of the value of the Norwegian harvest of demersal
species are exported to the world market where Norwegian pro-
ducers are price takers for the majority of their products. This
is the reason for using the assumption of inifinitely elastic
demand for raw fish. Prices net of subsidies from the Government
are shown in the third column in Table 8.1.

The cost of fishing effort can be calculated in many ways.
There might be deviations between social and private costs, and
each can be defined in different ways. For our purpose, a long
run bioeconomic analysis, we would like to use social costs, in-
cluding the opportunity cost of capital and labour. For labour
costs we have chosen to use the actual remuneration of fishermen,
including lay income, wage, skipper's lay, etc. Alternative A
in Table 8.1, column 5 assumes replacement-cost depreciation of
the vessel, and includes calculated interest on owner's net
capital. Alternative B in column 6 is based on the historic-
cost of the vessel, and interest on owner's net capital is not
included. For all years, the costs according to alternative A
exceed the value of the catch for the average cod vessel as well
as for the average factory vessel. Except for factory vessels
in 1979, this is also the case for alternative B, which is the
lower cost alternative. 1In open access fisheries with homo-
geneous vessels one would expect average cost of fishing effort
to equal average revenues in bioeconomic equilibrium. 1In the
case of Norwegian cod fisheries the fleet is definitely not homo-
geneous and this should increase the possibility of the existence
of "producers surplus" or "intramarginal rent" in the fishery
(Copes, 1972). However, in this case there is what we can call
a small negative producers surplus, and we can think of several
possible explanations for this:



i) There can be something wrong'with the accounting surveys,
either in the methods used or in the data the fishermen

have reported.

ii) Fishing vessel owners also have revenues from other than
the sale of catches; for example, interest on bank deposits
and other financial incomes, skipper's lay, freight
revenues, etc. In 1980, as a compensation for increased
fuel prices, they received some Government subsidies
which was not directly connected to actual cost or
income.

iii) The fishery need not have been in bioeconomic equilibrium
in the years 1978-1980. Overinvestment in the fleet in
earlier years could have resulted in depreciation
exceeding the difference between total proceeds and
operating costs. After some years of negative investment
in the fleet the open access fishery might reach biceco-
nomic equilibrium (Clark, Clarke and Munro, 1979).

Explanation i) is probably of minor importance in this case since
the surveys have been conducted every year since 1968 and the
methods used seem to be adequate. The results have been exten-
sively used by Government branches, the fishing industry and
researchers and no serious objections have been raised against
the surveys. Regarding ii), the accounting surveys for the years
1978-80 reveal income other than from sale of catches equivalent
to 2-6% of total revenues.

We shall now leave these problems and stick to the cost

figures in Table 8.1.

The capelin fisheries

In Table 8.2, column 1, are shown average catches for all
vessels in the capelin fleet and for large purse seiners with a
licensed cargo capacity of 8,000 hectoliters or more. The figures
are for the years 1978, 1979 and 1980 and for the average of
all three years. Average prices paid to fishermen are shown
in the second column, and the value of the catches in the third.
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Governmental price-support have been practically non existing

in this part of the fishing industry. Average total cost per
vessel have been calculated the same way as for the cod vessels.
The results are shown in columns 4 and 5.

The average capelin vessel includes purse seiners between
100 and 220 feet long, with cargo capacity ranging from 150 to
1,500 metric tons, as well as trawlers between 70 and 130 feet
long. Formally both purse .seine and trawl fishing for capelin
have been under licensing restrictions for many years; purse
seining since 1973 and trawl fishing even longer (Fiskerideparte-
mentet, 1983). In the former case, the licensing system has
been an effective barrier to entry, whereas the licenses for
trawl fishing for capelin, sandeel, Norway pout, etc. were more
like a registration system until 1979 when the Government
effectively stopped issuing new licenses.

In the years 1978-1980 limited entry by licensing has been
combined with individual vessel quotas in the most valuable
fishery: the capelin fishery in the Barents Sea and on the coast
of Finnmark. In these years the capelin counted for 75-80% of
the total value of the purse seiners' catch. The other 20-25%
was mainly mackerel, herring and blue whiting. The use of limited
entry schemes in the capelin fishery has given the participating
vessels and crews a share in the resource rent. Without the
introduction of licenses and quotas in the early 1970s, the
capelin stock would probably have been heavily depleted due to
entry of many vessels made redundant after the depletion of the
rich herring and mackerel stocks (Norwegian Spring Spawning
Herring, North Sea herring and North Sea mackerel) in the 1960s

and early 1970s.'’

Norwegian limited entry schemes were mainly introduced in
the capelin fishery to avoid collapse of the stock and not
primarily to manage the fishery in an economically optimal manner.
That would have meant far fewer, and bigger, vessels than those
actually participating in the fishery (Fldm, 1980). It is easy

1)The restrictions on entry combined with quotas obviously were

not enough to avoid the depletion of the stock throughout the
1980s. A nearly collapse of the stock in 1985 therefore neces-
sitated practically nil-quotas for 1986 and 1987.
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to understand this from the fact that "whole year operated"
purse seiners in 1978 and 1980 operated 34.5 and 29.5 weeks:
repsectively, whereas the average for all "whole year operated"
vessels were 39.0 and 38.5 weeks. Fewer purse seiners with
higher average operating time per year would have reduced the
capital costs for the fleet. The cost data for the average
capelin vessel presented in Table 8.2 do not take such things
into consideration, but only presents actual reported costs for
the years 1978-1980.

It can be seen from Table 8.2 that for the capelin fleet as
well the total average cost exceeds average revenues not only in
the case of alternative A but also for the lower cost alterna-
tive B. The reasons for this are much the same as mentioned for
the cod fleet. Due to institutional arrangements in the manage-
ment of the Norwegian capelin fishery the vessels are not allowed
to utilize their full catching potential, and the redundancy rates
in many cases are higher for the larger than for the smaller
vessels. This result is mainly created through the allocation
system for vessel gquotas, and also by the regulated transportation
of capelin from the fishing grounds to the reduction plants. The
vessels get an individual quota which is an increasing, concave
function of licensed cargo capacity, and the larger vessels are
told by the Regulatory board to transport their catches to plants
further away from fishing grounds than the smaller ones. These
are probably the main reason why the large purse seiners have
higher costs per ton caught than the a~-rage for all seiners.

Whaling and sealing

whaling and Sealing in Norway are typical seasonal activi-
ties conducted by multipurpose vessels. In this study, however,
revenues and cost figures for vessel year equivalents (VYE) are
needed, and recalculation from seasonal data will therefore be
necessary.

Since the mid 1970s the only kind of whaling in Norway has
been that of small whales in the North East Atlantic by small
vessels (usually between 50 and 90 feet), while the harvesting

o7
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of the larger baleen whales (fin, sei, humpback etc.) came to an
end in the early 1970s due to low profitability in the industry.

In Table 8.3 are shown data for Norwegian whaling in the
North Atlantic for the years 1978-80. The quantity figures
shown are live weight, and prices are calculated per unit of live
weight. The VYE data in column 6 tell what quantity, and the
corresponding value, a vessel operating year round would have
caught if the availability of whales and other factors affecting
the productivity had been the same for the whole year as for the

actual harvesting season.1)

In Table 8.4 are shown similar data for Norwegian seéling
in the North Atlantic areas. Sealing has usually taken place on
three different catching grounds: Newfoundland, the West Ice
(Jan Mayen - Greenland area) and the East Ice (The White Sea and
the Barents Sea area). The average size of sealing vessels has
been largest on the Newfoundland grounds, while the East-Ice
vessels have been the smallest. Due to lack of specific account-
ing surveysbfor the sealing industry, we have chosen to let the
cost side be represented by purse seiners of 4000-5999 hecto-
liter cargo capacity. Discussions with industry representatives
revealed that this vessel group can be used as a proxy for the
average sealer regarding size, catching capacity and total costs.

As seen before for the capelin and the codfish industries,
revenues were usually exceeded somewhat by total costs. This is
also the case for the sealing industry where the costs (alterna-
tives A and B) exceed calculated VYE revenues in seven out of
eight possible comparisons between columns 6 and 7 in Table 8.4.
In addition to the possible explanations for this as discussed
in the preceeding sections, it is possible that we have made a
mistake in choice of proxy for the cost side of the sealing
industry. However, having discussed this matter with the industry
representatives, it seems most likely that the cost data in Table
8.4 are not far from the truth. The economic situation in the

1)VYE are used in an attempt to keep the applied part of the

analysis as simple as possible and in accordance with the
theoretical part. Seasonal variations in economic, biologi-
cal or technical factors, e.g. the catchability coefficient,
of course could have been introduced and this would have made
the analysis more realistic, but on the cost of simplicity
(see Flaaten, 1983; and Flaaten 1987b).
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sealing industry has been gradually worsening during the 1970s,
due to reduced gquotas and declining prices (in real terms) for
industry products. Unlike most parts of the Norwegian fishing
industry, the sealing industry rarely received subsidies from
the Government until 1982 when economic conditions were so
severe that the whole harvesting was threatened to come to an
énd. For this reason the discrepancies between revenue and cost
data in Table 8.4 might be reasonable, and not unexpected.

Vessels in the Norwegian whaling fleet are usually only
50-90 feet long, whereas the sealers are 100-160 feet. Never-
theless we shall design a standardized vessel for sea mammal
harvesting to suit the three spécies model. The ratio between
the average total catch of whales and the average total catch of
seal biomass in the period 1978-80 is 1.17. Requiring one unit of
the sea mammal (SM) vessel to catch whales and seals in the same
ratio, and by using the VYE figures from Tables 8.3 and 8.4, we
find that a SM vessel should consist of 92% of a VYE whaler and
8% of a VYE sealer. The data for such a multipurpose SM harVesting
vessel are shown in Table 8.5. Dividing the average annual total
catch of whales and seals in column 4 by the catching capacity
in column 2, we get the number of constructed SM vessels (mea-
sured in VYE) in column 5 which would have been necessary to
harvest the actual catch of whale and seal biomass. It should
also be noticed that using cost alternative B the vessel's harvest
revenues would just have exceeded the costs. '

Standardized prices and costs

Normalized prices and costs in Equations (7.2)-(7.5) can be
found by calculations from ordinary revenue and cost survey gene-
rated data. The following price symbols will be used:

c
L]

Price per unit harvest (i.e., per .unit of hi)

Price per unit standardized harvest (i.e., per unit

e
{1

of yi).

The prices are related in the following way (when substituting
for y, = hi/Ki):



i _ o
Py =y, < Pify (8.1)
K i=1
where the XK. are defined as: K, ={aK i=2.
* aBK i = 3

Having defined the standardized prices, we now proceed with
the concept of standardized unit harvesting cost. For this pur-
pose, however, it will be necessary to specify the production
function of the fishery. ‘

The production function in equation (3.5) has been used in
both theoretical and empirical fisheries economic studies.
Recent empirical research has proved that the function is suit-
able for use in studies of demersal fisheries (Hannesson, 1983b
and Shrank et al., 1984). On the other hand, studies of pelagic,
schooling species have revealed that such a function overstates
the effect on harvest rate from the stock size (Bjerndal, 1985
and Ulltang, 1976). A more general formulation of the production
function could be the Cobb-Douglas type:

i W (i=1,2,3) . (8.2)

Let us refer to the case of o0 = y

1 as the pure cod-fish
technology. whereas the case of ¢ = 1 and vy = 0 is the pure
pelagic fish technology. For pelagic species (herring), the
studies referred to found estimates on stock output elastici-
ties, vy, varying from close to zero (Ulltang, 1976) to 0.13
and 0.341) (Bjsrndal, 1985). The effort output elasticities,
0, are usually not significantly different from unity, except

in the study by Bjerndal where the estimates are 0.68 and 0.692)

1)Bj:arm:lal (1985) used four different specifications of the

production function. The results quoted here are from the
models which seem to have been most successful in inter-
preting the data. The additional two models, A1 and B1 in
his study, gave stock output elasticities of 0.62 and 0.19,
respectively.
2)'I'he concept of fishing effort is more complex in Bjerndal
(1985) than here. He uses "boat-days'", '"number of boats"
and "size of boats" as three independent factors of produc-
tion. The elasticities quoted here are those with respect
to number of boats.
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for the two most successful formulations of the production func-
tions. A priori it would be reasonable to expect that there are
few crowding externalities taking place in the Barents Sea fishe-
ries; that is, we should not expect 0 ¢ 1. On the other hand,

if the vessels in one fishery were jointly operated by one owner,
or if they otherwise cooperated in fish searching etc., it could
be that the effort output elasticity is greater than one. How-
ever, the Norwegian vessels are usually owned by independent
fishermen or small companies, and the sharing of fishing informa-
tion only takes place occasionally. For these reasons we shall
simplify the study by assuming that ¢ = 1 for fishing on all
three species. On the other hand we shall distinguish between
the cases of pure cod fish technology (v = ¢ = 1) and that of
pure pelagic fish technology (y = 0 & g = 1).

The symbols of costs and related parameters for species i

are:
c? = Cost per vessel year equivalent (VYE)
éi = Cost per unit of fishing effort, F,
TCi 2 Total~costs per yéar
Ni = Number of VYE
ki' = Catch per VYE
ci(wi) = Cost per unit of harvest R
ci(Xi) = Cost per unit of standardized harvest.

The definitions of and relations between different cost concepts
are:

-— o a-—
TCi = ciNi ’vciFi . (8.3)

The catch per VYE is:

ki = hi/Ni . (8.4)

For the unit harvesting cost we shall distinguish between the
case of pure cod fish technology and that of pure pelagic fish
technology.

|14



Pure cod fish technology

In this case vy = 0 = 1 in the harvest function (8.2). By
using vessel year equivalent (VYE) as a measure of fishing effort
we substitute (8.5) into (8.2).

’

q;N; = r;Fy (8.5)

q; is the catchability coefficient. This gives the following
production function:

hi = qiNiwi . (8.6)

(8.3) and (8.6) give the unit harvesting cost

ci(wi) = TCi/hi = ci/wi ’ (8.7)
where
_ 0.,,0/,.,0
c, = ciwi/ki . (8.8)
W? and kg are stock size and catch per VYE, respectively, both

related to a specific point in time (actually, a year or
another short period, during which the stock can be treated as
if it were constant). <y is the unit harvesting cost for W = 1;
in other words, the unit harvesting cost for catching the last
fish in the stock. The unit harvesting cost for standardized
harvest is

ci(Xy) = TC, /[y, = ci/xi (8.9)

where

y; = hy/K; . (8.10)

Pure pelagic fish technology

In this case we have 0 = 1 and vy = 0 in the production
function (8.2). 1Instead of (8.6) we now get

N



ci(Wi) =

The unit harvesting cost for a standardized harvest is

(7.44).

ci(Xi) =

o o
TCi/yi = ciKi/ki .

(8.11)

(8.12)

(8.13)

From the economic data in Tables 8.1-8.5 we can now derive
the economic parameters of the TSB-model, and the optimal
stationary stock levels can be computed from Equations (7.42)-

Putting the economic data into the price and cost

functions of the model we get the results shown in Table 8.6.
Using the price of cod as numeraire gives price and cost data

shown in Table 8.7.

Table 8.6. Basic price and cost parameters of the TSB-model,
(The average of 1978-1980 data.)
o?  |c° (1000 Nkr/vYE) k,© w © c. (million Nkr)
i p1 i i b i

(1000 Nkr/ Alterna-|Alterna-{ (M.t./VYE){ (Million Alterna-}{Alterna-

m.t.) tive A tive B m.t.) tive A tive B

11) 0.5284 3242.9 2733.8 4628.0 6.320 4428.6 3733.2
22) 2.3279 1446.7 1314.2 451.7 2.893 9265.7 8417.2
33) 3.2029 1222.3 1030.8 322.4 0.853 3233.9 2727.3

1)
2y
3)
4)

Prices net of government subsidies.

|16

Data for the average capelin fishing vessel.
Data for the average cod fishing vessel.
Data for a general purpose sea mammal vessel.



Table 8.7. Basic price and cost parameters of the TSB-model
with the price of cod as numeraire. (The average

of 1978-1980 data.)

4) c® (m.t./VYE) c. (1000 m.t.)
o 1 1

Alternative A

Alternative B

Alternative A

Alternative B

1)

1 0.2270 1393.1 1174.4 1902.4 1603.7
22) 1.0000 621.5 564.5 3980.3 3615.8
33) 1.3759 525.1 442.8 1389.2 1171.6

1)'4)See footnotes to Table 8.6.

The estimates of the biolbgical parameters in Section 6 and

the economic parameters in this section will be used in the next

section to derive the optimal solutions of the TSB-model.

The

open access solutions will be presented and discussed in Section

10.
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9. OPTIMAL SOLUTIONS OF THE THREE SPECIES BARENTS SEA MODEL

Equations (7.42)-(7.44) give the necessary conditions for
an interior solution to the maximization problem in Equation
(7.6). If such a solution exists, it can be found by solving
the three equations for the three state variables, the fish
stocks. Unfortunately the non-linearities of Equations (7.42)-
(7.44) are too complex for an analytical‘solution for Xi* (i =
1,2,3) to be found. A simulation program, OPT (see Appendix 11},
has been created to find numerical solutions for Xi* (i =1,2,3)
from the three golden rule equations. The partial derivatives
of the growth functions with respect to stocks are needed in
this computation, and they are shown in Appendix 10.

With substitution of the basic case biological parameters
in Table 6.12, the basic economic parameters in Table 8.6 and a
discount rate of five percent into Equations (7.42)-(7.44), the
computer program OPT (Appendix 11) generated the following opti-
mal normalized stock levels:

*
Xy = 0.5022

*
X, = 0.2648 | (9.1)
Xy = 0.013

3 - 00 8 ')

The corresponding equilibrium catch levels are found by substi-
tuting (9.1) into (7.1). Doing this reveals a negative catch
rate for the capelin stock. According to the discussion in Sec-
tion 7, the solution in (9.1) can not be an optimal solution
since the lower bound on the capelin catch rate (Y1,= 0) becomes
_binding.

At this stage we avoid the constrained maximization
problem by making a change in one of the economic parameters,
hoping that this will give an interior solution to the original
problem. Intuitively an increase in the price of capelin,
ceteris paribus, can make the capelin fishery profitable enough
to give such a solution. The average catch of capelin in the
years 1978-80 was 1.86 million m.t. (see Appendix 4) and the

{18



average price was 0.5284 Nkr/kg (Table 8.6).1)

Between 90 and 99%
of the capelin landings have been used for reduction to fish meal
and oil during the 1970s and 1980s. The rest has been mostly used
for fresh and frozen products and for roe production. Under the
current system Norwegian fishermen's organizations have been
granted the legal right to fix minimum prices on raw fish. Thus,
they are in a position where, via price discrimination, they can
charge a monopoly price in some markets (Hannesson, 1985). This
is probably the main reason why capelin used for other purposes
fetches significantly higher prices to the fishermen than capelin
used for reduction into meal and oil. For 1978-80 quantities and
prices of capelin for other purposes are shown in Appendix 12.
The average price of capelin used for fresh, frozen and roe pro-
ducts was 1.503 Nkr/kg or three times higher than the average ex-
vessel price of capelin for all uses.

Increasing the price of capelin by 50, 100 and 150% to
0.7926, 1.0568 and 1.3210 Nkr/kg res?ectively, and keeping all
other biological and economic parameters equal to that in Tables
6.12 and 8.6 gives the bptimal normalized stock levels and catch
rates shown in Table 9.1. The corresponding figures in million
tons are shown in Table 9.2.

Table 9.1. Optimal stocks and harvest rates in normalized units.T)

o .
pl X.* X * X_ * yl* YZ* Y3*
(1000 Nkr/m.t.)

2)0.7926 (0.3405) |0.404155 [ 0.212338 {0,018729 { 0,012866 | 0.113080 {0.001117

2)1.0568 (0.4540) | 0.361002 | 0.183105 | 0.021832 } 0.066389 | 0.100807 | 0.001290

2)

1.3210 (0.5675) |0.341609 | 0.162232 |0.023262 | 0.095082 | 0.095179 | 0.001367

1)Based on biological parameters in Table 6.12 and economic

parameters in Table 8.6.

2)E’rices with price of cod as the numeraire are given in

parenthesis.

1)Remember that quantity refers to the total harvest from the

Barents Sea area, while price refers to that of Norwegian
landings.
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3
- - *
NPV = (1/9) 151 (p; - ¢;/X;M)yy
3 o 3
= (1/8) L (p; - ci/wi*)hi* = (1/6) Lomx (9.4)
i=1 i=1
The definitions of < and c; are found in (8.1) and (8,8), respec-

tively. The relationships between the two types of harvest rates
are
K i=1
* = * i - { =
hi =y Ki with Ki = aK for i=2. (9.5)
aBK i=3

The computational results for the sustainable rent, ni*, and NPV
are shown in Table 9.4.1) The price of cod is used as numeraire.
The table includes the extreme values of p1° to give simultaneous

positive rent from capelin and cod.

Table 9.4. Sustainable rent, ni*, and net preséht value, NPV,
of optimal harvesting in the case of interior solu-
tion. Thousand of cod units.1)

Q
Py m m,* T NPV
(in cod units)

0.3234 0 1208. 368 -65,192 22865.8
0.3405 80. 341 1127.580 -64.916 22860.1
0.4540 609,241 731.140 -63.494 25537.7
0.5675 1172.307 448.469 -62.752 31160.5
0.7429 2243.833 0 -62.601 43624.0

1)One unit of cod is 1.0 metric ton.

So far in this section the results are based on the assump-
tion that the solution to the optimization problem in (7.6) is

an interior one

1)

, implicitly found from Equations (7.42)-(7.44).

The computer program OPV designed to compute optimal sustain-

able rents and net present value is an extended version of the

program OPT which compute the optimal stock levels.

both shown in Appendix 11.

They are



To verify that this solution is the optimal one, we need to
perform the test described in Section 7. A closer look at the
results in Table 9.4 reveals a curious result. The net present
value of optimal harvesting is lower for p1° = ,3405 than for

p1° = .3234. A priori one would rather expect the opposite result,
and therefore this makes us suspicious about the reliability of
the findings in the low range of p1°. The alternative to simul-
taneous harvest of all three species would be to leave the cheap
species, the capelin, in the sea as feed for the more valuable ‘

one, the cod.

The aforementioned test will reveal whether the interior
or the corner solution is the optimal one. To illustrate this
we shall compare the net present values of sustainable harvesting
for the two alternatives. The net present value of the interior
solution as a function of p1° is shown as NPV1 in Figure 9.1.
The corner solution, i.e. when Y, = 0, is found from Equations

NPV
22 330

22 920

22 910

22 300

22 890

22 880

22 370

22 860

22 850

22 840 o

5 T T T T T T T 5 T T T 1

232,322 .324 1326 1328 .33 .332.334 336 .338 .34 .342 .344 .346.348 .35 .392
Pa- 23 Plg=.3%0 PO.=.3470

Figure 9.1. Net present value, in thousand units of

cod, of interior solution (NPV1) and the

corner solution (NPVZ).
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(7.43), (7.44) and (7.47). The net present value of this har-
vesting strategy as a function of p1° is shown as NPV2 in Figure
9.1.

From Figure 9.1 we see that NPV1 = NPV2 at two points: when
p,° = 0.3447 and when p,° = 0.3234. The latter one is the lower
limit for the interior solution which will give positive harvest
rates for all three species. For lower capelin prices the golden
rule equations (7.42)-(7.44) give negative harvest rates of'cape—
lin, as is seen for p1° = 0.2270; and this has no biological
meaning. Moving along the NPV1 curve from A to the right it first
decreases, then increases as a function of p1°. This is what the
findings in Table 9.4 indicated. The NPV2 curve has the opposite
shape with a maximum at point B.

The complete solution to our maximization problem will be
as follows. For capelin prices to the right of C the interior
solution will be the optimal one, and the NPV1 curve shows the
level of the objective functional for the infinite horizon equi-
librium harvests. For lower prices of capelin; that is, to the
left of C in Figure 9.1, the optimal result will be at point
B.1) Among all feasible combinations of harvest rates consistent
with Equations (7.43), (7.44) and (7.47), there is one, from an
economic point of view, which is better than the others and this
corresponds to p?B. Regardless of what the price of capelin is,
as long as it is lower than p?c, the optimal solution will be
found as if the price equals p?B.

Implementation of the optimal solution require use of
indirect means like fees/subsidies on harvest or fishing effort,
or direct means like quota and effort restrictions. Using a
simple biomass model with a one dimensional fishing effort
concept it can be shown that from an efficiency point of view
it does not matter which of the means are used (Clark, 1980).
However, the more complex the model is made, e.g. by extending
to several year classes, geographical distribution, seasonal

Y The corresponding stock levels are XY = 0.420009, X§ = 0.215913
and X%* = 0.017887, and the harvest rates are yqy = 0, yy =
0.118806 and y3 = 0.001069. Stability tests of this equilibrium
points give x = 0.0341 and R = 9054, which imply a locally stable
equilibrium.
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growth and migration, and multipurpose vessels and gear, the
larger the number of means necessary in order to achieve the
optimal result (Clark, 1980; Flaaten, 1983; Flaaten 1987a).

For the TSB-model it is clear that the optimal stationary har-
vesting regime can be kept by use of just three regulatory means.
Whether harvest fees/subsidies or effort fees/subsidies are used
to deprive the fishermen for the resource rent, the results are
the same: the harvesting sector gets paid its alternative cost
and the government collects the rent.

The following symbols will be used in deriving the formulas
for calculation of the fees/subsidies:

§i° = Net price of species i received by the fishermen
Eio = Cost of fishing effort paid by the fishermen

tpi = Landing fee/subsidy on harvest

toy = Effort fee/subsidy.

Price and cost definitions are

~ O (o]
Py~ =Py (1-ty;) (9.6)

~ O ~ O
c; <y (1+tei) . (9.7)

Simple arithmetic shows that the tax rates are found from the

formulas:
- *
tg; = by*/ e /X, *) (9.9)
where p, = pioKi with K, defined in connection with (8.1). b *

is the rent per unit of standardized harvest, Xi* is the optimal
stationary stock level and Cy the cost of harvesting the last
unit of the stock, is defined in (8.8).



In Table 9.5 are shown the optimal stationary harvest and
effort fees/subsidies as a share of harvest price and effort cost,

respectively.

Table 9.5. Optimal stationary fees and subsidies (-) as a
share of harvest price (tpi) and effort cost (tei)
in the case of the interior solution.

P o
1 t t t t t t
(in cod units) pl p2 p3 el o2 e3
0.3405 v 0.6115 0.3693 ~13.0323 1.5742 0.5856 -0.9287
0.4540 0.6738 0.2686 -11.0323 2.0658 0.3673 -0.9171
0.5675 0.7242 0.1746 -10.3169 2.6264 0.2115 -0.9116

1)Based on the interior solution. As expiained in the text the

corner solution at B in Figure 9.1 will be the optimal solution
for this price of capelin. ‘

Table 9.5 clearly shows that capelin and cod should be taxéd,
the former more heavily than the latter, and that the tax on
capelin should be higher the higher the price of capelin is. For
cod the result is the opposite with respect to capelin price.

The necessity of heavily subsidization of the harvesting of
sea mammals is evident from Table 9.5. Using price support would
mean that the harvesters should receive ten to thirteen times as
much subsidies as they get for their products in the market. With
a low price of capelin, the optimal solution is to leave much of
the capelin in the sea as feed for the cod and harvest the cod
instead. Since the sea mammals' predation effect on cod is more
significant than on capelin (see (6.21)), it is optimal to exploit
the sea mammals most heavily when cod is expensive relative to
capelin. That is why the optimal subsidies on sea mammals in
Table 9.5 is highest for the lowest price on capelin.

Given that there exists an interior solution to our maximi-
zation problem it is seen that the optimal stocks are derived
from Equations (7.42)-(7.44). The stocks are implicit functions



of the biological and economic parameters. To find how sensi-
tive the solution is with respect to changes in the parameters
we have computed the elasticities1) of the optimal stocks with

respect to biological and economic parameters, defined as:

*/*
- W /W,
ij ~ 3P(3)/P(3) '

(9.10)

where P(j) is parameter j. The results are shown in Table 9.6
for standardized prices of capelin set equal to 0.3405 and 0.5675.
In the table are also shown the corresponding elasticities of net
present value of the sustainable rent:

_ 3NPV/NPV
i~ 3P(3)/P(3) °

NPV (9.11)

The results from the TSB-model in Table 9.6 show a positive
effect on the stocks from increases in the own intrinsic growth
rate. This is equivalent to that of the Schaefer model. Both
for the low and the high capelin price will there be a negative
impact on the sea mammal stock when r, increases. The effect from
ry. however, is dependent on the price of capelin. When capelin
is expensive relative to cod, an increase in r, slightly increases
the optimal stock of sea mammals. This is because of the sea
mammals' relative stronger predation on cod than on capelin (see
{6.21)) in the TSB-model. A larger stock of sea mammals means a
net contribution to capelin harvest in this case.

Increased biological productivity of capelin and cod, via
r, and Py has a-significant positive impact on the net present
value. The magnitude is, of course, dependent on the harvest
prices. Due to the sea mammals being a top predator of rela-
tively low value an increase in its intrinsic growth rate, Ly,
has a negative, but small, impact on NPV. K and a have, like
r, and ry, a significant positive impact on NPV, whereas the

1)E:lastic:ities were approximated by computing the effects of one

percent increase in the parameters.
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effect from B is negligible. Changes in the sea mammals' related
coefficients, ry and B, have minor effects on NPV because of the
heavily depleted stock and low sea mammal yield at the optimum.
That is also why changes in a3 and a5 have minor impacts on
NPV. However, these preying coefficients' negative impact on the
optimal sea mammal stock is significant. The more food the sea
mammals need, measured by a3 and as3s the lower the stock should
be. Since both capelin and cod, directly or indirectly, are
valuable species, an increase in the latter's consumption of the
former has a great negative impact on the net present value. As
a conclusion we can say that the NPV of optimal harvesting is
rather sensitive to changes in biological parameters related to
capelin and cod, but not very sensitive to changes in sea mammal
related biological parameters due to this species' low optimal
stock level,

With respect to an own price increase, capelin is seen, from
Table 9.6, to be affected the same way as in a single species
model. The optimal stock decreases and the net present value
increases. This is also what we should expect from the analysis
of the two species predator-prey model in Section 7. According
to the theoretical analysis the optimal predator stock should
increase with a rise in the price of the prey when the predator
is a nuisance. Table 9.6 shows that in the TSB-model this is
the case for the sea mammal stock when the capelin price rises,
whereas the optimal stocks of cod and capelin decrease in this
case.

A rise in the capelin price initially augments the value of
this species proportionally to the price increase. However, it
pays to transform some of the increased wealth into capital in
general, and some into resource capital of the top predator. This
increase in the sea mammal stock helps reduce the intermediate
stock, the cod, thus reducing the total consumption of the capelin
which has now become more valuable. Increased capital in general
rewards the social manager with the interest expressed by the
discount rate, and the top predator capital rewards him with in-
creased revenues and reduced harvesting Costs of this species, In
addition there is an increase in the net benefits of capelin harvest
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due to the reduced predation pressure from the cod stock.

Table 9.6 shows that a rise in the price of cod, Py has a
much stronger impact on the optimal capelin stock than on the
cod stock; both, however, increase. In the economic analysis of
the two species model in Section 7 we showed that, both for the
prey and for the predator, the optimal stock decreases with an own
price increase. In the TSB-model the cod is a prey compared to
the sea mammals, but a predator compared to the capelin. From
the two species analysis we therefore would think that the opti-
mal cod stock in the TSB-model would decrease with an own price
increase. However, as Table 9.6 shows, the effect on the optimal
cod stock from an own price increase is positive, even though
it is small. The reason for this is probably that the capelin,
as well as the cod, is prey for the sea mammals. A rise in
the price of cod initially augments the value of the resource
capital of this species proportionally to the price increase.
However, since cod is the most important prey for the sea mammals,
it now pays to reduce the use of it as an expensive feed for the
sea mammals. This is done by the reduction of the sea mammal
stock which enables a minor increase of the cod stock. On the
other hand, the capelin stock should be increased significantly
to supply the cod stock with more, and relatively cheaper, food
than before the rise of the price of cod.

The effects on the optimal stocks from an increase in the
price of sea mammals are, as Table 9.6 show, hardly noticeable.
Note, however, that the effects are of opposite sign to the
results derived in the theoretical two species analysis in Section
7. In the TSB-model the optimal sea mammal stock increases a
little with an own price increase, whereas in the two species
model the predator is always negatively affected by an own price
increase. The explanation for this might be that the optimal sea
mammal stock is so small that a price increase for this species
contributes very little to the value of the resource stock.
Therefore it does not pay to reduce this capital stock and trans-
form it into capital in general. It rather should be increased
slightly to reduce the negative net profit from the harvest of
the sea mammals.



In the two species analysis in Section 7 we found symmetry
between the effects of prices and costs on the optimal stocks.
When the effect of a price increase on one of the stocks is nega-
tive, the effect of an increase in the corresponding cost is
positive. The results in Table 9.6 show such symmetric effects
on the optimal stocks in the case of changes in capelin price and
cost. For changes in prices and costs of the two other species this,
however, is not the case. Note, for example, that the optimal
sea mammal stock increases both with an increase in the price and
in the cost of the sea mammals. The effect of a cost increase,
is, however, very strong, whereas the effect of a pricé increase
is very weak as shown above. When the effort cost of the sea
mammal harvest increases with one perdent, the optimal sea mammal
stock increases slightly more than one percent. The increased
stock reduces the unit harvest cost, thus almost restoring harvest
profit to its original level. The harvest profit of sea mammals
is anyway negative.

An increase in one of the prices has a positive effect on
NPV in the TSB-model, whereas a cost increase has a negative
impact just as in the single species model. With respect to cape-
lin and cod the effect on NPV from avprice increase is more
important the larger the previous harvest of the price increased
resource. For a relatively low price of capelin the optimal har-
vest of that particular species is low; therefore, a price in-
crease contributes little to the total economic result measured
by NPV.

For capelin and cod the effect from an increased discount
rate, §, in the TSB-model is similar to that of the single species
model. The optimal stock levels decrease with a partial increase
in the discount rate. For the sea mammal stock, however, the
result is the opposite. An increased discount rate, ceteris pari-
bus, makes the optimal stock level significantly higher. The
larger predator stock helps reduce the prey to its lower optimal
stock level caused by the increased discount rate. As noted in
the discussion in Section 7, a rise in the discount rate makes
it more costly to keep a large prey stock, therefore a part of

it is transmuted into capital in general. 1In the case of the
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TsSB-model, cod and capelin are both preys relative to the sea
mammals, so a part, although a small one, of each of them is:
transmuted into capital in general. Another part is transmuted
into the predator resource capital, the sea mammals. Thus, the
losses from harvesting the predator are reduced, probably because
of the lowered unit harvesting .cost, but also because of increased
revenues from this species.

With respect to the net present value, it is seen from Table
9.6 that a discount rate increase has a negative effect as is the
case with the single species model. The NPV might be compared to
the price of a bond which decreases when the interest rate in-
creases. In our case the NPV expresses the potential market
value of the resource capital represented by the stocks of the
three species, provided the stocks are at the optimum.

Having presented and discussed the optimal solutions of the.
TSB-model in the section, we shall proceed with the open access
solutions in the next section, and compare them with the optimal
solutions.
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10. OPEN ACCESS SOLUTIONS

Until 1977 the living resources of the Barents Sea and
adjacent areas were common property resources exploited by
fishermen from most European fishing nations. The implemen-
tation of the Extended Fisheries Jurisdiction (EFJ), made
possible by the United Nations' third law of the sea conference,
in principle transformed the fishing resources of the area from
international common property resources to the property of the
coastal states of Norway and the Soviet Union. However, there are
still disputes regarding the jurisdictional right for Norway to
manage the fisheries resources of the Svalbard zone.(Churchill,
1985); and the management problems with respect to the whale
stocks in the area still prevail (Hoel, 1985).

To give an impression of the magnitude of the fisheries of
the Barents Sea and adjacent areas, annual catch rates of sea
mammals are depicted in Figure 10.1 and catches of capelin and
cod in Figure 10.2 for the period 1868-1980. The harvest of
sea mammals has fluctuated widely with significant peaks in the
mid 1880s, in the 1890s, in the early 20th century, from the
mid 1920s to the outbreak of the Second World War and in the
early 1950s. A detailed empirical analysis of the causes of
the fluctuating sea mammal harvest is beyond the scope of this
study. According to the theory of common property resources,
the causes should be sought in biological, technical, market or
cost relations.

For capelin and cod it should be noticed that for practi-
cally all years until 1960 the catches of capelin were well
below that of cod. The "capelin" peak after the mid 1960s is
mainly herring and it coincides with the commencement of the
almost total deplefion of the Atlanto Scandian herring (Sztersdal,
1980). The peak ten years later consists almost entirely of
capelin, caught by Norway and the Soviet Union. The collapse
of the capelin stock, however, did not occur before the mid
1980s (Anon., 1986).
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Figure 10.1. Annual harvest of sea mammals in the Barents
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Using the economic and biological data from previous
sections of this study we can analyse the open access solution -
of the Barents Sea fisheries. This is done within the frame-
work of the TSB-model and is restricted to comparisons of equi-
librium situations. With the basic case biological parameters
in Table 6.12 and the basic economic parameters in Table 8.6,
the open access equilibrium of the TSB-model is shown in the
first lines of Tables 10.1 and 10.2 in normalized and metric
units, respectively. For comparisons the optimal solution from
Section 9 are included in the tables.

Table 10.1. Stock levels and harvest rates under open access

and optimal management. Normalized units.

o]
p .
1 Harvesting
(1000 Nkr/| regime % Xy X3 Yy Y3 Y3
m.t.)
Open
1) 0.235503{0.133918 |0.262812{0.094208{0.031757 |0.005416
0.5284 access
(0.2270) | oovimal |0.420009(0.215913 |0.017887 o |0.118006 |0.001069
1) Open 14 15700210.121327(0.262812 |0.085135 0 |0.001799
0.7926 access )
(0.3405) . .2)
optimal®’|0.404155|0.212338(0.018729 {0.012866|0.113080 {0.001117

1)Standax:chzed price with price of cod as the numeraire is given

in parenthe51s.
2,Inter.'l.cn: solution, cf. Figure 9.1. The optimum is equl-
valent to the corner solution shown in this table for Py =
0.5284 Nkr/kg.

The open access fishery were analysed in the last part of
Section 7. There it was shown that if relative prices and costs
imply simultaneous harvesting of all three species, the open
access stock level of each species will depend only on own
price and effort cost. The stock levels are, in general, found
from Equation (7.55), but in the particular case of cod fish
technology Equation (7.59) gives the open access solution for

all three species,
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Table 10.2. Stock levels and harvest rates under open access
and optimal management. Million metric tons.

(o]

p .

1 Harvesting
(1000 Nkr/ regime Y Y, s By By hy
m.t.)
1) Open 7.065 | 3.616 | 0.852 | 2.826 | 0.857 | 0.018
0.5284 access

(0.2270) optimal | 12.600 | 5.830 | 0.058 0 3.186 | 0.003
1) Open 4.710 | 3.276 | 0.852 | 2.554 0 0.006
0.7926 access

(0.3405) | oovima1®) | 12.125 | 5.733 | 0.061 | 0.386 | 3.053 | 0.004

1) 2)

and : See notes to Table 10.1.

The open access solution for basic prices and costs, that
is for p1° = 0.5284 Nkr/kg, is derived using the method leading
to Equations (7.55) and (7.56). This solution implies simul-
taneous harvesting of all three species, and it proves to be
locally stable. The harvest rates seem to be reasonable com-
pared to actual harvests shown in Figures 10.1 and 10.2, except
for the harvest of capelin which seems to be somewhat high. It
is, however, important to stfess that the solution is based on
the assumption of pure cod fish technology for all three species.
If we, on the contrary, had assumed pure pelagic fish technology
for the.capelin fishery, it is easy to demonstrate the extinc-
tion of all three species would be the result. As long as the
profit from harvesting one ton of capelin is positive, it is
positive for any stock level including the last unit of the
stock. Being a common property means that no one has the in-
centive to leave the last unit of the resource unharvested.
With the basic prey removed from the ecosystem, the predators,
cod and sea mammals, are also extinct in the TSB-model.

The question of what kind of harvest technology prevails
in the industries may be essential to the question of extinc-

tion of common property fish resources. To some extent we have
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discussed this subject in Section 8. Nevertheless, here we
shall stick to the assumption of pure cod fish technology in
the harvest of all three species in the TSB-model.

Comparing the optimal solution with the open access solu-
tion for p1° = 0.5284 Nkr/kg, it is seen from Tables 10.1 and
10.2 that the stocks of capelin and cod should be significantly
increased and that of sea mammals should be dramatically
depleted. This drastic removal of the top predator, the sea
mammals, makes it possible almost to quadruple the harvest of
cod. A capelin price of 0.5284 Nkr/kg is so low that it is
optimal not to harvest this resource. It should rather remain
in the sea as feed for cod under optimal management of the
interdependent species, while in the open access case the cape-
lin will be heavily exploited.

The open access fishery can affect the stocks to the extent
that one of them, for example the cod stock, is reduced to such
a low equilibrium level that fishing for this particular species
is unprofitable. The analysis in section 7, and in particular
Equations (7.59) and (7.61), show that the open access stock
level of cod in this case is a function of prices and costs of
the two other species, capelin and sea mammals.

With a 50% increase in the price of capelin, ceteris
paribus, from 0.5285 Nkr/kg to 0.7926 Nkr/kg, the open access
harvesting of capelin will be more intensive reducing the stock
from 7 million tons to 4.7 million tons. Such a raduction in the
availability of prey reduces the cod stock so much that it makes
the harvesting of this resource unprofitable. To find the
complete open access solution in this case it is therefore
necessary use Equations (7.59) and (7.61). The results are pre-
sented in Tables 10.1 and 10.2 for p1° = 0.7926 Nkr/kg. Under
open access a 50% partial price increase of capelin renders the
cod stock unharvested, reduces the harvest of capelin somewhat
and reduces the harvest rate of sea mammals by as much as two-
thirds. Altogether, the gross value of the total open access
“harvests is nearly halved, especially due to the unprofitability
of the cod fishery.
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In the case of the pure cod fish technology, Equation (7.59)
shows that the open access stock level of a harvested species.
depends only on the own price and effort cost. For sea mammals
this is illustrated in Tables 10.1 and 10.2, where the stock
- level of this species is unchanged from line one to line three,
because price and cost are unchanged. For capelin, however, the
stock level is reduced because of increased own price. For two
different levels of Py p11 and p12, Equation (7.59) implies the
following relationship between the two levels of‘the capelin
stock, X11 and X12, when cost is unchanged:

=
—
ge

!
s (10.1)

For capelin we have from Table 10.1:

2

P .3405
1 %2270 T P -
Py

(10.2)

That is why the ratio of the stock levels of capelin on line one
and three is

1

X
1 _ .235503 _
;_E = 3556032 ° 1.5 . (10.3)

1

In this respect the result is similar to the result of the single
species analysis of open access fisheries. Under open access
harvesting no one has the incentive to invest in the capelin
stock today in order to be able to harvest more of it tomorrow.
Now, in the multispecies context we might say that no one has the
incentive to invest in the capelin stock today so as to harvest

more cod tomorrow.
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Under open access harvesting it is interesting to notice
the strong effect on the harvest rate of sea mammals from an
increase in the price of capelin. This happens despite the
constant equilibrium level of sea mammals. The cause is to be
found in the reduction of the prey stocks, especially that of
the capelin. The sustainable yield of sea mammals is therefore
sensitive to changes in the availability of preys within the
‘range of stock levels considered here.
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11. SUMMARY AND CONCLUSION

The aim of this study has been twofold: to provide a
theoretical and an applied analysis of multispecies fisheries.
A two species biomass model is reviewed in Section Two, and
Section Three presents a three species model based upon the
former one. The concept of maximum sustainable yield frontier
(MSF) is defined and presented in Section Four, and a method
for deriving this in the three species case is developed. The
biological MSF concept is closely related to the concept of
production possibility frontier in economic theory.

The applied part of this study is devoted to the fisheries
of the Barents Sea area in the North East Atlantic Ocean. There-
fore, a brief description of the marine ecological system of the
area is included in Section Five. Since a fully developed and
implemented multispecies model of the Barents Sea fisheries
did not exist, an attempt has been made to estimate the nine bio-
logical parameters of the model. The '"guesstimation'" procedure
is explained step by step and the assumptions made are expli-
citly put forward in Section Six, such that the reader can
critically appraise and modify them if that is felt to be

desirable.

The three stocks in the applied model are aggregated
stocks with "capelin" consisting of capelin and herring, "cod"
consisting of cod, haddock and saithe, and "sea mammals" con-
sisting of 14 species of whales and two species of seals.

Economic aspects of multispecies fisheries studied in Section
Seven includes optimal harvesting levels as well as open access
harvesting levels. In addition to the traditional study of in-
terior solutions, we also discuss the possibility of corner solu-
tions and analyse in some detail a couple of cases. With respect to
the effects on the'optimal stocks from an increase in the dis-
count rate, this was studied theoretically within the framework
of a two species predator-prey model. We found that the un-
traditional result of an increase in the predator stock, is
most likely in cases where the predator clearly is a nuisance
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to be harvested not (only) for the sake of its own value, but
to increase the availability and the profitability of the prey.

harvest.

The economic parameters of the model are derived from
Norwegian data in Section Eight and together with the biologi-
cal data in Section Six, they are used in Section Nine to
derive the optimal solutions of the three species Barents Sea
model (TSB-model). With the basic set of biological and eco-
nomic parameters the optimal solutions proves to be a corner
solution with no harvesting of capelin. However, the argument
is that this result is a consequence of the assumed constant
price of capelin. Introduction of elastic demand would probably
alter this finding as indicated by the computed results from
increased price of capelin. The optimal solution requires
taxation of the capelin and the cod fisheries and heavily sub-
sidization of the sea mammal harvesting due to the latter's
imposed costs on the two former through predation. Sensitivity
analysis of the optimal results in Section Nine indicates that
this finding is very robust against changes in biological para-
meters, and, within reasonable limits, this main finding is
also robust against changes in most economic parameters.

Open access solutions of the TSB-model are presented in
Section Ten, and it is concluded that all three stocks are sub-
stantially reduced compared to the pristine levels. However, the
optimal stocks of capelin and cod are not only larger than open
access stocks, but even larger than the pristine levels. This
paradoxical result is made possible by the heavily reduced
stock of sea mammals which expands the ecological niche for
capelin and cod. The relative importance of capelin and cod in
the optimum very much depends on the relative prices and harvest
costs of these two species. For example, when the price of
capelin is one-third of the price of cod it is optimal only to
harvest cod, whereas if the capelin price rises to three-
quarters of the price of cod, ceteris paribus, it becomes opti-
mal only to harvest the capelin. However, in either case, the
sea mammals should always be kept at a relative low stock level.



One of the main policy recommodations of this study is that
the sea mammals should be heavily depleted to increase the sur-
plus production of fish resources for man. Controversial it might
be, our findings are nevertheless rational from an economic
point of view. It should, however, be stressed that this result
may be somewhat modified if the resource is assigned an optional
value from people's willingness to pay for keeping the stock at
higher level. A biological argument that also may weaken our
result is the eventual existence of critical depensation for
lower stock levels. The TSB-model is, as most stock assessment
models of whales and seals also are, based on the assumption of
pure compensation. Together with the assumption of pure cod
fish technology in the harvesting sector this is a safeguard
against extinction. 1In the TSB-model the optimal stock level
of sea mammals increases somewhat with an increase in the price
of capelin, ceteris paribus. This is also the case for increased
harvest costs of cod or capelin, and for an increaéed discount
rate. Since the sea mammals' predation pressure on cod is rela-
tively higher than that on capelin, a reduction in the price of
cod increases the optimal stock level of sea mammals. A reduced
price of cod allows a larger consumption of cod by sea mammals,
hence, an increase in the optimal stock of the sea mammals.

As the quotation from D'Ancona (1926) in Section Three
shows, the;recognition of the necessity of harvesting the pre-
dator to increase the yield of the prey is not entirely new.
Even long before that, in 1859, this was asserted by Charles
Darwin in his famous book "The Origin of Species" as the follow-
ing quotation demonstrate:

The amount of food for each species of course gives
the extreme limit to which each can increase; but very
frequently it is not the obtaining food, but the serving
as prey to other animals which determines the average
number of a species. Thus, there seems to be little
doubt that the stock of partridges, grouse and hares on
any large estate depends chiefly on the destruction of
vermin. If not one head of game were shot during the
next twenty vears in England, and, at the same time, if
no vermin were destroyed, there would, in all probability,
be less game than at present, although hundreds of
thousands of game animals are now annually shot.
(Darwin, 1882, pp. 53-54; quoted from Volterra, 1928,
pp. 21-22.)
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In the context of the Barents Sea fisheries the "vermin" consist
of several species of fish-consuming whales and seals, and this
is also the case for the fisheries in other areas of the North
Atlantic.

Several extensions of this work can be thought of in both
the theoretical and in the applied field. The former includes
multispecies studies of resources where, e.g., one of the stocks

1)

is "transboundary" ', i.e. the fish stock migrate across the
boundary of the Extended Economic Zones of two countries. If

one country has the main jurisdiction of the prey and another

the main jurisdiction of the predator the complexity of the model
clearly increases. Another extension of the theoretical analysis
could be to introduce seasonal variations in the growth rates of
the stocks, the catchability coefficients or in the prices of

the harvests.Z)

This clearly enhances the complexity of the bio-
economic system and of the economic solution to the optimization

problem.

In the applied field more research needs to be devoted to
other living resources of the Barents Sea by adding more stocks
to the TSB-model. Deep water prawn is a species whose harvest
immensely increased, both in quantitative and value terms, from
the mid 1970s to the mid 1980s. Some scientists believe this
quantitatively increase has been possible mainly because of the
depletion of the cod stock. If this is true the optimal solu-
tion will probably tell us to reduce the cod stock more than in
the case of the TSB-model with capelin as the only prey.

The most important fish consumers included in the stock of
sea mammals in this study are the Minke whale and the Harp seal;
and one could think of dividing the sea mammals into two or more
proper stocks to study how different combinations of whaling and
sealing effect the optimal result. This could also include eco-
nomic studies of transboundary resources since the migratory

1)Munro (1979) is a theoretical study in the economics of a

transboundary resource within the framework of a one species
model.

2)Opt:imal harvesting of one renewable resource with seasonal

growth is analysed in Flaaten (1983).
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whales are combined Norwegian property and internationally
common property resources, while the Harp seal stock of the
Barents Sea mainly is the property of the USSR.

In the last couple. of decades the harvest of whales and seals
has been an increasingly touchy question for all nations with
traditional interests in utilizing the marine resources. Studies
in political science of the behaviour of governments, environ-
mental organizations, the International Whaling Commission, etc.
will also be of interest for the political implementation of the
economic optimal solutions to multispecies harvesting problems
(e.g. see Hoel, 1985).

In scientific disiplines other than social sciences we can
think of detailed biological studies of predation and of inter-
species relations with respect to carrying capacities and growth
rates. Cost-benefit analysis linked to this study might be of
some help in the selection of biological projects.

The economic history of Arctic societies is closely rela-
ted to natural resources. Multispecies studies of the living
resources will probably improve historians' understanding of the
development of such societies, since technology, relative prices
and costs change with time and alter the relative importance of
the species in the ecological system. For example, how did the
early intensive hunting of whales and seals in the Barents Sea
area affect the development of coastal fisheries and communities
in North Norway? And how severe will the effect on this fishery
dependent region be as a result of a complete ban on whaling and
sealing? The quantitative analysis of this study does not sole-
ly serve the purpose of illustrating a method, but the author
thinks they also give a description of some important biologi-
cal and economic relationships of the Barents Sea fisheries.

The sincere answer to the last question therefore is that such
an experiment in the long run may prove disasterous for this
fragile, resource-based region; and the same conclusion will
probably also apply to similar societies in other parts of the
Arctic,
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APPENDIX 1

EQUILIBRIUM SOLUTIONS OF THE THREE SPECIES MODEL

If the system (3.6)-(3.8) have an equilibrium solution

different from Xi = 0 for all i, and Yij # 0 for all i,j, it

is found easily from

A2 - XZ/X1 - Y23X3 =0 (A1.2)
A3~-aX3/(X1 + aXz) =0 . (A1.3)
Reformulating (A1.2) gives
X2 = AZX1 - Y23X1X3 . (A1.4)
Substituting for X2 in (A1.3) and reformulating gives
ALX (l + A,)
Ky = 5432, | (A1.5)
3Y23%
Substituting for X3 in (A1.4) gives
(A, - Y., A, + X)X
2 2373 a 717
Xz = T+ ALy, X (A1.6)
3'23M

We have now expressed X2 and X3 as functions of X1. Substituting
for x2 and X3 into (A1.1) and reformulating gives

2
Ay + DX, + DX,
T+ A7, X =0 (A1.7)
3Y23%
A, + D.X, + D.X.% = 0 (A1.8)
1 1%4 2% =0, .

where



= AjAsY,3 = 1 - YRy - A1 a)y, g

-
i

D

5 = A3(1/0)Yy5Y53 - AgYay

The solution of X1 from (A1.8) is

(47



APPENDIX 2

PROGRAM FOR COMPUTATION OF THE MSF-DATA

BEGIN
COMMENT
o e Jededo K de e Jodo e dode de e de e do dede s Je o de de do de o de e Jo de o do dedode de dededede e de ke ke de ke
%* *
*  FILNAVN PROGRAM : SY12 *
*  FILNAVN KOMPILERT : SY12B *
*  FILNAVN INNDATA : INPUT %*
*  FILNAVN UTDATA : LESES INN %*
*  PROGRAMMERINGSSPRAK : SIMULA 1.2-353 *
*  TYPE MASKIN : CYBER 171MP *
*  OPERATIVSYSTEM : NOS 2.0-531/528 %
*  PROGRAMMERER : OLA FLATEN *
*  INSTITUSJON : IFP, UNIV. I TROMS) *
*  SEKSJON : AVDELING FOR OKONOMI *
*  DATO : 05/11/1985 *
*  VERSJON i1 *
* *

}
§

COMMENT PROGRAMMET LESER INN HQYESTE/LAVESTE VERDI FOR EN
PARAMETER OG VERDIER FOR 9 ANDRE. DATAENE LEGGES UT
PA EN FIL TIL GRAFISK FREMSTILLING;

REAL ARRAY PARAM(1:10); ,

REAL Al2,A13,A23,A1,A2,A3,G12,G13,G23,K1,K2,X1,X2,X3,W1,wW2,W3,
Y1,Y2,Y3,H1,H2,H3,5Q,X,XMIN, XMAX, XSTEP;

TEXT ARRAY TPARAM(1:10);

INTEGER I,PARAMNR;

TEXT FILNAVN;

REF(OUTFILE)UT;

COMMENT *riricirdciriddririi ik ik ik i ki didodkdoid

* HOVEDPROGRAM *
*mmmmm;
FILNAVN:-BLANKS(7);
' OUTTEXT("LES INN NAVN PA DATAFIL");OUTIMAGE;INIMAGE;
FILNAVN:=INTEXT(7);
BEGIN
UT:-NEW OUTFILE(FILNAVN.STRIP);
UT.OPEN(BLANKS(80),0);
FOR I:=1 STEP 1 UNTIL 10 DO
TPARAM(I):~BLANKS(2);

TPARAM(1):="Ul";
TPARAM(2):="U2";
TPARAM(3) :="U3";
TPARAM(4):=""R1";
TPARAM(5) : ="R2";
TPARAM(6) : ="R3";
TPARAM(7):="A ";
TPARAM(8):="B "; =
TPARAM(9) : ="K "
TPARAM(10): ’"XZ"
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PARAM(1):=0.0000;
PARAM(2) :=0.0000;
PARAM(3) :=0.0000;
PARAM(4) :=1.2704;
PARAM(S5):=1,1617;
PARAM(6):=0.0614;
PARAM(7):=0.90;
PARAM(8):=0.12;
PARAM(9) : =30% 1 0%*6;
PARAM(10):=0.05;

FOR I:=1 STEP 1 UNTIL 10 DO
BEGIN
SETPOS(20) ; OUTINT(I,2) ; OUTTEXT(" ");
OUTTEXT(TPARAM(I));OUTTEXT(" = ");
OUTFIX(PARAM(I),4,14) ;OUTIMAGE;
END FOR I;
OUTIMAGE ;OUTTEXT("NR. PA PARAMETER SOM SKAL FORANDRES");
OUTIMAGE ; OUTIMAGE;
PARAMNR : =ININT;
OUTTEXT("LES INN MIN OG MAX FOR ");
OUTTEXT( TPARAM( PARAMNR ) ) ; OUTIMAGE ; OUTIMAGE;
XMIN:=INREAL; XMAX:=INREAL;
XSTEP:=(XMAX~XMIN)/50;

FOR X:=XMIN STEP XSTEP UNTIL XMAX DO
BEGIN
PARAM(PARAMNR ) : =X ;

Al2:=0.125/10%%6;
Al13:=0.140/10%%6;
A23:=0.310/10%%6;

W3:=1500;
X3:=1000*W3/ ( PARAM( 7)*PARAM( 8)*PARAM(9) ) ;
X2:=PARAM(10);

G12:=A12*PARAM(7)*PARAM(9) /PARAM(4);
G13:=A13*PARAM( 7 )*PARAM( 8 ) *PARAM(9) /PARAM(4);
G23:=A23*PARAM( 7)) *PARAM( 8 ) *PARAM(9) /PARAM(5) ;

Kl:=14+(4-G12)%*X2;
K2:=8%X2%(2-3%G]12%X2);

SQ:=K1**2-K2;
IF SQKO THEN
BEGIN
OUTTEXT("VERDI I KVADRATROT ER NEGATIV, SETTES TIL 0");
OUTIMAGE;
$Q:=0;
UT.OUTCHAR( "*~);
END ELSE
UT.OUTCHAR( "~ *);



X1:=K1/4+(SQRT(SQ))/4;

Y1:=PARAM(4)*X1*(1-X1-G12*X2)-PARAM(4)*X1*G13*X3;
¥2:=PARAM(5)*X2*(1-X2/X1)~PARAM(5)*X2*G23*X3;
Y3:=PARAM(6)*X3*(1-X3/(X1/PARAM(7)+X2));

W1:=X1*PARAM(9)/1000;
W2:=X2*PARAM( 7 )*PARAM(9)/1000;

H1:=PARAM(9)*Y1/1000;
H2:=PARAM(7)*PARAM(9)*Y2/1000;
H3:=PARAM(7)*PARAM(8)*PARAM(9)*Y3/1000;

UT.OUTFIX(Y1,6,9);UT.OUTFIX(Y¥2,6,9);
UT.OUTFIX(Y3,6,9);UT.OUTFIX(X1,6,9);UT.OUTFIX(X2,6,9);
UT.OUTFIX(X3,6,9);UT.OUTIMAGE;

END FOR X;

OUTIMAGE ; OUTTEXT('"'DATA PA FILEN ') ;OUTTEXT(FILNAVN);

OUTIMAGE ; OUTIMAGE;

END FILNAVN;
END PROGRAM;



APPENDIX 3

AGGREGATED STOCK LEVELS OF CAPELIN AND COD,1) 1950-1980

1950 11.690 6.652
1951 13.210 7.031
1952 14.800 7.699
1953 15.620 7.770
1954 15.930 7.971
1955 16.190 7.982
1956 16.130 6.835
1957 14.050 5.311
1958 13.230 4.972
1959 13.170 5.425

1960 11.330 4.825
1961 9.760 4.942
1962 8.020 4.770
1963 6.950 3.917
1964 7.950 3.996
1965 9.410 4.687 -
1966 7.920 5.326
1967 6.270 5.686
1968 5.900 5.746
.1969 © 6.680 5.301

1970 6.990 4.637
1971 5.587 4.594
1972 7.000 5.049
1973 5.210 5.362
1974 6.230 5.226
1975 8.585 4.560
1976 6.926 4.099
- 1977 5.942 3.666
1978 6.309 3.134
1979 5.665 2.810

1980 6.985 2.734

1)"Capelin" includes capelin (Mallotus villosus) and herring
(Clupea harengus). "Cod" includes cod (Gadus morhua), haddock
(Melanogrammus aeglefinus) and saithe (Pollachius virens).
Source: Flaaten (1984a).
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APPENDIX 4

AGGREGATED CATCHES OF CAPELIN, COD AND SEA MAMMALS,1) 1868-1980

1868 149.2 198.2 3.0
1869 182.6 176.0 2.0
1870 95.4 207.2 3.4
1871 177.5 171.3 2.2
1872 95.5 197.4 3.7
1873 92.5 209.9 3.4
1874 117.9 200.3 4.6
1875 102.9 242.7 3.8
1876 84.4 168.4 4.1
1877 83.6 280.6 3.2
1878 69.1 213.5 8.0
1879 51.6 266.7 9.1
- 1880 75.8 294.5 11.2
1881 66.9 246.6 19.7
1882 38.8 233.6 17.9
1883 95.5 162.5 26.3
1884 58.8 222.1 22.0
1885 80.3 257.8 41.1
1886 121.5 277.1 41.5
1887 114.6 226.2 25.1
1888 112.1 246.2 24.6
1889 112.9 258.6 11.2

1890 78.5 276.8 22.4

1891 130.7 219.4 28.3

1892 177.1 289.3 39.8

1893 170.2 311.1 43.2

1894 51.2 311.4 38.0

1895 119.8 304.9 29.7 1)

1896 66.3 229.0 42.4

1897 184.2 272.0 39.6

1898 109.3 185.3 43.7

1899 89.7 167.6 26.8

1900 100.8 176.2 17.6

1901 100.3 180.7 22.0

1902 107.4 191.9 33.8

1903 161.1 193.3 22.3

1904 95.2 210.5 40.1

1905 114.6 192.3 35.2

1906 27.4 228.6 21.5

1907 54.3 238.5 22.5

1908 102.0 243.0 14.4

1909 155.4 289.7 9.6

1910 135.5 317.7 10.7

1911 147.0 360.2 10.6

1912 139.0 505.9 10.3

1913 107.7 389.2 8

1914 166.2 380.6 2

1915 158.7 313.5 5

1916 185.1 248.4 4
4
4
2

For definitions of '"capelin" and
"cod", see note in Appendix 3.
"Sea mammals" includes harp seal
(Pagophilus groenlandicus), hooded
seal (Crystophora cristata), blue
whale (Balaenoptera musculus),

fin whale (Balaenoptera physalus),
humpback whale (Megaptera nova-
canglia), sei whale (Balaenoptera
borealis), minke whale (Balaenop-
tera acutorostrata), sperm whale
(Physeter catodon), porpoise
(Phocaena phocaene), pilot whale
(Globicephala melaena), white
whale (Delphiapeterus leucas),
white-sided dolphin (Lagenorhyn-
chus acutus), bottlenose whale
(Hyperoodon ampullatus) and killer
whale (Orcinus orca).

1917 174.7 169.0
1918 199.5 154.1 2
1919 266.2 173.9 22.



1920
1921

1922

1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969

134.5
145.0
179.9
98.6
132.3
125.9
192.4
204.6
315.3
264.9
243.3
220.0
246.8
455.0
271.4
229.6
256.9
257.3
218.5
239.5
390.9
314.2
253.2
162.7
119.4
163.5
169.9
184.9
235.7
199.4
297.9
676.5
719.5
527.1
1097.9
749.3
977.4
996.4
927.0
1005.2
1053.9
869.1
604.9
750.9
889.2
1393.2

1908.8

2035.7
1237.8
742.1

181.7
202.7
250.0
317.4
340.9
396.8
565.3
478.5
489.2
589.0
602.0
452.5
490.0
445.7
529.7
611.9
878.3
1052.2
1020.8
821.4
547.7
457.8
325.1
307.7
350.8
305.3
748.6
963.4
872.6
917.1
890.6

1065.5

1138.5
952.9
1104.7
1435.6
1654.1
1062.5
987.6
1043.1
1027.8
674.5
1231.5
1098.0
752.6
773.2
890.1
895.4
1368.5
1504.0

13.8

/53

1970
1971
1972
1973
1974

1975

1976
1977
1978
1979
1980

1376.5
1414.4
1605.9
1342.9
1154.9
1421.4
2546.4
2958.0
2048.2
1832.5
1704.5

1255.4
1028.1
1036.0
1337.7
1637.9
1301.2
1289.6
1240.5

984.5

746.8

652.5



APPENDIX 5

CHARACTERISTICS OF NORTH ATLANTIC COD STOCKS
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APPENDIX 6

CHART FLOW. PROGRAMS FOR COMPUTING THE SUM OF SQUARES OF THE
DIFFERENCES OF RELATIVE STOCK SIZES

OFP
l KVST —— KVDYN — KVDYNUT
KVSTART — KVSI — (OLA) |
1 KVMSMD _ KVLES

=

|

KVBESD KVKVSI

l

KVKVUT

The programs:

KVSTART ¢ Control Commands

KVSI (KVSIB) ¢ The main program (SIMULA)
OFP : Password

KVST ¢ Control Commands

KVMSMD : Data (min step max)
KVDYN : DYNAMO-program

KVDYNUT ¢ DYNAMO out

KVLES (KVLEB) : SIMULA-program

KVD : Data (results)

KVKVSI (KVKVSIB): SIMULA (min. Qz)—program
KVBESD - : Data (stocks 1951-80)
KVKVUT : Tables
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APPENDIX

A DYNAMO SIMULATION PROGRAM FOR THE TSB-MODEL, WITH HARVEST
RATES 1868-1980 INCLUDED

TIME 1868-)1980
0PT SVALL,R

KNI AN BN AP N NN

* LODDE =*
FRERREREESEESRFEES

L LODDE, K=LODDE. J+DT#RLODDE. JK

N (ODDE=NLODDE

C NLODDE=10. 069E6

R RLODDE. KL=R1. K#LODDE. K# (1-LODDE. K/K) -A12#L0DDE. K#TORSK. K-A13#LODDE. K
X #SEL. K~LFANGST. K

A LFANGST. K=TABHL (LFAN, TIME. K, 1868, 1980, 1)

A R1.K=0, 8696/ (1-9. 465E6/K)

C A12=0. 1250E-6 -

C ALFA=0. 50

¢ K=30€6

C A13=0. 1400E-6

A BETA. K=0, 0582#R3/ (R3-0. 0316)

A A M NN NN AN AN NN

* TORSK »
HNNNRBRRERBRBBRRNN

L TORSK.K=TORSK. J+DT*RTORSK. JK

N TORSK=NTORSK

C NTORSK=4, 739€E6

5 n;gg%.sf;t.;ﬂe. K*TORSK. K# (1-TORSK. K/ (ALFA#LODDE. K) ) -A23#TORSK. K*SEL. K
A TFANGST. K=TABHL (TFAN, TIME. K, 1868, 1380, 1)

A R2.K=0.4523/ (1-0. 5496/ALFR) v

C R23=0, 3100E-6

LA 22 el 2 d 02 g 2 g g 2
* SEL #»
#EHBEESERBE S S S H P

L SEL.K=SEL.J+DT#RSEL.JK

N SEL=NSEL

C NSEL=1.779E6 A
RSEL.KL=R3#SEL.K#(1-SEL. K/ (BETA. K# (LODDE. K+TORSK. K) ) ) ~SFANGST. K
SFANGST. K=TABHL (SFAN, TIME. K, 1868, 1980, 1)

R3=0. 0614 ,

Y3=0. 035

FANGST AY LODDE, TORSK OG SEL (51 LINJER)

LFAN=149. 2E3, 182. 6E3, 95. 4€3, 177, SE3, 95. SE3, 92. SE3,117. 9E3,

102. 9E3,84. 4E3, B3. 6E3, 69. 1E3, 51. GE3, 75. BE3, 66. GE3

38. 8E3, 95. SE3, 58. 6E3, 80. €3, 121, SE3, 114. 6E3, 112, 1E3

112. SE3, 78. 5E.3, 130. 7E3, 177. 1E3, 170. 2E3, 51. 2E3, 119, 8E3,

66. SE3, 184, 2E3, 109. 3E3, 89. 7E3, 100. 8E3, 100. 363, 107. 4E3,

161, 1E3, 95. 2E3, 114, 6E3,27. 4E3, 54, 3E3, 102, VE3, 155. 4E3,

135. 5€3, 147. OE3, 139. OE3, 107. 7E3, 166. CE3, 158. 7E3, 185. 1€3,

178, 7E3, 199. 5E3, 266. 2E3, 134, 5E3, 145, 0E3, 179. 9E3, 98. 6E3

132. 3E3, 125. 9E3, 192. 4E3, 204. 6E3, 315. JE3, 264, IE3, 243, SE3,

220. 0E3, 246. 8E3, 455, 0E3, 271. 4E3, 229. 6E3, 256. IE3, 257, FE3,

218. 563, 239, 5E3, 390. GE3, 314. 2E3, 253. 2E3, 162, 7E3) 119. 4E3,

163. 563, 169, E3, 184, IE3, 235, 7€3, 199, 463,297, IE3, 676, SE3

719. 563, 527. 1€3, 1097. 9E3, 749. 3E3, 977, 4E3, 396. 4E3, 927. OES

1008, 2E3, 1053, 9E3, 869. 1€3, 604, IE3, 750, IE3, 889, 2E3, 1393, 2k 3,

1908, 8E3, 2035. 7€3, 1237. 8E3, 742. 1E3, 1376. SE3, 1414. 4E3, 1605. E3,

13482. :Svg, 1154, 9E3, 1421, 4E3, 2546. 4E3, 2958. 0E 3,2048. 2E3, 1832, 5E3,
V4,

O0ODdx

3 3¢ 3¢ 3¢ > 3¢ 3¢ 3¢ 2 3¢ 3¢ 3¢ 3¢ 3¢ ¢ O~
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T TFAN=198. 3E3, 176, 0E3, 207, 2E3, 171, 3E3, 197. 4E3, 209. 953, 290. 3E3,

242, 7E3, 166. 4E3, 280. €3, 213, 553,..55. VE3,294. 5£3,246. 6E3,

233. 663 162, SE3, 222, 1E3, 257, BE3, 277, 1E3, 226, 2E3, 246. 353,

258, 6E3,276. 8E3, 21 9. 4£3, 289, JE3, 311. 1£3, 311. 4E3, 304. 9E3,
29, 0.3, 272, OE3, 185. 3E3, 167, GE3, 175, 263, 180, 7E3, 191. IE3,

193, 363)210. SE3, 192. SE3, 228, 6E3, 238. SE3, 243. 0E3, 289, 7E3,

317. 7E3, 360. 2E3, 505. IE3, 389. 2E3, 380, 6E3, 313. SE3, 248. 4E3,

169. 0E3, 154, 1£3, 173. 9E3, 181. 7E3, 202, 7E3, 250. 0E3, 317. 43,

340. 93, 396. 8E3, 563 3E3, 478. 5E3, 489. 2E3, 589, OE3, 602, OE3,

2. SE3, 490. OE3, 445. 7E3, 529. 763, 611. 9E3, 878. 3E3, 1052, 2E3,

B0 g2y 01 ey 5a7 7E3, 457, 8E3, 325, 1E3, 307, 7E.3, 350, 8E3,

308, 3E3, 748. 6£3, 563, 4E3, 872. 6E3, 917. 1E3, 830, 6E3, 1065, SE3

1138. 5E3, 952. 9E3, 1104. 7E3, 1435, 6E3, 1654, 1E3, 1062, SE3, 987, 6E3,

1043. 1€3, 1027. 8E3, 674. 5E3, 1231. 5E3, 1098. 053, 752, 6E3, %73. 2E3,

890. 1E3, 895. 4E3, 1568, SE3, 1504, OE3, 1255. 4€3, 1028, 1E3, 1036. 0E3,

‘153,37. 7E3, 1637. 9E3, 1301. 2E3, 1289. 6E3, 1240. 5E3, 984. 5ES, 746. 8E3,

sm~=3. OE3,2. 0E3, 3. 463, 2. 263, 3. 7E3, 3. 4E3, 4. 6E3,

3. 8E3, 4. 1E3, 3. 2E3, 8. OE3, 9. 1E3, 11. 2E3, 19, 7E3,

17. 95.’3,3 . 3E3, 22. DE3, 41. 1E3, 41. SE3, a& 153 2%. 6E3,

11. 2E3) 22, 4E3) 28. €3, 39. 8E3, 43. 2E3, 38. 0E3, 29, 7E3,

42. 4€3, 39. 6E3, 43. 7E3, 26. BE3, 17. 6E3, 22, 0E3, 33. 8E3,

23. 3E3, 40, 1E3, 35. 353,..1 553, 22. 563, 14. 453, 9, 653,

10'7553.%50'7353' éo'ssg é 353 13 3535;5 oLy ee

- ( (] h ] '] [} e )

31. 0E3, 46. 8E3, 38. OE3, 37. 7E3, 36. 5E3, 27. aEi?, 58, 853

48. 3E3, 47. 3E3, 52. 5€3, 31, OE3, 27. 4E3, 24. 6£3, 50. &

13.0E3 17, 353, 3. OE3, 20. 33, 6. 9E3

13. 3E3) 12, 5E3, 23, 4E3, 29. JE3, 40. 6&3, 33. 153, 36, 953,

29. 563, 22. 453, 31. 7E3, 29, 7E3, 24. 4E3, 26. 6E3, 31. JE3,

22, 0E3, 2%, OE3, 24. 9E3, 26. 6E3, 22, 2£3, 18. SE3, 13. 9E3,

13. 763, 11. 33, 13. 0E3, 13. 8E3, 13. 5E3, 12. 4E€3, 11. 8E3,

?.1 aez_:?a. 6E3, 9. OE3, 10, 3E3, 9. 7E3, 8. 1E3, 10. 6E3,

rnennrsnggsu MED TIDSAVH. PARAMETRE 1868-)1980/2080

2&kkxkxkkkxkxkkkkkﬂxkxkxxxkxkkxxxkx

SPEC LENGTH=1980,DT=0. 05, PRTPER=1, PLTPER=1
PLOT LODDE=L, rané«-r, SEL=S



Simulation results with the basic case parameters from Table 6.12.

PAGE 2 TREARTSMODELL MED TIDSAVH. PARAMETRE 1868-) 1980

TIME LODDE TORSK SEL LODDE=CAPELIN
E+Q0 E+03 E+03 E+03

1868.0 10069, 4759.0 1779.0 TORSK=COD

1869.0 10022, 4611.0 1775.7

1870.0 10128. 4535.5 1771.8 SEL =SEA MAMMALS

1871.0 10251. 4527.0 1768.7
1872.0 10323. 4544.2 1766.3
1873.0 10393, 4557.2 1764.1
1874.0 10415. 4575.3 1762.1
1875.0 10414. 4573.6 1760.1
1876.0 10429. 4593.8 1758.5
1877.0 10425. 4589.2 1757.3
1878.0 10458. 4575.7 1734.6
1879.0 10489, 4583.1 1749.3
1880.0 10521. 4568.7 1742.9
1881.0 10530. 4584.1 1731.9
1882.0 10558. 4635.8 1718.5
1883.0 10501. 4712.7 1703.1
1884.0 10400. 4761.2 16686.1
1885.0 10346. 4737.5 166&2.8
1886.0 10323, 4760.7 1630.6
1887.0 10307, 4805.7 1607.4
1888.0 10261. 4835.2 1594.1
1889.0 10211. 4872.3 1587.8
1890.0 10193. 4865.5 1583.1
1891.0 10182, 4888.1 1570.2
1892.0 10123. 4903.9 1549.4
1893.0 10100. 4896.7 1521.8
1894.0 10163. 4921.2 1496.1
1895.0 10202. 4979.9 1478.6
1896.0 10170. 5063.6 1460.3
1897.0 10057. 5130.8 1437.6
1898.0 9943. 5179.8 1414.8
1899.0 9868. 5246.8 1398.5

PAGE 3 TREARTSMODELL MED TIDSAVH. PARAMETRE 1868-) 1980

1900.0 9781. 3S272.2 1393.7
1901.0 9717, 5259.3 1395.2
1902.0 9693. 523‘(;. 3 1386.8

1910.0 9715, 3198.7 1361.9
1911, 0 9774, 5136.1 1371.0
1912.0 9878. 3039.6 1380.1
1913.0 10042. 3003.2 1390.1
1914.0 101028, 5049.0 1404.1
1915.0 10063. 5085.1 1419.6
1916.0 9976, S51228.0 1433.7
1917.0 9861. 5152.3 1447.5
1918.0 9745, 5159.6 1450.7
1919.0 9643, 5136.6 1443.7
1920. 0 . S5105.7 1437.1
1921.0 9714, 35099.3 1435.6
1922.0 9750. 35082.0 1438.2
1923.0 9826. S5040.8 1435.9
1924.0 9939. 35019.5 1426.7
1925.0 10028, 5018.3 1406.6
1926.0 10103. 4978.1 1383.5
1927.0 10189, 4970.3 1366.0
1928.0 10174. 3023.6 1330.1
1929.0 10136, 5017.0 1339.3
1930.0 10173, 4985.3 1318.6
1931.0 10237, 5075.6 1287.6
1932.0 10169. 5202.7 1263.9
1933.0 9958. 5272.8 1238.6



-~

1967.0

1980.0

TREARTSMODELL MED TIDSAVH. PARAMETRE 1868-)1980

9800.
9847.
9987.
10273,
10667.
10918.
10763.
10329.
9953.
9718.
9646.
9661.
9734,
10059.
10514,
10866,
11029.
10876.
10703,
10782,
10668.
10648.

a921.
10181,
11517,
12172.
12141.

5262. 4
5193. 3
5030. 4
4851. 3
4769, 6
4881. 1
3132. 7
5363. 6

MED TIDSAVM. PARAMETRE 1 868-) 1980

1268. 6
1270.0
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Plotted results

PRRAMETRE 1868-)1380/20

6 TREARTSMODELL MED TIDSAVH.

LODDE=L TORSK=T SEL=S
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APPENDIX 8
EQUILIBRIUM AND STABILITY CONDITIONS OF THE THREE SPECIES MODEL

Conditions for Existence of Equilibrium

The three equations that must be satisfied if an equilibrium

with all 3 stocks present exists are from (3.6)-(3.8)

g
i

= Xy Yg%y t Y%y

= XZ/X1 + Y23X3

[\%)
I

A3(X1+aX2) = ax3

The third equation can be used to eliminate X3 from the first

two equations giving
aA1 - (a+y13A3)X1

= (A9.1)
2 a(Y12+y13A3)

and

(aB,-v,3A4X, )X,

= (A9.2)
2 a(1+A3723X1)

2

Note that X3> 0 if X1 > 0 and X

> 0 by the third equation above.

Eliminating X2 from (A9.1) and (A9.2) and simplifying gives
2
(y12—a)y23A3X1 + B1X1 + aA1 =0 , (A9.3)

where

-31 = a(1+y12A2) + y13A3(1+aA2) - GY23A1A3

/62



By the quadratic formula the formal solution is

. 3
By ot ’/31 =40 53 (Yy -0 )A A,

2(Yy5-0)Y 38,

Note that by (2) X, > 0 if and only if

QAZ
0 < X, <
T Y383

In fact, the graph of (A9.2) has the form

| 4 %2
|
|
I
|
!
o1 0 A ¥
ALY | #
3'23 y23A3
The graph of (A9.1) has the form
A X2
0 alA ;’

/63
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Stability of Equilibrium

One looks at the matrix A of the linearization of the system
(3.5)-(3.8) at the equilibrium point. Stability (local)

require that all eigenvalues have nonpositive real parts which

is true if

tr A < 0 , AA > 0 , |A] < O (AZA = sum of the 3
principal 2x2 minors)

(i.e. all coefficients in characteristic equation are positive).

From (3.6)-(3.8) in the text

'y (A9-2X, -4 %571 3%5) “TyY1% “TY13% ]
x22
A= 272 £y (Ay=2X, /X -Yy3X3) “TY3%;
1
r3ax23 r3azx32
—2tes — r3(A3—20LX3/ (X1 +0LX2 ) |
(X1+aX2) (X1+aX2)

Note that x1+y12x2+y13x3 = A, from (3.6), Xz/x1 + Yy3X5y = A,
from (3.7) and aX3/(x1+axz) = A from (3.8) so

- Xy “TyYq %4 ~Tq1Yq3%
X,% X,
A=t 1 ) T2 X, “TyYa3%y | .
1
r i;i r.A 2 r.A
L T3 4 383 “T3A3

I6Y



There are then the following possibilities:

1. The roots of (A9.4) have the opposite signs (or (A9.3) is linear
in which case there is é positive root). This happens
when A-Yqo 2 0. 1In this cgse the iine in the second graph
intersects the curve in the first graph with a positive X2

if and only if (since there is at mostvone intersection)

aA1 aA

a+Yq 383

2
Y383

s
or
Ya3RqA3 S 0By + Y 3RAA,

2. If @-Yq, ¢ 0,and both roots of (A9.4) are real then they
both have the same sign and this sign is positive providing

B1 < 0. In case

aA1 aAz
s
oH'Y13A3

again
Y2383

one sees from the graphs that only the lesser root

2
-B, - /51 -4ay23(Y12-a)A1A3

X1=
2(vq1 7)Y, 3R,

has X2 > 0. Indeed this condition guarantees the existence

of an equilibrium with X2 > 0 so it implies that B1 < 0

and the discriminant is positive.



aA1 aAZ

>
a+Y 383 0 Vo383
either both roots are complex or both have X2 >» 0. The

3. If and a-Yq5 < 0 then from the graphs

second case occurs when discriminant is nonnegative.

In summary, there is a unique equilibrium with all stocks

positive if
Yo3hiA3 3 @Ay + Yo3AnRy .
If,y23A1A3 > aAz + Y13A2A3 there is a double équilibrium if
a < Yq5 and B12 - 4a§23(y12—g)A1A3 > 0,
and a single equilibrium if
2

@ < Yq, and B1 - 4a723(y12-a)A1A3 =0 .

Otherwise there is no equilibrium with all stocks positive.
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Then

tr

and

ATA

Moreover

|a]

2
= .r1x1 - r2 XT - r3A3 < 0
Xy
X TN X O T2x, T2V23%e
+ +
X,? X, A’ ,
2.2 2%, ry 5 “Tif3 R
1
r.r. (X, + 52—2)»« ro (AKX, + 3 a2,
152142 Y12x1 3183% a 234
+ rr,(A fg + A 2X ) > 0
273'73 X, Y2383 2 .
-1 Y12 i3
a, | x
3 2 1
(—r1X1)(r2X2)(r3 7;) ;—5 - f; ~Y53
1
A3 aA3 -Q
-r,r.r X
15273 a 2
a %1%283 { “x Y12Y2383 - @Yq3A, )
1
1 X,
BRAEE T AP U B B }
1
r r'r X
15273 2 2
@ "3 X, {‘Y12‘°"Y23A3X1 - (a+y,383)X,

/67

- a(Y12+Y13A3)X2}



Now

A(Yqa,+Yq:R2)X, = 0B, - (a+y,,A,)X (equivalent to (3.10)
12771373772 2 7 HTT13f30 in text).
Thus
r,r,r X
1
a] = 122 a, Yf‘ {‘\'12‘0‘”’23""3"12 - “Az} o (A3.6)

or using the quadratic equation defining X1

X
273 2
— o {—B1X1 - Q(A1+A2)} . (A9.7)

In sum, an equilibrium is locally stable only if

5 .
(Y12—a)Y23A3X1 - aAz < 0, v _ (A9.8)
or equivalently,
-B1X1 - a(A1+A2) < 0 . (A9.9)

Some general observations about stability can then be made.
In particular if Yqp-® S 0, then by (A9.3) the (unique) equilibrium

is locally stable.

If, on the other hand, Yqp-0 0 0, then stability requires

by (A9.3).

_/ég



Using the formula for X114 this is equivalent to

2 2
[-31 + /%1 —4(Y12—a)Y23A1A3 ] < 4(Y12-a)ay23A2A3 ,

which can be rewritten as

A
[1 + V1-x ]2 < Xg X
1

where

4y ,-0)y 38,2,

2
3

X = s 1
(note that when Yip-a 2 0, and an equilibrium exists then

-31 > 0).

Suppose now there is a double equilibrium (so x < 1). The
equilibrium with the larger value of X1 is stable if and only if
2

2 - x + 2/T-% « %
A,

— Aa
2/1-x < (1 + r—)x - 2 .
1

Therefore stability requires

2A1
X 2 7 7& {i.e. RHS 2z 0)
17772
and
A A, 2
2 2 2
4 - 4x < 4 - 4(1 + X—)x + (1 + A ) X ,

1 1

169



which simplifies to

A A+A. 2
2 1 772
0<—4A—' (A )X‘
1 1
or
4A1A2
X > —
(A1+A2)

Now suppose A, 2 A2. Then

2A 2A
2 s 1 s —1
A1+A2 A1+A2
7 2A
and x 2 A1+A2 is false.

Therefore this equilibrium is unstable.

On the other hand if A1 < A2’ then

ZA1 . 4A1A2
’
A1+A2 A1+A2
4A1A2
so the equilibrium is stable if x » Y .
1*42

The equilibrium corresponding to the smaller value of X, can

be analyzed in a similar manner.

Stability requires

/7o



[\8)

2 - x - 2/1-x <« 3 X
or

2 - (1 + =2)x < 2/Tx .

Thus the equilibrium is stable if

2A1
X > m— (i.e. LHS < 0)

A1+A2

or if

Az A2 2
4 - 4(1 + X—)x + (1 + X—) X
1 1

2 (4 - ax ,

which simplifies to

4 ;2 (A;+A2)2 <0
1 1
or
4A1A2
X ¢ —=— .
(A1+A2)
Then in the case A1 > A2
2A1
X > A1+A2 is not possible

so stability requires

4A1A2

X ( ———
2
(A1+A2)

17/



In the case A1 s A2

<
=

2
172 (A1+A2)

so one of the two inequalities must be true at least and the

equilibrium is stable.

Finally, in the case x = 1, the equilibrium is stable if

These results can be summarized as follows:

1. If o

w

Y12, the unique equilibrium is stable.

2. If a < Y12 and x = 1, the unique equilibrium is stable

if 1 < AZ/A1' unstable if 1 > AZ/A1'

3. If a < Y12 and x < 1, then the equation defining X1 may
have two solutions but the larger root may have X2,< 0.

In any case

(a) 1if A2 = A1, the smaller root corresponds to a stable
equilibfium and the largef root (if relevant) to an
unstable equilibrium, The case includes the case of
no fishing.

(by if A1 > Az, the large: root (if relevant) is

unstable and the smaller root is stable only if

2
X < 4A1A2/(A1+A2) .
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(c¢) if A1 < Az,‘the smaller root is stable and the
larger root (if relevant) is stable only if

; 2
X > 4A1A2/(A1+A2) .
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APPENDIX 9

A SIMULA PROGRAM FOR COMPUTATION OF EQUILIBRIUM STOCKS AND

HARVEST RATES

BEGIN
COMMENT

PP P P E I R F W R R R e oy
* »
*  FILNAVUN PROGRAM : KVFYSI *
*  FILNAYUN KOMPILERT : KVFYSB *
#  FILNAYN INNDATA : INPUT *
*  FILNRVN UTDARTA : LESES INN »
#  PROGRAMMERINGSSPRAK : SIMAA 1.2-353 *
» TYPE MASKIN ¢ CYBER 171mMP *
#  [JPERATIVSYSTEM : NOS 2.0~531/528 »
#  PROGRAMMERER ¢ SIGFUS KRISTMRANNSSON/ *
* OLA FLATEN *
» INSTITUSJON : POLLINN/IFF *
#  SENSJON & MARKED/BOKONOMI »
#* DATO : 11/704/1988 »
» VERSJON : 2 *
* *»

*

RHBRS SR BEP BB PE BRSSP EBERESE RS EEB SRS ESE PP S E S S P4

i

COMMENT PROGRAMMET LESER INN H@YESTE/LAVESTE VERDI FOR EN PARAMETER
ggE£¢?£f§£DR 11 ANDRE. DATRAEME LEGGES UT PA EN FIL TIL GRAFISK
!

REAL QRRRY PQRRH(I 12) 3

REAL Al2,A 3, A1, 82, A3, 612, 613, 623,K1, K2, X1, X2, X3, W1, W2, W3,
if & 'He sa’x YmIn, xmak, x 'rao' ! !

TEXT nnknv’ m‘v 1129 !

INTEGER

TEXT Frm'o

REF(OUTFILE)[IT;

COMMENT ##8888888888888555 588004888588 88 884548884

» -

HOVEDPROGRAM »

HHBSBEBBEBBBSENAERE RS E RN TS SRS SRR RS 5

FILNAVN: -BLANKS (7)
OUTTEXT ("LES INN PA DATAFIL") ;0UTIMAGE ; INIMAGE ;

FILNAYN:=INTEXT(7) ;

BEGIN

UT 1 -NEW OUTFILE(FILMVN. STRIP) ;

UT. OPEN (BLANKS (80) , 0

FOR I:=i STEP 1 OnreL’ 12 o
TPARAM(T) 3 msm; :

TPARAM(1) s=“ULl"

TPARAM (2) s="U2"
TPARAM(3) : ="LJ3"
TPARAM (4) :=“R1
TPARAM (5) s =“R2"
TPARAM(6) 1="R3*
TPARAM(7) :="A “
TPARAM(8) : =“B "

]
ot
!
)
!

- ay

TPARAM () s =" "é
“Al

TPARAM (10) : =

TPARAM(11) :S“QI.?"

TPARAM(12) :=“A23";

PRRAM (1) : =0, 0000
PARAM (2) : =0, 0000 ;
PARAM (3) 1 =0, 0000;
PARAM(4) : =1, 2704 ;
PARAM(S5) : =1, 161 7,
PARAM (6) :=0, 06143
PARAM(7) :=0, 30;
PARAM (8) : =0, 13'

PRARAM () 2 -40#10"6
PARAM(10) : =0, 125/1

5#1\‘6 )

" PARAM(11) :=0. 140/10##6 ¢
PRARAM (12) : =0, 310/10#%6;
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FOR I:=1 STEP 1 UNTIL 12 DO
BEGIN
SETPQS (20) ourmr( JOUTTEXT (4 ) ;
OUTTEXT(TPARAM(I) ) ; bur EXT(" = ");
NQUTELX (P (PARAM (1), 12, 22) ;0UTIMAGE ;
OUTIMAGE § Leurrextcnm. pa PARAMETER SOM SKAL FORANDRES")
OUTIMAGE ; aurrmse;
PARAMNR: =ININT
OUTTEXT("LES IfN MIN OG MAX FOR ")
OUTTEXT (TPARAM (PARAMNR) ) ourmnse ;butIMaGE ;
XMIN:=INREAL ; XMAX:=INRE
XSTED: = (XMAXLXMIN) /503

Zg_gzﬁ:axnm STEP XSTEP UNTIL XMAX DO
PARAM (PARAMNR) : =X ;

A1:=1-PARAM (1) /PARAM (4) ;
:=1-PARAM(2) /PARAM (3) ;
A3:=1-PARAM(3) /PARAM (6) ]

G12:=PARAM (10) *PARAM (7) #*PARAM (9) /PARAM (4) §
G13:=PARAM (11) #PARAM (7) #PRRAM (8) #PARAM (F) /PARAM (4) ;
G233=PARAM (12) #*PARAM (7) #PARAM (8) #*PARAM (3) /PARAM (S) ¢

K1:=A1#A3#E6EI~1-G12*AC-A3*G13/PARAM (7) ~A2#A3#G13 5
K2:=R3#623# (G12/PARAN(7)~1) ¢

SQr =1 #42-4 A1 K2
IF SQ(0 THEN

BEGIN
DUTTEXT("VERDI I KVADRATROT ER NEGATIV, SETTES TIL 0%) ;0UTIMAGE ;

0r oukcHar( w0 P
END ELSE
UT. OUTCHAR(' 1)

© X1:=(-K1-SGRT (5Q) )/(ema) !

H1:=1/PARRM(7) +R2;
H23=1+A3#G23#X1

X2:=( (R2-AI#GEI#X1/PARAM(7) ) #X1) /H2 3
X3:=(R3¥H1#X1) /H2}

W1:=X1*PARAM(SI) /1000
W2 : = X2#PARAM (7) #PARAM (9) / 1000 ‘
:=XIRPARAM (7) #PARAM (8) #*PARAM (I) /1000 ;

Y1:=PARAM (1) %41 1
Y21 =PARAM (2) W23
Y3:1=PARAM (3) #3 3

Utr. QUTFIX (X, 12,22) 3
urt. WTFIX(HI 3 18) ;UT. QUTFIX (W2, 3, 12) ;
ur. QUTFIX (UJ. 3, 12) UT. OUTIMAGE ¢

END FOR X§
QUTIMAGE jQUTTEXT(*DATA PA FILEN *) jOUTTEXT (FILNAVN) §
OUTIMAGE ;OUT IMAGE 3
END FILNAVN;
END PROGRAM;



APPENDIX 10

THE PARTIAL DERIVATIVES OF THE GROWTH FUNCTIONS

3Fj(x1 ’XZ'X3)

Gyy = = (i,5 = 1,2,3)
1
Gig = 51 - 2%y = ¥9,%5 - Yq3Xy)
Goq = -Yq25%
G3q = “Yq351%4
) 2,. 2
Gypy = r,X, /x1
Gap = Tol1 - 2X/%Xy - ¥p3%3)

G3p = ~Yp3%2%;

2 2
G13 = r3X3 /(a(X1/a + XZ) )
_ 2 ‘ 2
Gyy = r3X3" /(X /e + Xz)

! 76



Ooon

oo

o000

APPENDIX 11

TWO FORTRAN PROGRAMS FOR COMPUTATION OF THE TSB-MODEL'S OPTIMAL
STOCKS, SUSTAINABLE RENTS AND NET PRESENT VALUE

The OPT-program

FROGRAM TESTS (INFUT, OUTFUT, TAFE1=INFUT, TAPES=0UTFUT)
REAL X (3),FVEC(3),XTOL,WA(S1),R(14),A(E),Y(3),V(4)
REAL B(E),C(4) ,
COMMON R

EXTERNAL FCN

A INNEHOLDER DE RIOLOGISKE FARAMETRENE I SAMME
REMKEFBLGE SOM FPA ARKET. |

A(1)=1,2704

AZ)=1.1617

A(3)=0,0614

A(4)=0,30
R(S)=0.12
A{E)=3E7

B INNEHOLDER DE BKONOMISKE FARAMETRENE I SAMME
REKKEFBLGE SOM FA ARKET.

B(1)=0.79z¢&

B(Z)=2. 3273

R(3)=3. 2029

B(4)=3.7332EE

B{(5)=8. 4172E6

B(8)=2.7273E6

C INNEHOLDER DE FASTE FARAMETRENE I SAMME REKKEFBLGE
SOM PA ARKET.

C(1) =0, 125E-6

C(2)=0.140E-6

C(3)=0.310E-6

C(4)=0.035
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£ X X X X » K X kK x

x x 3 »

R(1)=A(1)
ROy =R ()

R{Z)=A(3)

i G) =04

R(S)=Ri4)

R(E) =R ()

R(7)=E(E)

R(3)=B(1) #A(E)

R(F) =R (Z) *R (4) *A (&) ;
R(10)=H(3) ¥R (4) «A(S) *A (&)
R(11)=C(1)#R(4)*A(E) /R(1)

RULE) =C(2) #R (4) #A(S) #A(E) /R(1)
R(13)=C(3) %R (4) *A(S5) #*A(E) /R()

R(14)=C(4)

WRITE (&, 1)

FORMAT ("GI VERDIER FOR X1,X& OG X3")

READ (2, *) (X (I), I=1,3)

TOL=SQRT (XOZAAF (0. 0))

IFAIL=0

N=3

CALL COSNEF (FCN, N, X, FVEC, TOL, WA, S1, IFAIL)
WRITE (2, #) IFAIL

Y(1)=R(1) %X (1) % (1=X(1)=R(11)*X(2) =R (12) #X(3))
Y (E)=R(Z) #X (2) #(1=X(2) /X (1) -R(13) *X(3))
Y(3)=R(3)*X(3) % (1=X(3)/ ((X(1)/R(4))+X(2)))
V(1)=(R(8)=R(S) /X (1)) %Y (1)
V(Z)=(R(I)—R(B) /X (2) ) *Y ()
V(3)=(R(1O)—R(7) /X (3)) %Y (3)

V(4= (V1) +V(E)+V(3)) /R(14)

WRITE (2, %) (X(I),I=1,3)

WRITE (2, %) (Y(I),I=1,3)

WRITE(S, %) (V(I),I=1,4)

FORMAT (F1&. 8)

END

SUBROUTINE FCN(N, X, FVEC, IFLAG)

.INTEGER N, IFLAG

REAL X{(N),FVEC(N),R(14)

COMMON R
FVEC(1)=R(1)# (X (1) ##2%#R(8)-X(1)*¥R(S)) #(1-2*X (1)
~R{11)#X(2)-R12)*#X (3)) +R(2)*# (R(IF) #X (2) ##2—-R (B) *X (Z))
F(RO1IOD X (3) #%2=R(7) %X (3) ) #R(3) #R(4) #X:(1) %%2/
(X(L)+R(4) #X () ) ##2

+R(S)*R (1) #X (1) # (1=X(1)-R(11) %X (Z)-R(12)%*X(3))
“R(14) % (R(8) #X (1) *%2—-R(5)*X (1))
FVEC(Z2)=-R(Z)*R(11)#X (Z)# (R(B)#X (1) **Z=R(T)*X (1))
+ROZ) ¥ (R(P) #X (2) ~R(E) ) # (X{1)—C¥X(2)-R{13)#X (1) *X(3))
+(R1O) #X (3) *%2—~R(7)*X(3))

KR (I)#R(4) % #T%X (1) #X (2) /(X (1) +R(4) #X (2)) *#%2

+R(E) ®R(Z) ®# (X (1) =X (S)-R(13)#*X (1) #X(3))

—R(14) #X (1) *(R(I)#X(2Z)-R(E))
FVEC(Z)=—R(1)*R (1) #X (3)* (X (1)#R(8)~-R(3))

~R{Z) *R(13) #X(3) * (R(D) #X () =-R(&))

RO # (X () ®R1O) -R(D I * (| -C#R(4) %X (3) /(X (1) +R(4) #X (2)))
+RI7)*¥R () # (L-R(4)*#X (3) /(X (1)+R(4) %X (2)))
SIR(1O)#X(3)=R(7))*R(14)

RETURN

=ZND
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The QOPV-program

PROGRAM TEST2(INPUT,OUTPUT,TAPEl=INPUT, TAPE2=OUTPUT)
REAL (3),FVEC(3),XTOL,WA(51),R(14),A(6)

REAL B(6),C(4)

COMMON R

EXTERNAL FCN

c A INNEHOLDER DE BIOLOGISKE PARAMETRENE I SAMME
C - REKKEFQLGE SOM PA ARKET.

A(1)=1.2704

A(2)=1.1617

A(3)=0.0614

A(4)=0.90

A(5)=0.12

A(6)=3.0E7

c B INNEHOLDER DE QKONOMISKE PARAMETRENE I SAMME
c REKKEFQLGE SOM PA ARKET.

B(1)=0.5284

B(2)=2.3279

B(3)=3.2029

B(4)=3.7332E6

B(5)=8.4172E6

B(6)=2.7273E6

c C INNEHOLDER DE FASTE PARAMETRENE I SAMME REKKEFQLGE
c SOM PA ARKET.

c(1)=0.125E-6

c(2)=0.140E-6

Cc(3)=0.310E-6

C(4)=0.05

R(1)=A(1)

R(2)=A(2)

R(3)=A(3)

R(4)=A(4) .

R(5)=B(4)

R(6)=B(5)

R(7)=B(6)

R(8)=B(1)*A(6)
R(9)=B(2)*R(4)*A(6)
R(10)=B(3)*R(4)*A(5)*A(6)
R(11)=C(1)*R(4)*A(6)/R(1)
R(12)=C(2)*R(4)*A(5)*A(6)/R(1)
R(13)=C(3)*R(4)*A(5)*A(6)/R(2)
R(14)=C(4) '
WRITE(2,1)

1 FORMAT("GI VERDIER FOR X1,X2 0G X3")
READ(2,*) (X(1),I=1,3)
TOL=SQRT(X02AAF(0.0))

IFAIL=0

N=3 ‘

CALL COS5NBF(FCN,N,X,FVEC,TOL,WA,51,IFAIL)
WRITE(2,%*) IFAIL
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WRITE(2,*) (X(I),I=1,3)

END

SUBROUTINE FCN(N,X,FVEC,IFLAG)
INTEGER N,IFLAG

REAL X(N),FVEC(N),R(14)

COMMON R
FVEC(1)=R(1)*(X(1)%**2*R(8)-X(1)*R(5))*(1-2*X(1)
*-R(11)*X(2)-R(12)*X(3))+R(2)*(R(9)*X(2)**2-R(6)*X(2))
*+(R(10)%*X(3)*%2-R(7)*X(3) )*R(3)*R(4)*X(1)**2/
*(X(1)+R(4)*X(2))%*2
*+R(5)*R(1)*X(1)*(1-X(1)-R(11)*X(2)~R(12)*X(3))
*~R(14)*(R(8)*X(1)**2-R(5)*X(1))
FVEC(2)=-R(2)*R(11)*X(2)*(R(8)*X(1)**2-R(5)*X(1))
*+R(2)*(R(9)*X(2)-R(6))*(X(1)-2*X(2)-R(13)*X(1)*X(3))
*4+(R(10)*X(3)%**2-R(7)*X(3))
**R(3)*R(4)**2*X(1)*X(2)/(X(1)+R(4)*X(2))**2
*+R(6)*R(2)*(X(1)-X(2)-R(13)*X(1)*X(3))
*=R(14)*X(1)*(R(9)*X(2)-R(6))
FVEC(3)=-R(1)*R(12)*X(3)*(X(1)*R(8)-R(5))
*~R(2)*R(13)*X(3)*(R(9)*X(2)-R(6))
*+R(3)*(X(3)*R(10)-R(7))*(1-2*%R(4)*X(3)/(X(1)+R(4)*X(2)))
*+R(7)*R(3)*(1-R(4)*X(3)/(X(1)+R(4)*X(2)))
*~(R(10)*X(3)~R(7) y*R(14)

RETURN

END
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The Economics of Predator-Prey Harvesting

Ola Flaaten’
University of Tromsg
Tromsg, Norway

1. Introduction

The number of species within a given habitat is often large, and the way they inter-
act may be very complex. This applies to terrestrial as well as to marine ecosystems.
Nevertheless, in most cases man utilizes just a few of the species. This is probably
one of the reasons why scientists often use relatively simple models to study the
population dynamics and other aspects of renewable resources. Another important
reason is, obviously, that simple models are easier to analyse than complex models.

Examples of predator-prey relationships are: shark — fish (D’Ancona 1926),
whale — krill (May et al. 1979), sea mammals — fish (Flaaten 1988), polar bear —
ringed seal (Larsen 1986a and 1986b), wolf — reindeer (Ingold 1980) and lynx —
hare (May 1974). Studies of these predator-prey systems include, inter alia,
mathematical, ecological, economic and anthropological aspects of the
management of the resources.

Since the semine! work by Gordon (1954), theoretical bioeconomic studies have
focused on the difference between open-access harvesting and socially optimal har-
vesting. Multispecies analyses of these kind are to be found in Quirk and Smith
(1970), Anderson (1975), Clark (1976), and Silvert and Smith (1977), all of whom

* The author expresses his gratitude to R. L. Mazany for her helpful comments on earlier drafts
of this article. -

P.A.Neher et al. (eds.), Rights Based Fishing, 485-503.
© 1989 by Kluwer Academic Publishers.
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mainly use generally formulated growth equations. Hannesson (1983) utilizes
Lotka-Volterra types of growth equations from Larkin (1966) to study open-access
and socially-optimal harvesting of the combined resources.

The aim of this paper is to review ecological and economic aspects of predator-
prey harvesting within the framework of a simple bioeconomic model. The focus is
mainly on sustainable yields and comparative statics, rather than on the dynamic
behaviour of the system. In addition to this simplified approach to the ecological
and economic theory of predator-prey harvesting, we will also develop the condi-
tions under which it is possible to have an increasing optimal resource stock as a
function of the social rate of discount.

In the next section we review a simple but robust predator-prey model. Open-
access harvesting of the resources is studied in Section 3, and optimal management
is studied in Section 4. Our findings are summarized briefly in the final section.

2. Predator-Prey Relationships

It is many years since theoretical biologists started studying ecological systems by
means of mathematical models (e.g., Lotka 1925 and Volterra 1928). In the classical
Lotka-Volterra model, the size of the two stocks oscillates with a period determined
largely by the parameters of the model, while the amplitude is determined solely by
the initial conditions (May 1981, 79). The model is "structurally unstable", meaning
that the slightest alteration in the functional form of the growth equations will tip
the dynamics towards a stable point or towards a stable limit cycle. Structurally un-
stable models are considered to have no place in biology, but nevertheless the
Lotka-Volterra model highlights one of the general properties of predator-prey
models, namely the propensity to oscillate.

Most two-species predator-prey models analysed in the literature can be shown
to have either a stable point or a stable limit cycle (May 1981, 81). A simple model
capturing the essential elements of a predator-prey system is that of May et al
(1979). In this model, as opposed to the classical Lotka-Volterra model, the growth
of the prey is density dependent in absence of the predator, and the predator has a
positive intrinsic growth rate. The carrying capacity of the prey is constant,? and the
model has a stable point. This predator-prey model was used by May et al. (1979)
particularly to discuss the Antarctic ecosystem. Maximum sustainable yield proper-
ties of this model were studied by Beddington and May (1980) and further elabo-
rated by Beddington and Cook (1982). The latter also investigated the stability

2 Larkin (1966) analyses a predator-prey model where each of the two species has its own con-

stant carrying capacity. This expands the sustainable yield region of the system, especxally for low
levels of the prey stock.
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properties of various harvesting regimes. Since the model is simple but still captures
the essential elements of a predator-prey system, it will be used in this paper.

Let W, and W, denote the stocks of the prey and the predator, respectively.
Then, the model is specified as

(1) W, =dW/dt=r W1 - W/K)-aWW,,

() Wz = dW /dt = r,W,(1 — WjaW)),

where r, and r, are the intrinsic growth rates of the respective species. K is the car-
rying capacity of the total system, the level to which the prey will settle in the ab-
sence of both predator and harvest.

In case of no predators, the per capita® growth rate of the prey decreases from
r,, for stock levels close to zero, to zero for stock levels equal to the carrying capac-
ity. If predators exist, the per capita growth rate for the prey equals zero for a stock
level lower than the carrying capacity. The presence of predators reduces the per
capita growth rate in proportion to the biomass of the predator. The predation co-
efficient, a, tells how much the per capita growth rate of the prey is reduced per unit
of the predator. Or to put it another way, a tells which share of the prey stock one
unit of the predator is consuming per unit of time. The total rate of consumption is
expressed in the term aW W, .

The predator’s per capita growth rate decreases from r,, when its own stock
level is close to zero, to zero for a stock level equal to its own carrying capacity,
which is proportional to the level of the prey stock. The proportionality coefficient is
a.

The equilibrium values for the prey and the predator populations, W, and W,
respectively, are obtained by letting dW,/dt = 0 and dW,/dt = 0 in equations (1) and
(2). Without harvesting there is a unique, stable equilibrium solution:

(B)  Wr=K(1+v),
(4) . W, =aK/(1+v),

where v = aaKJr,.

It should be noticed that the intrinsic growth rate of the predator, r, , does not
affect the equilibrium values of either of the two species. The equilibrium values of
both species increase with any increase in 7, or K, ceteris paribus. From (3) and (4)
it follows:

3 The term *per capita” is used, even though we mean per unit of biomass.
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6) WrWr=a.

In equilibrium, a expresses the relative size of the predator stock to that of its
prey.

Even though r, does not affect the equilibrium values of the two stocks, it is of
importance to the behaviour of the system outside equilibrium. That is, r, will affect
the time the predator will need to reach equilibrium from a higher or lower level.

We shall now, in a simple way, introduce harvesting as a factor in the model.
Suppose that the fish stocks are harvested independently with constant effort per
~ unit of time, F;, scaled such that F, = 1 corresponds to constant catchability coeffi-

cients equal tor. Then the catch rates will be

6)  h =rFW,

@) h,=rF,W,.

The introduction of harvesting will influence the growth rates in (1) and (2),
which will be changed to ‘

® W, =rW(l-WJK)-aWW,~rFW,

)  W,=rW,(1-WjaW)-rFW,.

It may be useful to rewrite the variables Wx and W, into a dimensionless form.
Defining X, = W /K and X, = W,/aK, we can rewrite equations (8) and (9) as
(10) X,=rX,1-F,-X, -vX),

1) X,=rX,1-F-XJX).
Recall that the dimensionless parameter v is defined asv = aaK/r,.

The equilibrium properties of this ecological system depend only on the fishing
efforts, F, and F,, and v. The dynamics additionally involve r, andr, .

The phase-diagram for the system (10) and (11) is shown in Figure 1. The
isoclines are found by setting dX/dt = 0 and dX,/dt = 0in (10) and (11). This gives
(12) X, =(IVM)(1-F, - X)) fordX /dt =0,

(13) X,=(1-F)X, for dX/dt = 0.
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X,

v
(1/v)1-F,)

X;

A x; X (1-F) 1 X,

FiG. 1. The phase diagram for the predator-prey model.

If positive equilibrium levels of X, and X, , denoted by X,F and X, , exist si-
multaneously, they are found where the isoclines intersect:

(14) XxF=Q1-F)n1+v(1-F))

(15) XS=(Q-F)Q-F)[1+v(1- F)}

With harvesting taken into account relative stock size is
(16) XfixF=(01-F)

It can be seen from (14) that only for F, < 1 will there exist a positive equilib-
rium value of the prey. If F| = 1 the prey-stock will be extinct, and so of course will
be the predator, as seen from (15). The latter expression shows that only for F, < 1
and F| < 1 will the predator survive. ’

The equilibrium values of both species, as would be expected, increase with de-
creasing fishing pressure on the prey, i.e. for reduced F,. The larger prey stock re-
sults in an increased carrying capacity for the predator, thus implying a higher equi-
librium level of the predator stock.

On the other hand, the effects on the prey and on the predator from decreased
fishing pressure on the predator are the opposite of each other. From (14), the
equilibrium value of the prey will decrease, and from (15), the equilibrium value of
the predator will increase. The increased stock level for the predator means heavier
predation on the prey, and thereby a reduced equilibrium level for the latter.

195



In Figure 1 the pre-harvesting stock levels of the prey and the predator are de-
noted by X,° and X.°, respectively. This figure illustrates that, in the case of har-
vesting, the equilibrium level of the predator will always be below its pristine level.
This result is independent of whether we harvest only the predator, only the prey, or
both are harvested simultaneously. On the other hand, the equilibrium level of the
prey will increase with the harvesting of the predator. In Figure 1, the relative
strength of the predator harvesting to that of the prey is such that the net result for
the prey is a higher stock level with harvesting than without. The sustainable yield
area in Figure 1 is the triangle ABC. Combinations of stock levels outside this trian-
gle are not possible to maintain.*

3. Open-Access Harvesting

In the preceding section we have seen that a predator-prey system may be capable
of being harvested on a sustainable yield basis for both of the species. When the
species are open-access resources, we may be interested in knowing what the equi-
librium levels of the stocks will be and the corresponding harvest rates. This in-
cludes the possibilities of extinction of one or both of the stocks. It is also interesting
to study the dynamics of the stocks and the harvest industries to see whether the
equilibrium point is reached or not.* However, in this paper we shall concentrate on
analysing equilibrium points by means of comparative statistics.

Given the Schaefer production function of equations (6) and (7), and assuming
constant costs, ¢; , per unit of rescaled effort, E, = rF, the unit harvesting cost be-
comes

an @)=, @ =12).

The demand for each of the two species is assumed to be independent of the
price of the other one and infinitely elastic with respect to its own price. Thus, p,
and p, are the consiant prices of the prey and the predator, respectively.

The net profit per unit of harvest under these assumptions is®

4 Essentially all deterministic two-species models will have a bounded sustainable yield area, but
it need not be a triangle. The isoclines could be curves instead of straight lines, or the area could be,
€.g. a quadrangle. The latter is the case for the predator-prey model designed by Larkin (1966) wherc
the abundance of the predator has a lower limit in the absence of the prey.

5 Beddington and Cook (1982) have studied the stability properties of this model for various
harvesting regimes, from a biological point of view.

6 ¢, includes the alternative cost of capital and labour. That is to say that normal profit on capital
and normal renumeration of labour are included in the costs. The net profit in equations (18) and
(19) is therefore the pure resource rent.
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(18)  bX)=p,~c/X, @ =12),

and the total profit for each of the species is

(19) = (p, - c/X)y, @ =12)

wherey, = h /K andy, = h /aK are the normalized harvest rates of the prey and the
predator, respectively.

Bioeconomic equilibrium is defined as a situation in which we simultaneously
have

(20) m=0, X,=0 (i=12).

When there is zero net profit, no potential harvester has the incentive to enter
the industry and no existing harvesters have the incentive to leave the business.

Let us denote the open access stock levels of the prey and the predator as X,
and X, , respectively. From equation (19) it is seen that, unless y, = 0 for either of
the two species, we have the following simple expression for the open access stock
levels:

(21) X> =c,/p, @i =12).

The open-access stock level of a species depends solely on the ratio of own ef-
fort cost to own price of the yield. The corresponding harvest rates are found by
substituting X, from equation (21) into the growth equations, (10) and (11). Under
our assumptions, the biological parameters have no effects on the open-access stock
levels. However, they will affect the harvest rates, as seen from equations (10) and
(11).

Figure 2 shows the open-access stock levels derived from the ratio of the cost of
effort to the price of harvest given in equation (21). The two sloping, broken lines
are the corresponding isoclines for F, = F,® and F, = F,” , and of course they in-
tersect at the equilibrium point.

As noted above, equation (21) is valid provided that an open access solution
exists with simultaneous harvest of the prey and the predator. If that is not the case,
if, for example, only one of the two species is harvested at the equilibrium, the stock
level of that particular species is given by equation (21). The stock level of the other
species, however, has to be found in another way. We distinguish two cases: first, the
case with no harvest of the predator, and then the case with no prey harvest.
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Fic. 2. Interior open-access equilibrium with simultaneous harvest of the prey and the
predator.

No Predator Harvest

In general there will never be open-access harvesting of the predator if its own price
is lower than the unit harvesting cost at the pristine stock level. Thus we have

(22) p,<c,/X° »F,=y,=0.

Therefore, a necessary condition for open-access harvesting of the predator is
that the ratio of the cost of effort to the price of harvest must be lower than the pris-
tine stock level. However, this is not a sufficient condition. The following example
illustrates this. If the prey is a low-cost, high-price species, as shown by X; = ¢, /p, in
Figure 3, the predator stock will be reduced below its profitability level, ¢, /p,, and it
will not be harvested at the equilibrium point (X,*, X,* ).]

Since the predator’s carrying capacity is proportional to the prey stock in this
model, we will always have ’

@) X, =X =c/p, -

when the predator is unharvested, i.e. when F, = 0. This is likely to happen when
the prey is "inexpensive-to-catch and valuable” compared to the predator. The

T1f the predator had its own, constant carrying capacity, as in Larkin (1966), the chances increase
that it could economically sustain a harvest even if the prey stock is reduced through harvesting.
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open-access stock level of the unharvested predator depends solely on the effort
cost of prey/price of prey ratio.
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F1G. 3. Open-access equilibrium with no harvesting of the predator.

No Prey Harvest

When the preyis an" expensive-to-catch trash" species compared to the predator,
the possibility emerges for this species being unharvested under open access. In this
case we have

(24 X,=G  F,=0.

Using equations (10), (24) and (21) for i = 1, we derive the open-access unhar-
vested prey stock,

(25) X\® =1-vX,” =1-vc)p,,

when the predator is harvested. Equation (25) shows that the open-access level of
the prey is a linear, decreasing function of the predator stock, which is determined
solely by the predator’s cost of effort — own price ratio. In other words, the unhar-
vested prey stock is greater, the more "inexpensive-to-catch and valuable" the
predator is. As seen from Figure 1, harvesting of the predator increases the prey
stock. Therefore, it might well happen that a prey species which is not able to sup-
port an open-access harvest industry of its own when the predator is unharvested,
can do so if the predator is harvested. This is illustrated in Figure 4 where the prey’s

~
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cost of effort — price of harvest ratio is ¢, /p,. With ¢ /p, = A4 there will be no harvest
of the predator-prey system, i.e. the open-access stock levels equal the pristine
levels, X,° and X,°. If, for one reason or another, the c,/p, ratio decreases from A to
B, the predator becomes economical to harvest, but the prey is unharvested at the
stock level X' I", since the equilibrium point is on the border of the sustainable yield
triangle. When the ¢ /p, ratio is further reduced to C, the predator will be harvested
at the stock level ch. The reduced predation pressure on the prey now makes it
economical for the prey to support an open-access harvesting with the stock at the
level X .

So far we have not considered the possibility of extinction. This is because the
harvest function in equations (6) and (7), together with the assumption that total
cost is proportional to fishing effort, imply that the unit harvesting cost in equation
(17) approaches infinity when the stock approaches zero. Thus, with a constant
price of harvest, the net profit per unit of harvest in equation (18) becomes negative
for a positive stock level, and we have

(26) X,>0.
X, c1/'?'1
11v '
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F1G. 4. Open-access equilibria with and without harvesting of the prey.

Extinction under open-access harvesting in this model only occurs either if
2N ¢=0 (=12

or
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28) p,>c0) (i=12)

for one or both of the species. The expression ¢(0) is the cost of harvesting the last
unit of the stock. If equation (27) or (28) is fulfilled for the predator, only this
species will be extinct, while in the case of extinction of the prey, the predator will
be extinct as well.

4. The Optimal Harvest

Given joint management of predator and prey, we assume that the social manager’s
objective is to maximize the present value of the rent from the two resources. The
joint rent function is '

(29)  R(?) = b,(X))y,(&) + by(Xp) y,(t) = my(8) + m,(0),
using the same notation as in the preceding section. The objective functionale is

¢oy pr= [ s R()de.
0

The social manager will choose the harvest rates, the y’s, so as to maximize the pre-
sent value of the rent, given the biological restrictions implied by the growth equa-
tions, (10) and (11).® Rewriting the growth equations somewhat gives

(Bl) X, =G,X.,X)-y(, 0sy,

(32) X,=G,(X,,X)-y,1), 0sy,.

The following notation for the first order derivatives will be used:
(33)  G;=3G, ()X Bj=12).

From equations (10) and (11) we derive

(G4 G,=r(1-2x

L - X)) 30ifX, $ (1)1 - 2X),

(35) G,=-vrX,<0, G, =r,X}X2>0,

8 Whether one uses the effort rates, the F's, or the harvest rates, the y's, as the control variables,
is simply a matter of convenience. In this section it is most convenient to use the latter.
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(36) G, =r(1-2X/X)30ifX,$X,/2

It is now received knowledge that if an interior solution exists, there are two
joint equilibrium equations that must be satisfied at the maximum (Clark 1976,
318). They are:

BN G,y + X )b,(X)] Gy + [b, (X )b (X1 G () =3,
(38) G+ [b,(X )b, X,)] G, + b, X)X () =3,
where b, (X,) = db(X)/dX,.

The economic interpretation of the result of the predator-prey analysis is quite
similar to that of the single-species model. The left-hand side of equation (37) is the
prey’s own rate of interest, which should equal the social rate of discount, given on
the right-hand side. The first two terms on the left-hand side together form the in-
stantaneous marginal product of the species. It consists of two parts, where the di-
rect one, G, , is equivalent to the one in a single-species model. The second part is
the indirect part of the instantaneous marginal product via the predator. The last
term on the left-hand side of equation (37) is the marginal stock effect; that is, the
cost-reducing effect an increase in the stock level of the prey has on its own har-
vesting.’ The interpretation of equation (38) is similar.

Equations (37) and (38) implicitly give the optimal equilibrium stock levels of
the predator and the prey, X, = X,* and X, = X *, respectively.

A common economic interpretation of the singular path of single-species mod-
els can be generalized to cover the predator-prey case. Let

(39) R, X)) =b,X)G,(X,, X)) +b,(X,)G,X,, X,).

R(.) is the total sustainable rent associated with a sustainable harvest at given stock
levels. Then

(40)  AR()OX,=b/(X)G,()+ Zb(X)G, (i=12).
J

Now equations (37) and (38) can be rewritten as

(41)  (UBYIR()AX, = b(X) (i=12).

? Because b(X)) = p, — c,(X)), we have: b, (X)) = = ¢, (X)).
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The left-hand side is often referred to as the marginal user cost, which gives the loss
in present value of sustainable harvesting when the capital asset, the resource stock,
is reduced by one marginal unit. The right-hand side is the net current value of har-
vesting the stock at the margin. In other words, optimal harvesting of the predator-
prey system requires that for each of the stocks, which can be thought of as the as-
sets of the social manager’s resource portfolio, the present value of future losses
from reducing the stock through harvesting should equal the current net benefits
from that harvesting. -

In the single-species model the optimal stock level will always be larger than the
open-access level, given a positive rate of discount. This also holds for the prey in a
predator-prey model. If the prey stock were below the open-access level,'? i.e.
X, <X,”, equations (19) and (21) would imply m, < 0. The loss from harvesting
the prey may be avoided simply by abolishing the harvest of this species. As shown
in Section 2, this will increase the level of the prey stock, thereby increasing the
carrying capacity and the surplus growth of the predator. The net profit from the
harvest of the predator is therefore increased. Thus, the optimal stock level of the
prey can never be below its open-access level. However, it is quite possible that the
optimal predator stock level might be lower than the stock level under open-access
harvesting. To see this, rewrite equations (40) and (41) for the predator:

(42)  (18)b(X)G,, = by(X,) — (1/8) [b,(X,)G, + by (X)G].

The left-hand side of equation (42) is the loss in present value of sustainable
harvesting of the prey when the predator stock is marginally increased. The right-
hand side is the net gain of the combined current and present value of harvesting
the predator, when the stock level of this species is marginally increased.

From equation (35) and what is said above it follows that the left-hand side of
equation (42) always is negative when the prey is harvested. For the right-hand side
we have that the last term in the parenthesis can never be negative, whereas the sign
of G, depends on the relative size of the predator stock compared to the prey
stock, as shown in equation (36). When the prey is "inexpensive-to-catch and valu-
able", i.e. ¢, is low and p, is high, and the predation préssure on the prey is signifi-
cant, i.e. v is large, it can easily happen that b, on the right-hand side of equation
(42) becomes negative. This is likely to happen when the predator is "expensive-to-
catch trash", i.e. ¢, is high and p, is low. Then it will be optimal to reduce the preda-
tor stock below its open-access level, i.e. X,* < X,*. Private harvesters cannot be
expected to harvest the predator resource at a loss. Therefore, the social manager
would offer them a bounty to harvest a predator that is "expensive-to-catch trash"
which preys on a species that is "inexpensive-to-catch and valuable".

10 Assuming X,” =c,/p, < X,°.
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It is easy to show that when the discount rate goes to infinity, the optimal stock
level will approach the open-access level. If we make the reasonable assumption
that dR(.)/dX; is bounded, then equation (41) implies that when & —c we have
X.* - X.°, where X, is derived from

(43) p;i- C,'(}(,'m) =0.

When the optimal predator stock level is below the open-access level, i.e. when
X,* < X,®, then an increase in the discount rate will increase the optimal predator
stock. In other words, we have shown that!!

(44) 3X,*/85 > 0 when  X*<X,".

This result contradicts the analysis of single-species models where an increased
discount rate makes it more costly to keep a large resource stock. Therefore, the
optimal single-species stock is reduced when the discount rate increases. In the
predator-prey model this is also the case for the prey stock, while the increase in the
optimal predator stock caused by the increased discount rate helps reduce the prey
to its new lower optimal stock level.!> As noted above, a rise in the discount rate
makes it more costly to keep a large prey stock; therefore a part of it is transmuted
into capital in general. Another part is transmuted into predator resource capital.
Thus the losses from harvesting the predator are reduced, because of the lowered
unit harvesting cost and/or increased revenues.

To see how the stocks at the optimum are affected by marginal changes in
prices and costs, equation (41) can be differentiated with respect top, , p, , ¢, , and
¢, respectively, to find the partial derivatives of the optimal stocks with respect to
each of the parameters (see Flaaten 1988, ch. 7). As in the single-species model, it
can be shown that the optimal level of each of the two stocks is negatively affected
by an increase in the own price:

(45) aX*/ap, < 0 (=12).

Also, it can be shown that

11 Since the state variables in equation (41), the X;*s, are implicit functions of the biological and
economic parameters, this result can also be found by differentiating the equation with respect to 8
and solving for X */d5 and 3X,*d5 (Flaaten 1988, 64—65). Such a method provides a general
analysis of the effects of marginal changes in the discount rate on the optimal stocks.

12 Hannesson (1983) asserted: "Increasing the discount rate may, at "moderate” levels, imply that
the optimal standing stock of biomass increases instead of decreasing” (Hannesson 1983, 329).
It seems as if he did not notice that this only applies to the predator species.
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(46) aX,*/ap, > 0 i # j, when b,(X,) << 0.

This is to say that when the predator is a great nuisance, an increase in the price
of the prey will lead to a larger optimal stock of the predator, and vice versa. The
case of an increase in prey price may be explained the following way. Such a price
change initially augments the value of the resource capital of the prey proportion-
ally to the price increase. However, it pays to transform some of the increased
wealth into capital in general, rewarding the social manager with the interest repre-
sented by the discount rate. This transformation may be controlled directly through
harvesting the prey, or indirectly by letting the predator harvest the prey. Hence, the
effect of an increased price of the prey is an increased optimal stock of the preda-
tor. The investment in the predator stock is rewarded by increased revenues and re-
duced harvesting cost of this species. The effects of increased effort costs are the
opposite of the effects of increased prices.

So far it has been implicitly assumed that the optimal solution is an interior one.
This is shown in Figures § and 6. In the former, the star indicates the interior
solution for the case when both species are "inexpensive-to-catch and valuable". In
this case both stock levels are higher at the optimum than under open access. Figure
6 illustrates the case where the prey is "inexpensive-to-catch and valuable", while the
predator is "expensive-to-catch trash". In this case the optimal solution is to subsi-
dize the predator harvest so as to reduce the stock, thereby increasing the har-
vestable surplus production of the prey. The star in Figure 6 indicates that it is op-
timal to harvest at a predator stock level below the unharvested open access level.
On the other hand, the optimal level of the prey stock is higher than the open-
access level of this species. ‘
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F1G. 5. Open-access and optimal interior solutions.
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FIG. 6. Interior optimal solution and open-access solution with no harvest of the predator.

As noted above, so far the optimal solution has implicitly been assumed to be
an interior one, i.e. the optimal stocks may be derived from the "golden rule”
equations, (37) and (38). It is, however, possible that the optimal solution will in-
volve no harvest of either the predator or the prey. Intuitively, it might be uneco-
nomical to harvest the prey if it is "expensive-to-catch trash", or it might be uneco-
nomical to harvest the predator if this species is "expensive-to-catch trash” and its
predation pressure on the prey is insignificant, i.e. v is small. The former case im-
plies an optimal combination of stocks, indicated by the star on the prey’s isocline in
Figure 7, while the latter implies the combination of stocks indicated by the star on
the predator’s isocline in Figure 8.

To find whether the solution given by the “golden rule" equations, (37) and
(38), really is the optimal solution, the following procedure may be used. First, it
should be checked whether or not the golden rule solution implies positive harvest
rates of both species. If it does, the solution is inside the sustainable yield triangle
(AABC in Figure 1), and the interior solution is the solution to the maximization
problem. If it does not, one of the restrictions on the harvest rates, the y’s in equa-
tions (31) and (32), becomes binding.!* Then it is necessary to substitute the rele-
vant golden rule equation with the corresponding growth equation. For example, if
the predator harvest rate becomes binding, the optimal steady state stocks are im-
plicitly found from equations (32) and (33) (y, = Xz = 0 in the former). Inserting the

13 Mathematical analysis of constrained optimization is found in Kamien and Schwartz (1981)
and Seierstad and Sydsaeter (1987). Application of the theory is found in Flaaten (1988).
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optimal stock levels into the prey’s growth equation, equation (31), will give the har-
vest rate of the prey,y, > 0. This example corresponds to what is shown in Figure 8.

X2

FiG. 7. Open-access and optimal stocks when the prey is “expensive-to-catch trash®.

X

FIG. 8. Open-access and optimal stocks when the predator is "expensive-to-catch trash” with
insignificant predation pressure on the prey.
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5. Conclusion

In this paper we have combined a simple biological predator-prey model from May
et al. (1979), reviewed in Section 2, with two economic independent harvest sectors,
one for each of the species. In Section 3 we derived the equilibrium solutions of
open-access harvesting of the two species simultaneously, and a corner solution with
cither of the species left unharvested. The ratio of cost of effort to price of harvest
can be so unfavourable for both species that they are best left unharvested under an
open-access regime.

Maximizing the present value of the joint economic rent from the predator
and the prey may imply an interior solution with simultaneous harvest of both
species, as shown in Section 4. The optimal harvest strategy could also be to harvest
only the most valuable species, and leave the other unharvested. With a positive dis-
count rate, the optimal level of the prey stock will always be larger than the open-
access level. However, this need not be the case for the predator. If this species’
predation pressure on the prey is significant, the predator is a low-valued species,
and the prey is a high-valued species, it was shown that it may be optimal to reduce
the predator stock to below its open-access level. This can be done by subsidizing
the harvesters of this species.

The major finding of this paper is that the optimal predator resource stock may
increase with an increase in the social rate of discount. This was shown to be the re-
sult when the predator’s negative effect on the prey’s growth rate is significant, the
predator is "expensive-to-catch trash", and the prey is "inexpensive-to-catch and
valuable”.
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1 Introduction

Market failures in resource industries can often be classified as "problems of the com-
mons”, which means that a scarce natural resource is not imputed a rent. Analysis
of open access and optimal management of common property resources already has a
major place in advanced textbooks in resource econonﬁcs [1], {2] and (3]. Renewable
marine resources such as fish, seals and whales are, in addition to their common prop-
erty nature, difficult to assess and their population dynamics are poorly known. Future
management of renewable natural resources will probably place greater emphasis on spe-
cies interactions. This incréases the need for theoretical and applied interdisciplinary
work. Theoretical exi)loratioﬂ of the relationship between concepts and objectives in
biology and economics and implications of these for management will prove valuable for
interdisciplinary empirical resource management.

The theory of optimal management of renewable resources is fairly well developed
within the single species context; see e.g. Munro and Scott [4] for a review of the fisheries
economics literature. The policy implications of this analysis depends, to some degree,
on the optimization criteria used. In single species models biological criteria such as
maximum sustainable yield (MSY) and maximum yield per recruit, in general give solu-
tions embodied in the solutions based on economic criteria, such as maximum sustainable
economic yield (MEY) and maximum present value of rent (MPV) [1].

The problem of managing two or more interacting species is far more complex. Several

authors have extended single species analysis to include multispecies interactions and



harvesting, for example:

a) Theoretical analysis of management of competing species and predator-prey sys-
tems, e.g. Clark [1] ch. 9, Hannesson (5|, May et al. [6], Silvert and Smith (7],
Flaaten [13] and Getz [8]. The latter is especially concerned about the optimal

path towards the long run steady state harvesting regime.

b) Analysis of harvesting interactions, e.g. Clark [1] ch. 9, Clark [2] ch. 5, Lipton
and Strand [9] and European Communities [10]. The latter is especially concerned

about particular fisheries and of assessment methods.

c¢) Applied studies on interacting species, e.g. Conrad and Adu-Asamoah [11] on com-
peting species of tuna and Flaaten [12] on plankton feeders—fish-sea mammals

interactions.

This article analyses steady state solutions in groups a) and c). Biological and
economic optimization criteria are set in a common two species framework to analyse
similarities and differences of their solutions. The implications of these solutions for
management are compared both between them and with solutions from single species
analysis.

The Gause-model [14] of two competing species is reviewed in section 2. Section 3
demonstra.te; how to derive the maximum sustainable yield frontier (MSF) and the locus
of MSF-stocks. Section 4 shows that maximizing economic yield (rent) with positive

harvesting costs and zero discount rate implies optimal stock levels above the locus of
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MSF-stocks. Isorent lines prove to be ellipses in the state plane in this model. Section
5 shows that maximizing the present value of economic rent under costless harvesting
with a positive discount rate implies optimal stock levels below the locus of MSF-stocks.
With positive costs optimal harvesting might imply harvesting one of the species at a
loss. Hence, open access harvesting of a system of competing species, using single pro-
duct technology, may imply economic underexploitation of a common property resource.
Section 5 also shows how the optimal stock levels are altered by changes in the exog-

enous social rate of discount, harvest prices and harvesting costs. Section 6 concludes

the article.
2 Biological Competition

Most two species models analysed in the literature can be shown to have either a stable
point or a stable limit cycle [15], p. 81. This is also the case for the Gause-model used
in this paper.

Let W; and W, denote the stocks of two competing species. The model is specified

as
W1 =dW1/dt=1‘1W1(1 ——Wl/Ll)—alWle (1)
Wz = sz/dt = Tsz(l - Wz/LQ) — a; W W,, (2)

where 7, and r; are the intrinsic growth rates of the respective species.’ L, and L, are the
single species carrying capacities at which species one and two, respectively, will settle
in the absence of the other species and harvest. In case of no competition, the per capita

growth rate of species i, W;/W;, decreases from r; for stock levels close to zero, to zero for
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stock levels equal to its own carrying capacity. The presence of a competitor reduces the
per capita growth rate in proportion to the biomass of the competitor. The competitor
coefficients, a; and a,, tell how much the per capita growth rate of species one and twd,
respectivgly, are reduced per unit of the other species.

To simplify the model rewrite the variables W; and W, into a dime‘nsionless form.

Defining X; = W,/L; and X; = WQ /L2 equations (1) and (2) can be rewritten as
X, =dXy/dt = Gi(X1, Xa) = Xa(l - Xy — oy Xa) (3)

X; = dX;/dt = G3(X1,X3) = 12 X3(1 — X3 — a3 Xy), (4)

where a; = a;L3/r, and a3 = a;L,/r; are the dimensionless competitor pa.rame;ters
(a1, a2 > 0). These parameters tell, in a dimensionless form, how severe the competition
from the other species is upon species one and two, respectively.

Harvesting is introduced in a simple way in the model by assuming that the resource
stocks are harvested independently of each other, with constant effort per unit of time,
F; (i = 1,2). The effort is scaled such that F; =1 corresponds to constant catchability

coeflicients equal to r;. The normalized catch rates will be
= rn R X, (5)

Y2 = 1 3 X,. (6)

The growth rates in equations (3) and (4) now will be changed to

Xl = 1"le1(1 -_ Xl - ale - Fl) (7)
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Figure 1: The phase diagram of the model of competing species.
X.g = Tng(l - Xz - C!zXl - Fz) . (8)
The equilibrium properties of this ecological system depend only on the harvest efforts,
F, and Fj, and the competition parameters, a; and a;. The intrinsic growth rates, r,

and r,, affect the dynamics of the system outside equilibrium. The isoclines are found

~ from equations (7) and (8) by setting X, =0 and X, = 0. This gives
Xa=(1/ay)1-X1 - F) for X,=0 (9)

X,=(1-aX;—F) for X,=0. (10)

The phase diagram for the system with a stable node, C, is shown in Figure 1. The

isoclines for the pristine system without harvesting (F; = 0; i = 1,2) are shown as solid
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lines whereas the isoclines for the harvesting case are the dotted lines.? The pre-harvesting
levels of the stocks are denoted X whereas the post-harvesting levels are denoted XF.
Even if there is a competitive coexistence equilibrium in the pristine system, harvesting
may extinct one of the species.

If positive, stable equilibrium levels of X, and X,, denoted XIF and X7, exist si-
multaneously, they are found where the isoclines intersect. From equations (9) and (10)

follow

_ l-oy -k +aFy

F
Xl - l—alaz (11)
1 —a; — F3 + agF;
F _ 2 2 241
Xp = (12)

To have an interior, stable equilibrium with both stocks positive without harvesting, it
is necessary to have

a; <1 and a3<l1. - (13)

The species which has the lowest competitor parameter, a;, will have the highest stock
level, X?, at the pristine equilibrium, i.e. the equilibrium without harvesting. To have
an equilibrium with both stocks being positive when just species i is harvested, it is

necessary that the effort rates do not exceed the following levels
FF<l—o; and F;=0, (i=1lor2, i#j). (14)

Equations (11) and (12) show that the equilibrium level of each stock is negatively
affected by the own effort ré.te, and positively affected by the effort rate of the com-

petitor. This means i.a. that it is possible to increase each of the stocks above its
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pristine level by harvesting only the competitor. The sustainable yield area in Figure 1
is the quadrangle ABCD. Combinations of stock levels outside this quadrangle are not
possible to maintain.? The sustainable yield area is of great importahce as a biological
restriction on the economic utilization of the competing species. This may be compared
with the biomass axis in the yield-biomass diagram of sihgle species models. To obtain a
positive sustainable yield in a single species model it is necessary that the stock remains
between its minimum viable level and the carrying capacity of the system. This com-
pares to a bounded area in the biomass plane of two species models, e.g. the quadrangle
ABCD in Figure 1. Within the boundaries mentioned above each stock level in a single
species model may produce a given sustainable yield. Likewise, in a two species model
a given combination of the two stock levels within the sustainable yield area, produce
a combination of susfaina.ble yields of the two species. The concept of maximum sus-
tainable yield (MSY), and the corresponding stock level, in single species models are
of great biological importance, as well as of economic importance as a reference point
for optimal management of the stock. The corresponding concept to MSY for the two

species model of competition will be introduced in the next section.
3 The Maximum Sustainable Yield Frontier (MSF)

The importance of the MSY concept in biological and bioeconomic single species analysis
is well known. The concept of maximum sustainable yield frontier (MSF) will be shown
to be of the same importance for the two species analysis as MSY is in the single species

framework. The MSF is derived* by maximizing the sustainable yield of one species for
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a constant sustainable yield of the other. This problem is equivalent to that of welfare
economics: deriving the production possibility frontier by maximizing the output of one
good for a specified amount of output of the other, given a fixed amount of factors of
production. In a two species model of competition fhe Hﬁited amount of factors of
production are embodied in the carrying capacities and the intrinsic growth rates. In
the real world the limited factor of production can be e.g. the zooplankton communities
of the sea in the case of competing fish species, and the grass of the plain ip the case of
grazing animals.
From equations (5)—(8) the following equilibrium hawést rates are derived, i.e. when
X, =X,=0,
1 =rXi(l- X1 — a1 Xa) (15)

y2 = 2 X5(1 ~ X3 — axXy). (16)

The problem of maximizing y; subject to the constraint y, = constant, can be done using

the Lagrange method. First we introduce the Lagrangian cxpression
L= ‘I‘ng(]. - ng - a:Xl) - M("le(l - Xl - C!1X3) - yl) . (17)

From the necessary conditions for optimality the following quadratic equation, which

implicitly gives X; as a function of X, is derived:
20 X7 +4X, X, + 2y X2 - (2 4+ a3) Xh — (2+ ) X2 +1 =0, (18)

when X; > 0. For X; = 0 it follows immediately from maximization of y; in equation
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Figure 2: The maximum sustainable yield frontier (MSF) for two competing species, for
parameters given in the text.

(16) that

X;==, when X, =0. ‘ (19)

N =

Correspondingly it is easy to see that
1
X, = 3 when X; =0. (20)

For each level of X; we cémpute X; from (18) and the resulting yields, y; and y,, are
given by (15) and (16). The locus combining the yields of the two species is shown in
Figure 2 for parameters o; = 2/3, a3 = 1/2, 7, = 1, r; = 3/4. In this example species
one has the greatest reproductive potential, biologically speaking, as seen from the MSF

in Figure 2.
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The curve depicted by X, = XM5F(X,), implicitly given by equations (18)-(20) we
| shall call the XM5F _locus. The MSF will be affected by changes in 7, and r,, énd so will
the XM5F_Jocus be, as seen from equation (18) recalling that a; = a;L;/r; (3,7 = 1,2;
i #35)

Equation (18) is an equation of a conic section of the form

In this case 4AC < (2B)?, since ajo3 < 1 and B = 2, and the XM5F.locus given by
equation (18) is a hyperbola. Only the branch giving 0 < XM#5F < 1 (i = 1,2) make
sense, biologically speaking. The other branch is therefore excluded from the analysis.

In the X; — Xz-plane the curve of X; = XM5F(X,) implicitly given by (18) will always
be downward sloping since

ng _ 4(12X1 +4X3 —(2+az)

=~ _ YMSF :
dX: 4o Xz +4X: — (2+ 1) <0 along X;=X;"°"(X;) (22)

for X],Xz € [0,05] .

Since limymsr_,;/ XMSF = (0 we have

dXz)MSF _ Qg — 2

x,h_r.?/z (Xm <0, (23)

ay

and, since limymse_, XMSF _1/2

dX MSF
lim( ’) =—22_<0. (24)

Xi—0 del aQy — 2

Equations (22)-(24) show that the slope of the X™5F-locus will depend on the parameters

a; and ay, i.e. on the slopes of the isoclines.?
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From a biological point of view one could say that the X™5Y_stock level in single
species models is the optimal one. The corresponding biologi(;,a.l optimal harvesting in a
two species model would be one of the inumerable combinations of stocks generating the
MSF. Which poiht on the MSF, and the XM5F_curve, is "best” is not possible to decide
just from a biological reasoning. The inclusion of economics is ne:cessa.ry to make such
a decision. This is the subject of the following two secfions, and it will be shown that

MSF-harvesting is the economic optimum only in special cases.
4 Maximum Sustainable Economic Yield

As demonstrated in the preceding section the competing species may be harvested on a
sustainable yield basis for both of the species at inumerable combinations of the two stock
levels. To see at which stock levels the system will settle under commercial harvesting,
~ we shall study the two extreme harvesting regimes of open access harvesting and a profit
maximizing sole owner. We shall mostly be concerned with solutions in the interior of
the sustainable yield quadrangle.® The dynamic behaviour of the biological and economic
system will not be considered, we shall rather concentrate on analysing equilibrium points
by means of comparative statics.

Given the Schaefer harvest function of equations (5) and (6), and assuming constant

costs, c;, pver unit of rescaled effort, E; = r;F;, the unit harvesting cost becomes
C,'(Xg) = C.'/X.' (l = 1,2) . (25)

Assuming the demand for each of the two species is independent of each other and
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infinitely elastic with respect to its own price, p; and p, are the constant prices of species.

one and two, respectively. Under these assumptions the net profit per unit of harvest is
(X)) =p-a/X; (i=1,2), (26)

and the total profit from the harvest of each of the two species is
(X)) =(p— /Xy (i=1,2). » (27)

Bioeconomic equilibrium requiers we simultaneously have’

W;(JY,') =0 and X,' =0 (‘l - 1, 2) . (28)

Denoting the open access stock level of the two species as X{° and X3°, it is seen from

(27) that unless y; = 0 the open access stock levels are
X =ca/pc (F=12). (29)

Equation (30) also implies the standard tragedy of the commons result that price equal
average costs (Cornes and Sandler [17]; Dasgupta and Heal [3]). Given our assumptions
the open access stock levels solely depend on economic parameters.® However, the bio-
logical parameters will affect the harvest rates as seen by substituting from equations
(5)—(6) and (28)-(29) into the growth equations (7) and (8).

In Figure 3 the open access equilibrium point, X*, is (arbitrarily) outside the X™5F.
curve, for parameters ¢; = 1, ¢ = 1, py = 4, p2 = 2, which imply X{°* = 1/4 and
X$° = 1/2. Note that decreasing the stock levels somewhat, to move the equilibrium
point in the SW-direction from X* to the X¥5F | would increase bioldgica.l yield from

both species.
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Figure 3: The areas of sustainable yield and positive profit, for parameters given in the
text.

The total profit from harvesting the two species can be derived from equation (27):
(X1, X2) = (1 — a1/ X1)y1 + (P2 — 2/ Xa)ys - (30)

Equation (30) gives the standard industry profit function consisting of a profit per unit
_expression and a steady state harvest quantity for each of the two species. Substituting
for y; from (15) and (16), inserting X° from (29) and normalizing profit by dividing by
p171 in (30) gives

W(Xl,Xz) = (Xl et Xloo)(]. - Xl - 01X2) (31)

+ ﬂ(Xz - X;o)(l et Xz - agXl) y

where 8 = py72/pi71 is the bioprice ratio, and 7(X1, X3) = n*(Xy1, X3)/p171.
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Interpreting equation (31) it should be noticed that it consists of two terms, one
for each of the two species, and each term is a product of two parts. The first part,
(Xi: — X°), takes care of the stock effect,’ i.e. the effect the size of the stock has on the
net profit due to decreasing costs as the stock rises. The stock level must be above the
open access level, X°, to yield a positive proﬁt. The second part is the expression from
which the isocline is derived. Since the isoclines are the borders of sustainable yield of
the respective species, the product of the two parts can be interpreted the following way.
On the one hand it pays to stay below the isoclines because that enhances biological
yield, however, on the other hand it pays to have stocks above the open access levels
because that reducés harvesting costs thereby increasing the unit harvesting profit. All
in all there xhust be a tradeoff between these two effects to maximize the total profit
expressed by equation (31).

Before proceeding to the problem of finding the optimal combination of the two stocks,
we shall have a closer look at which combinations of stocks in Figure 3 give positive total
profit. The zero profit line obviously passes through the X*-point, and there must
also be zero profit at point C where the isoclines intersect, i.e. where the growth rates
simultaneously equal zero. At point E in Figure 3 the term (X; — X7°) equal zero and
the yield from species two is zero because (1 — X; — a3X;) equal zero. Both terms in
~ equation (31) are therefore equal to zero, and so is of course the total profit. For the
same reasons this also happens at point F. To see what the zero profit line looks like
outside the four points X*°, F', C and E, we start with the more general case of what

the isoprofit lines in general look like.
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Figure 4: Isoprofit ellipses and the sustainable yield regioh.

Rewriting the net profit function in equation (31) gives

1I'(X1,X3) = _X12 - ﬂXzz - (al + ﬁag)X1X2 + (1 + Xfo +,3a2X§°)X1 (32)

+ (B4 68X + an X°) X2 — (X° + BX5).

For a given profit level, 7, this is an equation of a conic section, cfr. equation (21).
When 4AC —(2B)* > 0 and B # 0 this is the equation of an ellipse with axes not parallel
to the abscissa and the ordinate axes.!® The isoprofit lines are therefore ellipses in the
X; — X;3-plane. Some isoprofit lines, with the zero profit line as the outermost, are srhown
in Figure 4, for biological parameters used in Figure 2 and economic parameters used

in Figure 3. Combinations of stocks within the zero profit ellipse, inside the sustainable
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yield quadrangle, give sustainable positive total profit. The size of the zero profit ellipse
depends on the paramet;rs of equation (32), i.e. on economic as well as on biological
parameters. An increase in the open access stock levels, i.e. a change in point X*
towards point C in Figure 4, contracts the area of profitable harvgsting. Such a change
eventually results in a zero profit ellipse that does not intersect the abscissa (and/or the
ordinate axis). Reduction of the intrinsic growth rates also reduces the area of profitable
joint harvesting of the two species.

In the single species model stock levels between the open access level, X*°, and the
carrying capacity are capable of giving positive sustainable profit. The lower bound,
X, is solely determined by economic and harvest-technological factors, whereas the
carrying capacity is a pure biological constraint. In this model of competingb épecies the
upper bound of the profit yielding stock levels is a pure biological constraint given by the
isoclines intersection point, C, in Figure 4. Also for the lower bound is there a similarity
between this two species model and the single species model, the open access stock levels
are solely determined by economic and technological factors. The points E and F on
the zero profit ellipse correspond to a mixture of economic, technological and bioldgical
factors. Howéver, it should be noted that these points are uniquely determined by the
open access stock level, X*°, and the pristine stock levels.

Assuming there is an interior solution, the necessary conditions for the maximization

of the profit in equation (31) gives the following MEY-stocks:!!

xmev _ 2801+ X’;) :;/2(ﬂ +X*) (33)

227



XMEY _ 2(8 +X:;:1£1 +X*) , . (34)

where v = a; + a8, X®° = X&® + aaB8XP, X® = 0, X + XS, recalling that 8 =

parz/pit1. XMEY is the center of the isoprofit ellipses and the optimal long run stock
levels in case of zero discount rate, and is shown in Figure 4.

Harvesting at stock levels either below X{° or below X;° can make sense in the case
that one of the two species has a low economic value, expressed by p;/c;, and the other
has a high value. The low valued species, species two in Figure 4, therefore should be
harvested at a loss. To implement such a solution it is necessary to subsidize the harvest
of species two to reduce this stock below its open access level. This amount of subsidy is
more than offset by increased sustainable economic yield of species one. Hence, the total
profit from joint harvesting of the two species increases.

From the analysis of single species biomass models is knowﬁ that XMEY 5 YMSY jp
case of stock dependent harvest costs. In the special case of costless harvesting, or no

stock dependent costs, the MEY and the MSY stock levels coincides: XMEY = XMSY

In this two species context we shall show:

Theorem 1. In case of two competing species and costless harvesting the
combinations of stocks giving the maximum economic yield (MEY) coincides
with the combinations maximizing the yield of one species for a given yield

of the other (MSF).

The result stated in Theorem 1 is being proved over all possible bioprice ratios, 3.

The XMEY is a single point for a given set of bioprices.
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In the case of costless harvesting, ¢; = X{° = 0 (¢ = 1,2), § may be eliminated
from the necessary conditions for an interior solution of the maximization of sustainable

economic yield in equation (31), to give
2a3X12 + 4X1X2 + 2a1X; - (2 + C!z)Xl - (2 + al)Xz + 1=0. (35)

Equation (35) gives X, = XMFY(X,) and is exactly the same as equation (18) which
gave X, = XM5F(X,). We have thereby shown Theorem 1.

Having studied the case of costless harvesting, now proceed to the case of positive
harvesting costs for both species, i.e. ¢; > 0 (i = 1,2), to show, for all possible bioprice

ratios,

Theorem 2. In case of two competing species that are harvested independ-
ently of each other at positive harvesting costs, the MEY combinations of

stocks are greater than the MSF combinations.

To show this start by eliminating @ from the necessary conditions for the maximization

of sustainable economic yield in equation (31), to arrive at

2a;X1’ + 4X1Xz + 2a1X,’ b (2 -+ Qg + agX{” + (2 - a)X,°°)X1 (36)

— (@t + (2 @)X+ X)X + (14 X2+ XP) =0,

where a = ajaz. This is an equation of a conic section. The constants of the two
quadratic terms and that of the product term in equation (35) are the same as in the

MSF-case given in equation (18), while the three others are different. This means that
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also the MEY combinations of the two stocks are described by a hyperbola in the case
of positive harvesting costs. Since the constants of the quadratic terms and the product
term are equal in the MEY and the MSF cases, the asymptotes of the hyperbolas have

the same slope in these two cases. Therefore, the MEY- and the MSF-hyperbolas can

not intersect. In case of the MSF we have shown in equation (20) that!?

XM5F =1/2  when X}MF =0. (37)

To find the intersection point between the MEY-hyperbola and the abscissa, return

to the profit equation (31). When X; = 0 the MEY stock of species one is found from
dr/dX,=1-2X; -X =0, (38)
which Vgives, by use of (37),
XMBY — XMSF | X>/2 when XMEY -y, | (39)
In other words, if species two is extinct the maximum economic yield of species one is

obtained for a larger stock level than the one giving maximum sustainable yield. Since

the MEY- and the MSF-hyperbolas can not intersect this implies

XMSF <« XMEY | when >0 (i=1,2), (40)

and theorem 2 is proved.
Having focused on maximum sustainable economic yield in this section, we now pro-

ceed with the objective of maximizing present value of rent from the two competing

species.
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5 Maximum Present Value of Rent

Given joint management of the two competing species and assuming the objective of the
management program is to maximize the present value of the rent from the resources,

the objective functional is
PV = / e n( Xy, X,)dt, (41)
0

where (X}, X 2) is defined in (30) and § is the social rate of discount. The social managers
problem is to choose the harvest rates, the y’s, so as to maximize the present value, given
the biological constraints imposed by the growth equations (7) and (8). Assuming the
solution is an interior one, there are two joint equilibrium equations that must be satisfied

at the optimum (see [1], ch. 9.3). They can be written as
bl(Xl)Gu + bg(Xz)Gn - C’I(X1)Gl(X1,X2) = 651(X1) (42)

b1(X1)Gha + b2(X3)Gag — c3(X2)Ga(X1, X3) = 6bi(X3), (43)

where b;(X;) are defined in (26), c}(X;) = da(X;)/dX; and G;; = 8G;(X,,X,)/0X;
(3,7 = 1,2). The growth functions, G;(X,,X3) (i = 1,2) are defined in equations (3)
and (4). At the optimum the net profit from investing in the resource capital of species
one, i.e. the Lh.s. of equation (42), should equal the net profit from pbssibly investing
the current profit at the social opportunity cost of capital, §.

Dividing equation (42) by the social rate of discount gives, on the l.h:s., the change
in the present value of the infinite horizon sustainable economic yield per unit of change

in the stock level. Expressed this way the L.h.s. is often referred to as the user cost of
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the resource. This should equal the current profit from harvesting of one unit of the
stock given on the r.h.s. Compared to the single species model the additional term on
the Lh.s. of equation (42), b2(X;)G21, reflects the addition to the marginal value product
of species one afforded by means of species two. The interpretation of equation (43) is
similar.

In single species models the optimal resource stock is above the open access stock
level, whereas that need not be the case for the predator in predator—prey models (see
[5] and [13]). To see that the latter result also applies to any one species in a model of
competing species we rewrite equations (42)—(43) and, after having taken the dériva.tives,

arrive at

(1= X - @0 Xs) = (X~ XP) - asf(Ka = XT) = (i = X7) (49

Bl — X3 — o Xy) — B(Xz - X7°) — (X, — X7°) = }%(Xz —-Xz),  (45)

where it is substituted for X = ¢;/p; and 8 = pyra/pir1. The long run optimal equi-
librium stocks implicitly given by equations (44) and (45) shall be denoted XMPV and
XMPV, The first term on the Lh.s. of equation (44) will always be positive within the
sustainable yield area. Assuming the optimal stock level of species two is above its open
access level implies the last term on the Lh.s. of (44) is negative, included the minus
sign. Now it is possible that XMPY < X which implies that the harvest of species one
should be subsidized at the optimum. This result is more likely if a;, p, and/or rl—are
low, or ¢; high, compared to the corresponding parameters of species two. The loss from

the harvest of species one is more than offset by the increased profit from the harvest of



species two which is more bioeconomic valuable. This reasoning of course also holds for
the opposite case with species two being harvested at a loss.

From single species models is well known that in the extreme case of costless harvesting
the optimal stock level will always be below the MSY level when the discéunt raté is posi-

tive. This result from the single species models shall be used to prove

Theorem 3. For costless harvesting and a positive discount rate the com-
bination of stocks giving the maximum present value (MPV) of harvesting

will be inside the locus of MSF stocks.

To prove Theorem 3 insert ¢; = X = 0 (z = 1,2) into equations (44) and (45) and

eliminate 3. This gives the following equation

2&1X12 + 4X11Y2 + 2(11X; - (2 + a: - 0261 - 262)X1 (46)

- (2+a1—a163—261)X,+1+5152—61—63=0,

where §; = §/r; (i = 1,2) are the bioeconomic growth ratios. This is an equation of the
quadratic form and compared with the equation of MSF stocks in (18), it is noticed that
the constants of the two quadratic terms and that of the product term are equal, while
the three others are different. Hence, the X™FV.locus is a branch of a hyperbola with
asymptotes parallel to the asymptotes of the XM5F hyperbola. Therefore, they do not
intersect. |

To find the terminal point of the XMfV.locus at the abscissa, insert X, = 0 into the
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PV function in equation (41) to arrive at
pv=/°°e—“ X(1-X)dt, X;=0, XP=0 (i=1,2). (47
(1]

The problem of maximizing PV is now reduced to that of a single species problem (known

from Clark [1], ch. 2), and the solution is
XMPV —(1-6))/2, X,=0, XP=0 (i=1,2). (48)

Since the terminal point of the XMV locus at the abscissa is inside the corresponding
point at the XM5F Jocus, the conclusion is that the entire X MPV locus is inside the
XMSF _Jocus in the case of costless harvesting. Thereby Theorem 3 is proved.

From Theorems 2 and 3 and from equations (44)—(45) it now follows that in the gen-
eral case of stock dependent costs and a positive social rate of discount the X#*Y _locus
is between two borders. The inner border is determined by the stock levels, XM5V
maximizing the present value of the resource rent for the zero cost case and a given
(maximum) social rate of discount. The outer border is determined by the stock lev-
els, XMEY maximizing the sustainable economic yield in the case of (maximum) stock
dependent costs. For a given bioprice ratio, 3, of the two species the long run optimal
equilibrium stock levels are uniquely determined by a point in the X; — X;-plane at or
between these two borders, depending on the size of the harvest costs and the social rate
of discount.

In single species biomass models with positive harvest costs and a positive social rate

of discount, the optimal stock, X™*V approaches the MEY stock level when § — 0, and
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approaches the open access stock level, X*°, when § — oo (see [1], ch. 2). For this two

species model of competing species we can now show

Theorem 4. In a model of two competing species the long run optimal
equilibrium stock level for any one species may be below the open access
stock level. When that is the case the optimal stock level of this particular

species increases with an increase in the social rate of discount.

In this model equations (44)—(45) approaches the necessary conditions for the maximi-
zation of sustainable rent in equation (31) when § — 0. This is to say that XMFV ap-
proaches XMFY when the social rate of discount approaches zero. It also follows from
equations (44)—(45), after having divided by §, that the r.h.s. must approach zero when
§ — oo, i.e. the XMPV approaches the open access stock levels, X°. Thereby it is

demonstrated that like in the single species model we have

}i_'r%X,.MP" = XMEY (i=1,2) (49)
and
Jim XMPV = X (i=1,2). (50)
This also implies
angv >0 if XPV< X°° (i=1 or 2), (51)

and Theorem 4 is proved. The results in Theorem 4 is not possible to have in single

species models, but it may happen for the predator in predator-prey models [13].
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The long run optimal equilibrium stock levels are functions of biological and economic
parameters. It is of interest to analyse how these stock levels are changed by marginal

changes in the harvest prices and effort costs. Let us first prove

Theorem 5. For two competing species the effect of an own price increase
on the long run optimal resource stock is negative, whereas an increase in
the price of the other species increases the optimal stock level of the former

species.

Start with the equilibrium equations (42) and (43) which may be written as

19n()

P ox. =k =12, (52)

With harvest price, p;, and effort cost, c;, as exogeneous variables, differentiating equation

(26) gives
_ 96:() . 96() . 9b()
bip = B, >0, bic = Be; <0 and bie = 3z, >0, (53)

which shall be used in the analysis. Differentiating equation (52) w.r.t. p;, rearranging
somewhat and by using Cramer’s rule we find

OXMPV  8biy (&35 — 8baa)

opy, |D| (>4
AXMPV _ 6b1P8X38X1 ’ (55)
Op; | D
where
D | % o afan

- _8x 8x _ §b
BX16X, x’ 22
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The second order conditions for the existence of an interior solution to the maximization

problem in equation (41) are

i’_’f, __82_"'(. n

8xX 8X,8.

Bwl Bl’w >0 and <0 ’ (56)
—Cr aXz

BX,6X,  8XJ i

and from this follows that 8°wr/8X? < 0. The second order conditions imply |D| > 0

because of (53). Taking the second-order derivatives of the profit function (31) w.r.t. X;

we get
&

Sa = e (i=12) (57)

and
r

R 75 P S L (58)

The results in (57)~(58) imply that the second order conditions are met, and |D| > 0.
From (54) and (55) now follows that

XM PV MPV
90X, <0 and X3
Op Op1

>0. (59)

Since the relationship between the two species in this model is symmetric it is obvious that

differentiating w.r.t. p; in equation (52) give similar results as in (59), hence, Theorem

5 is proved.

Using the same method as to prove Theorem 5 it is straightforward to prove

Theorem 6. For two competing species the effect of an own effort cost
increase on the long run optimal resource stock is positive, whereas an increase
in the effort cost of the other species reduces the optimal stock level of the

former species.
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From Theorems 5 and 6 we learn that a price increase (cost decrease) for one of the
two species initially augments the value of the resource capital of this particular species
proportionally to the price increase (cost decrease). However, it p#ys to transform some
of the increased wealth into capital in general, rewarding the society with the interest
expressed by the discount rate, and some into the resource capital of the competing
species. The reward to the society from the latter investment is increased revenues and

reduced harvesting costs for this competing species.
6 Conclusion

The concept of sustainable development has been widely recognized by the release of
the report of the United Nations’ World Commission on Environment and Development
(18]. However, the interpretation of this concept is not always clear. For renewable
resources such as foresfs, wildlife and fish it seems evident that within a multispecies
framework sustainable development must take place for combinations of stocks within
the sﬁstaina.ble yield area. Harvesting at the maximum sustainable yield frontier (MSF)
may at a first glance seem evident from a biological point of view. Howevér, from an
economic point of view MSF-harvesting is optimal only in special cases, such as when
there is no discounting and harvest costs are zero.

Identifying the limits of sustainable yields in ecosystems is mainly an ecological taék,
whereas the utilization of such a system for sustainable economic development in addition
involves aspects of economics, technology and social organization. Hence, successful

sustainable economic exploitation of a complicated ecosystem is a complex pl;oblem which
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requires a multi-disciplinary approach.
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Notes

1The dynamics of the model was analysed in Clark [1], ch. 6.6. We assume that there

is a competitive coexistence equilibrium solution of the model.

2The effect of one species on another is similar to the interaction of Cournot oligo-
polists. The isoclines in this model of competing species are identical to the reaction

functions of the Cournot model with linear demand and costs.

3Essentially all deterministic two species models will have a bounded sustainable yield
area, but not necessarily a quadrangle. The predator-prey model used in Flaaten [13]

has a triangle as the sustainable yield area.

“The notion of MSF was used by Flaaten [12]. The method, however, was first

described and used by Beddington and May [16].

5Since the XMSF jg a hyperbola and it is downward sloping at both of the terminal

points of the first quadrant, it is concave to the origin in the sustainable yield area.

8Solutions at the boundaries of the sustainable yield quadrangle, with only one species
being harvested, may often be the case in the real world. Flaaten [13] analysed such cases,

however, it will not be done in this article.

It is not immediately obvious what "open access” in general means in the context of

multispecies harvesting. However, recalling the assumption of technically independent
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harvesting of the two competing species, open access bioeconomic equlibrium in this case

means that profit on each species must be zero.

8In general technological parameters also affect the open access stock levels. However,
in this case with the Schaefer production function and rescaled fishing effort such that
the catchability coefficient equal unity, the open access stock levels in equation (29) are

seemingly independent of the harvest technology.

®The stock effect is usually interpreted as the effect a marginal increase in the stock

level of one species has on its own harvesting costs.

%The angle, v, between the axes of the ellipse and the coordinate system can be
found from tan2v = 2B /(A — C), according to standard geometry. In the case of the

profit ellipse of equation (32) v is found from tan2v = (a; + Ba3)/(1 - B).

Graphically the MEY-stocks are found at the intersection of X; = (1+X*° —~X,)/2

and X, = (8 + X — vX,)/2 derived from equations (33) and (34).

12Golutions outside the sustainable yield area are not of biological or economic interest.

Therefore, only the negative root is of interest in this case.
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