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Abstract

During the last decades, the incidence rate of cutaneous malignant melano-
ma, a type of skin cancer developing from melanocytic skin lesions, has risen
to alarmingly high levels. As there is no effective treatment for advanced
melanoma, recognizing the lesion at an early stage is crucial for successful
treatment. A trained expert dermatologist has an accuracy of around 75
% when diagnosing melanoma, for a general physician the number is much
lower. Dermoscopy (dermatoscopy, epiluminescence microscopy (ELM)) has
a positive effect the accuracy rate, but only when used by trained personnel.
The dermoscope is a device consisting of a magnifying glass and polarized
light, making the upper layer of the skin translucent.

The need for computer-aided diagnosis of skin lesions is obvious and
urgent. With both digital compact cameras and pocket dermoscopes that
meet the technical demands for precise capture of colors and patterns in
the upper skin layers, the challenge is to develop fast, precise and robust
algorithms for the diagnosis of skin lesions. Any unsupervised diagnosis of
skin lesions would necessarily start with unsupervised segmentation of lesion
and skin.

This master’s thesis proposes an algorithm for unsupervised skin-lesion
segmentation and the necessary pre-processing. Starting with a digital der-
moscopic image of a lesion surrounded by healthy skin, the pre-processing
steps are noise filtering, illumination correction and removal of artifacts. A
median filter is used for noise removal, because of its edge-preserving capa-
bilities and computer efficiency. When the dermoscope is put in contact with
the patient’s skin, the angle between the skin and the magnifying glass im-
pacts on the distribution of the light emitted from the diodes attached to the
dermoscope. Scalar multiplication with an illumination correction matrix,
individually adapted to each image, facilitates the analysis of the image, es-
pecially for skin lesions of light color. Artifacts such as scales printed on the
glass of the dermoscope, hairs and felt-pen marks on the patient’s skin are
all obstacles for correct segmentation. This thesis proposes a new, robust
and computer effective algorithm for hair removal, based on morphological
operations of binary images.

The segmentation algorithm is based on global thresholding and his-
togram analysis. Unlike most segmentation algorithms based on histogram
analysis, the algorithm proposed in this thesis makes no assumptions on the
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characterization of the lesion mode. From the truecolor RGB image, the first
principal component is used as grayscale image. The algorithm searches for
the peak of the skin mode, and the skin mode’s left bound. The pixel values
belonging to the bins to the left of the bound, are regarded as samples from
an underlying distribution and the expected value of this distribution is esti-
mated. The value of the pixels in the bin located at equal distance from the
expected value of the lesion mode, and the skin-mode peak is used as thresh-
old value. After global thresholding, post-processing is applied to identify
the lesion object. The only parameters in this algorithm are the number
of bins in the histogram and the shape of the local minimum regarded as
skin-mode bound.

The dermoscopic images have been divided into two independent sets;
training set and test set. The training set consists of 68 images, and the
test set consists of 156 images. 80 of the images from the test set have been
evaluated by expert dermatologists by visual inspection.
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Chapter 1

Introduction

This master’s thesis tries to solve a problem many have tried to solve be-
fore, some with greater success than others. The problem to be solved is
segmentation or border detection. This is in fact two different tasks, closely
tied together, and often not distinguished from one another in the litera-
ture. Both segmentation and border detection have the same goal, namely
to separate one object or region from the background. This thesis handles
specifically the segmentation of skin lesions from the surrounding skin.

1.1 Skin Cancer

Skin cancer is one of the most common and one of the deadliest type of
cancer among the fair-skinned population in Europe, North America and
Australia. In Norway, skin cancer was among the top three new cases of
cancer registered in the period 2002-2006. In 2006, 2517 persons got the
diagnosis, 293 people died from the disease in 2004 (CRN, 2006).

The incidence rate of skin cancer has been growing ever since the Cancer
Registry of Norway started its data collection in 1952. Among the different
types of skin cancer, melanoma of the skin (from now on referred to only
as melanoma) is the deadliest of them all. In 2006, less than 50% (1178)
of the total registered new cases of skin cancer was melanoma, but more
than 90% (266) of the total deaths caused by skin cancer in 2004 was due
to melanoma. As seen in Figure 1.1, the number of new cases of melanoma
is stabilizing on a high level. The incidence rate shows number of new cases
per 100,000 inhabitant, standardized according to the world population (for

1



2 Introduction

details, see CRN (2006)).

Figure 1.1: Age-adjusted incidence rates per 100 000 person-years.

Melanoma is the fifth and sixth most common type of cancer among
females and males, respectively, for the years 2002-2006. In the age group
30-54 years, melanoma is the second most common type of cancer for both
genders in the same time period.

Melanoma starts in a melanocytic lesion in the upper layers of the skin
(dermis and epidermis). Melanocytic lesions form the largest group of pig-
mented skin lesions. If the melanoma is left alone, and the body itself is
unable to fight it, it moves on to the lower layers of the skin, to vessels,
and finally to other organs. There is today no effective treatment against
advanced melanoma, and the only way to treat it is to physically remove it
in its early stage. Melanoma in situ are the melanomas still situated only
in the upper skin layers. Removing the melanoma at this stage is an easy
task, it is cost effective and the patient hardly gets any bother from it.

To discover melanoma in its early stage is the difficult part. Even dis-
criminating between melanocytic and non-melanocytic lesions is not straight-
forward (Stolz et al., 2002, p.42). Dermatologists have an accuracy of around
75% when diagnosing melanoma. For general physicians the number is much
lower (Stolz et al., 2002, p.1). The clinical ABCD rule for diagnosing skin
lesions is widely used. The clinical ABCD rule states that the skin lesion
is likely to be a melanoma if the following criteria are fulfilled: Asymme-
try, Border irregularity, Color variation and Diameter of more than 6 mm.
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Unfortunately, the criteria are not unambiguously defined, and the result is
highly subjective (Stolz et al., 2002, p.1).

In the 1990’s a new device, the dermoscope, was introduced. The use of
the dermoscope makes diagnosing the skin lesion more successful for trained
dermatologists. Unfortunately, giving a dermoscope to untrained personnel
can lead to even lower percentage of correct diagnosis. A computer-aided
diagnostic system is therefore most needed, and would be of special impor-
tance among general physicians that do not have the training and experience
of a dermatologist.

1.2 Dermoscopy

Dermoscopy, dermatoscopy or epiluminescence microscopy (ELM), is a non-
invasive technique for diagnosing skin lesions. A dermoscope, or dermato-
scope, is a combination of a magnifying glass (lens) and polarized light. The
lens is encircled by light sources and is put in direct contact with the pa-
tients skin. Fluid (usually water or oil) is used to refract the light. Without
the polarized light and the fluid, light is reflected at the surface of the skin,
and only the patterns visible there can be examined by the physician. When
the light is refracted by the polarized light and the fluid, it is the reflections
from the subsurface that reaches the physicians eye. This way, the physi-
cian is able to extract much more information from a simple non-invasive
examination.

1.3 The Camera and the Image Format

There are thousands of different ways to record the waves of light reflecting
from an object, with different wavelengths and different angles. This thesis
utilizes one of them.

The skin lesions are photographed with a Ricoh GR digital camera. The
images are recorded with the size 2460 × 3276 pixels, which gives a spatial
resolution of 0.011× 0.011 mm per pixel. The depth is 8 bit per pixel. The
images are stored in the digital RAW format DNG, and then converted to
the uncompressed format ppm (Portable Pixel Map). Converting to the
often used format jpg gave poorer results. Not surprisingly, since jpg is
a compressed format and therefore some of the information is lost. When
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converting from DNG to ppm the gamma-correction was not used. When an
image has been gamma-corrected, it is easier for the human eye to see the
details, but for the performance of the segmentation algorithm, uncorrected
pixel values proved superior. The DNG-to-ppm conversion is a nonlinear
transformation, and the pixel values were stored as 8 bit integers with range
from 0 to 255 or 16 bit integers with range from 0 to 65,535.

The color space used is the RGB (red, green, blue) color space. The three
perpendicular axes represents the intensities of the three primary colors. The
white point used for conversion is D65.

1.4 The Dermoscope

A Dermlite Pro II HR dermoscope is attached in front of the lens of the
camera. The dermoscope has a magnifying lens of ×10, and 32 light-emitting
diodes (LED) of polarized light with the output of approximately 18 000 lux
(1800 foot-candles) (DermLite). The dermoscope, with the camera behind,
is placed on the patients skin, and water is used as fluid. One or more photos
are taken. Because of the polarized light and the fluid, the light penetrates
the uppermost skin layer.

1.5 The Skin Lesions

A set of 234 digital dermoscopic images has been collected for this study.
The images have been separated into two independent groups; training sam-
ple and test sample. The training sample consists of 68 lesions from two
different sources. 20 of the lesions come from the University Hospital of
North Norway (UNN), the rest comes from Germany. All the lesions from
UNN come from patients that have been referred to a specialist by a general
physicians. The lesions from Germany come from patients without referral.
The lesions, both from UNN and Germany, have been photographed by a
trained expert dermatologist. After photographing, the lesions have been
removed and sent to pathology for testing. Among the 234 lesions, only 5
are confirmed melanomas. 10 images have been excluded according to the
following criteria: The dermoscope is not in full contact with the skin (2
images), the fluid used for refraction of the light covers less than half of the
image (2 images), the lesion exceeds the image border (more than 16 mm in
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diameter) (5 images), or the image is out of focus (1 image).
The remaining 224 lesions are both melanocytic and non-melanocytic.

Both the training sample and the test sample contains lesions of large varia-
tion in size, color and contrast to the surrounding skin. The smallest lesion
in the training sample covers an area of 23, 000 pixels and has a major axis
length of about 2 mm (Figure 5.14(d)), while the largest lesion in the train-
ing set covers an area of 660, 000 pixels and has a major axis length of about
14 mm (Figure 5.14(f)).
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Chapter 2

Mathematics, Statistics and

Image Processing

Definitions of mathematical and statistical expressions used later in the the-
sis are presented in this chapter. Much of the mathematics used in both
multivariate statistics and image analysis is based on matrix algebra. The
definitions are just as general as they need to be for the thesis, and do not
necessarily cover all mathematical eventualities.

2.1 Polynomial Interpolation

Polynomial interpolation is a method for constructing a continuous func-
tion, f(x), on the bases of a few points, (x0, y0), (x1, y1), . . . , (xk, yk), where
the points will be parts of the resulting function, f(x0) = y0, f(x1) =
y1, . . . , f(xk) = yk (Kincaid and Cheney, 2002, p.308-330).

Theorem 1 (Polynomial Interpolation). If x0, x1, . . . , xk are distinct real
numbers, then for arbitrary values y0, y1, . . . , yk, there is a unique polynomial
pk of degree at most k such that

pk(xi) = yi, for i = 0, 1, . . . , k.

For proof of Theorem 1, see Kincaid and Cheney (2002, p.309).

Definition 1 (Divided Differences). Given a set of k + 1 data points,

7



8 Mathematics, Statistics and Image Processing

(x0, y0), (x1, y1), . . . , (xk, yk), the divided differences are

f [x0] ≡ y0,

f [x0, x1, . . . , xj ] =
f [x1, x2, . . . , xj ]− f [x0, x1, . . . , xj−1]

xj − x0
, j = 1, . . . , k.

The notation f [x0, x1, . . . , xj ] (not to be confused with f(x0, x1, . . . , xj))
is used for historical reasons, for details, see Kincaid and Cheney (2002,
p.327-330).

Definition 2 (Interpolation Polynomial in Newton’s Form). Given a set of
k+ 1 data points, (x0, y0), (x1, y1), . . . , (xk, yk), the interpolation polynomial
in Newton’s form, p(x), is defined as (Kincaid and Cheney, 2002, p.328)

p(x) =
k∑
j=0

cjqj(x), where

qj(x) =
j−1∏
i=0

(x− xi) and cj = f [x0, x1, . . . , xj ].

Note that
∏m
i=0(x− xj) = 1, whenever m < 0.

2.2 Matrix Algebra

A digital image can be represented as a matrix or an array, and matrix
algebra is therefore highly appreciated in image analysis.

Definition 3 (Transpose). The transpose of a n× p matrix A with entries
[aij ] is the p×n matrix A′ with entries [a′ij ] = [aji] (Nicholson, 1995, p.41).

Definition 4 (Trace). The trace of a p × p square matrix A with entries
[aij ] is the sum of the diagonal elements (Nicholson, 1995, p.257),

tr(A) =
n∑
i=1

aii.

Definition 5 (Eigenvectors and Eigenvalues). Given a p× p square matrix
A, a p× 1 nonzero vector v = [v1, v2, . . . , vp] is an eigenvector if it satisfies
the linear equation

Av = λv, (2.2.1)
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where the scalar λ is the eigenvalue corresponding to the eigenvector v

(Nicholson, 1995, p.251).

The eigenvector v is not unique. Any scalar multiple of v, av, satisfies
Equation 2.2.1. For some purposes the eigenvectors are therefore normal-
ized ;

e =
v
||v||

, ||v|| =
√
v2
1 + v2

2 + · · ·+ v2
p.

The result of a normalization is that e′e =
∑p

i=1 eiei = 1.

Definition 6 (Symmetric Matrix). A square matrix A with entries [aij ] is
symmetric if A = A′, or equivalently (Nicholson, 1995, p.42),

aij = aji, ∀ i, j.

Definition 7 (Positive Definite). A p × p symmetric matrix Σ is positive
definite if (Johnson and Wichern, 2002, p.63)

a′Σa > 0, ∀ p× 1 vectors a 6= 0.

Definition 8 (Orthogonality and Orthonormality). Two p×1 vectors, u =
[u1, u2, . . . , un] and v = [v1, v2, . . . , vn] are orthogonal if (Nicholson, 1995,
p.271)

u′v =
n∑
i=1

uivi = 0.

The vectors u and v are orthonormal if they are orthogonal and

||u|| = 1 and ||v|| = 1.

Theorem 2 (Eigenvectors of symmetric matrices). If A is a p×p symmetric
matrix, then A has an orthonormal set of p eigenvectors.

For proof of Theorem 2, see Nicholson (1995, p.283).

Theorem 3 (Eigenvalues of real symmetric matrices). If A is a real, sym-
metric matrix, then the eigenvalues are real.

For proof of Theorem 3, see Nicholson (1995, p.307)
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Theorem 4 (Positive Definite). A square matrix is positive definite if it is
symmetric and all its eigenvalues are real.

For proof of Theorem 4, see Nicholson (1995, p.290).

2.3 Statistical Analysis

In statistical analysis there is a differentiation between univariate statistics
and multivariate statistics.

2.3.1 Univariate Statistics

In this thesis the univariate random variable, X, is defined to be a real scalar
number.

Definition 9 (Mean). The expected value or mean, µX = E(X), of a con-
tinuous probability function, f(x), is

µX = E(X) =
∫ ∞
−∞

xf(x) dx.

For a discrete probability function p(x) the mean is

µX = E(X) =
∑
i

xip(xi).

If E|X| =∞, the mean is said to not exist (Casella and Berger, 2002, p.55).
The sample mean, X̄, of a random sample, X1, X2, . . . , Xn, is defined as
(Casella and Berger, 2002, p.212)

X̄ =
1
n

n∑
i=1

Xi. (2.3.1)

Definition 10 (Variance). The variance, σ2 = V ar(X), of a random vari-
able X is given by (Casella and Berger, 2002, p.59)

σ2 = V ar(X) = E[(X − µX)2].

The standard deviation, σ, is given by the positive square root of σ2. The
sample variance, S2, of a random sample X1, X2, . . . , Xn, is defined as
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(Casella and Berger, 2002, p.212)

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.

The sample standard deviation, S, is given by the positive square root of the
sample variance.

Definition 11 (Median). The median of a distribution is a value m such
that (Casella and Berger, 2002, p.78)

P (X ≤ m) = P (X ≥ m) =
1
2
, for discrete distributions, and∫ m

−∞
f(x) dx =

∫ ∞
m

f(x) dx =
1
2
, for continuous distributions.

The sample median is the middle of an ordered sample. To find the sample
median, order the n observations in ascending order. If n is an odd number,
the sample median is the n+1

2 th number. If n is an even number, the median
is the average of the n

2 th and the (n2 + 1)th number (Casella and Berger,
2002, p.226).

Definition 12 (Covariance). The covariance, Cov(X,Y ), between two ran-
dom variables X and Y is defined as (Casella and Berger, 2002, p.169)

Cov(X,Y ) = E[(X − µX)(Y − µY )].

Lemma 1 (Covariance).

Cov(X,Y ) = Cov(Y,X).

Proof of Lemma 1.

Cov(X,Y ) =E[(X − µX)(Y − µY )]

=E[XY −XµY − µXY + µXµY ]

=E[Y X − Y µX − µYX + µY µX ]

=Cov(Y,X).
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Definition 13 (Quantile). A quantile, q(p), of a sample is a value for which
a specified fraction, p, of the data values is less than or equal to q(p) (Walpole
et al., 2002, p.204).

Definition 14 (Interquartile Range (IQR)). The interquartile range, IQR,
is defined as (Martinez and Martinez, 2002, p.71)

IQR = q(0.75)− q(0.25),

where q(p) is the quantile defined in Definition 13.

Definition 15 (Conditional Probability). If A and B are events in the
sample space S, and P (B) > 0, then the conditional probability of A given
B is (Casella and Berger, 2002, p.20)

P (A|B) =
P (A ∩B)
P (B)

.

Definition 16 (Moments). The kth moment of the random variable X, µ′k,
is (Casella and Berger, 2002, p.59)

µ′k = EXk.

The kth central moment of the random variable X, µk, is

µk = E(X − µX)k.

Definition 17 (Sample Moments). If X1, X2, . . . , Xn is a random sample,
the kth sample moment, mk is (Casella and Berger, 2002, p.312)

mk =
1
n

n∑
i=1

Xk
i .

2.3.2 Multivariate Statistics

In this thesis, the multivariate random variable X is defined to be an n× 1
vector of real numbers.

Definition 18 (Mean Vector). If the p random variables X1, X2, . . . , Xp of
the p× 1 random vector X have means µX1 , µX2 , . . . , µXp, respectively, then
the mean vector, µX, of X is the p× 1 vector (Johnson and Wichern, 2002,
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p.70)

µX = EX =


EX1

EX2

...
EXp

 =


µX1

µX2

...
µXp

 .

The sample mean vector, X̄, of a random sample X1,X2, . . . ,Xn, where
each Xi, i = 1, 2, . . . , n, is a p× 1 vector, Xi = [Xi1Xi2 . . . Xip] is the p× 1
vector

X̄ =


X̄1

X̄2

...
X̄p

 ,

where X̄i is the univariate sample mean defined in Equation 2.3.1 (Johnson
and Wichern, 2002, p.122).

Definition 19 (Covariance Matrix). The covariance matrix, Σ, of a p× 1
random vector X is the p× p matrix

Σ = Cov(X) =


σ11 σ12 . . . σ1p

σ21 σ22 . . . σ2p

...
...

. . .
...

σp1 σp2 . . . σpp

 ,

where the entry [σij ] is the covariance Cov(Xi, Xj) between the random vari-
ables Xi and Xj as defined in Definition 12 (Johnson and Wichern, 2002,
p.70).

Note that Σ is a real, symmetric matrix. All its entries are real, and
σij = σji since Cov(X,Y ) = Cov(Y,X) (see Lemma 1).

The sample covariance matrix, S, of a random sample X1,X2, . . . ,Xn,
is the p× p matrix with entries [sij ], where

sij =
1
n

n∑
k=1

(Xki − X̄i)(Xkj − X̄j).
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A note on notation

In univariate statistics, the most common way to denote the variance is by
σ2. In multivariate statistics, the entries of the covariance matrix, Σ, are
commonly denoted σij .

Theorem 5 (Variance of Linear Combinations). If a is a p × 1 vector of
real numbers, and X is a p × 1 vector of random variables with covariance
matrix Σ, then the linear combination a′X = a1X1 + a2X2 + · · ·+ apXp has
variance

V ar(a′X) = a′Σa.

For proof of Theorem 5, see Johnson and Wichern (2002, p.76).

2.4 Filtering

Often the first step in image analysis is to filter the image. There exists
an unlimited number of filters, and the choice of filter must reflect the next
step in the analysis of the image. The similarity between almost all image
filters is that they try to remove noise while preserving the original image.
Noise in an image does not have one precise definition. When recording the
reality, the image is never an exact copy, and the difference between the
image and the reality can be thought of as noise. Often this will be pixels
having a different value than the neighboring pixels, where the value cannot
be explained by the object in the image itself. Another way to define noise
is to say that noise is all the unwanted or unnecessary information in the
image. In that case, a hair in an image of a skin lesion can be regarded as
noise. This thesis will stick to the first definition of noise, which is the most
intuitive and general definition.

2.4.1 Noise Removing Filters

Schmid (1999c) gives in his thesis an extensive introduction to noise-removing
image filters. The Gaussian filter used by Magliogannis et al. (2006) and
Xu et al. (1999) fulfills the noise removal, but fails on the edge preserving,
which is important when it comes to segmentation (Schmid, 1999c, p.9-10).
The Wiener filter has the same disadvantage of over-smoothing the image.
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Several different Wiener filters were tried, but the edge-preserving capabil-
ities were too poor. A morphological filter has the great disadvantage of
not respecting the natural shape of the objects in the image. The result of
morphological filtering is highly dependent on the shape of the structuring
element compared to the shape of the objects in the image, and is therefore
not suited if prior knowledge is missing (Schmid, 1999c, p.13). A simple
and popular filter is the median filter, used in its original form in Zagrouba
and Barhoumi (2004), Zagrouba and Barhoumi (2005), Magliogannis (2003)
and Zhang et al. (2000), as pseudo-median filter in Hance et al. (1996), or
as multi-stage median filter in Lee (2001).

Median filter

A median filter is, as the name suggests, based on finding the median of a
set of numbers. As most noise-removing filters, median filters are low-pass
filters. A low-pass filter is a filter that passes low-frequency signals, but
reduces the amplitude of signals with high frequency. The median filter
replaces the current pixel by the median of the neighboring pixels, including
the current pixel. The neighborhood can be of any size and shape, but for
noise removing it will normally be a square or a disk. As always, a correct
choice of parameters is important, in this case the size and the shape of
the neighborhood. If the neighborhood is too big, even a median filter will
smoothen the edges; a neighborhood too small will not remove enough noise.
Objects that are smaller than the neighborhood can be totally removed when
using a median filter (Schmid, 1999c, p.10). The median filter is computer
intensive, and has therefore been replaced by the pseudomedian filter in
Hance et al. (1996). The problem with the pseudomedian filter is that it can
introduce line artifacts and generally gives a poorer result than the median
filter (Schmid, 1999c, p.10). The multi-stage median filter has even better
edge-preserving capabilities than the median filter (Lee, 2001, p.44), but is
more computer intensive. Schmid (1999c, p.15–37) introduces a filter based
on nonlinear isotropic diffusion, that performs better on the edge-preserving
than the median filter, but is again more computer intensive. His conclusion
is that the median filter has very good denoising capabilities and is sufficient
in most cases (Schmid, 1999c, p.87), and uses it himself in Schmid (1999a).

Celebi et al. (2007) use a median filter to smooth the images before bor-
der detection, but with a big enough neighborhood to smooth out artifacts
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such as hair and air bubbles. This method for removing hair fails when the
hairs are too thick or they appear in clusters, so they use the DullRazor-
algorithm (see Section 4.2 for details) when the filtering does not give the
wanted result.

2.5 Presentation of Images

All images presented in this thesis are digital images. In a digital image,
each pixel is associated with a scalar number or vector. These values can be
represented to the human eye in different ways. Normally one will choose
the presentation that lies closest to the common understanding of what an
object looks like in the real world. Therefore, all three-layer color images
are represented normalized; Image = Image/maximum(Image).

The pre-processing (see Chapter 3) starts with a 2400 × 3276 × 3 pixel
image and returns a 1600× 1600× 3 pixel image with a black mask super-
imposed. The mask has a disk-shaped opening with a radius of 800 pixels.
Although the image is not cropped to its final size before the removal of
artifacts is finished, the images presented in the thesis all have the size of
1600 × 1600 pixels with a 5 pixel wide frame, unless otherwise mentioned.
The only pixels relevant for final segmentation are these pixels. The pixels
used for intermediate calculations are therefore not shown.

2.5.1 Presentation of Grayscale Images

The two images shown in Figure 2.1, are both presentations of the same
intensity- or grayscale-image (one-layer image), but they are displayed in
two different ways. The reason for displaying a grayscale image in color is
that when an image is displayed in shades of gray, the intensity differences
might be difficult to perceive for the human eye. By displaying intensity
images in colors from dark blue (lowest value) to dark red (highest value),
the differences in intensity are clearer. When necessary, a colorbar (as seen
in Figure 2.1(b)), showing the pixel values of the various colors, is displayed
next to the image. Note that this colorbar is unique for each image. The
disadvantage of displaying intensity images in color is that the observer can
get a false impression of discontinuous jumps. In Figure 2.1(b) it might
seem like there are four levels (blue, green, yellow and red) that are quite
separated. In fact, the transition between red and yellow is just as smooth
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as the one between darker red and lighter red. Displaying intensity images
in color is merely done to facilitate the apprehension; the pixel values remain
unchanged.

(a) (b)

Figure 2.1: The same 2000× 2000 pixel grayscale image in (a) gray presen-
tation (b) color presentation.

2.6 Gray Conversion

A truecolor, RGB, image is an n×m×3 pixel array. The layers of the image
represent the color red, green and blue, respectively. For several purposes,
it might be necessary to reduce the three-layer array to a one-layer matrix.
When this is done, we get a grayscale image. There are various methods
that can be applied for an RGB-to-grayscale conversion. Depending on the
purpose of the conversion, one method might be better suited than another.

Two methods for gray conversion are introduced here. The first and
simplest one is a linear transformation with fixed weights. The pixel values in
the resulting grayscale matrix is a weighted sum of the three corresponding
pixel values in the truecolor array. The second method is also a linear
transformation, but the weights in the sum is individually computed for
each image.
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2.6.1 RGB-to-luminance

To transform an RGB image to a grayscale image representing the luminance
of the original image, a linear transformation is used. The transformation
used is derived from the NTSC-standard. The NTSC (National Television
System Committee) is a standard used for analog television signals. The
RGB color image is transformed to the NTSC image YIQ by the following
operation (Burdick, 1997, p.33)YI

Q

 =

0.299 0.587 0.114
0.596 −0.274 −0.322
0.211 −0.523 0.312


RG
B

 . (2.6.1)

The Y component represents the luminance, the I component represents
the hue (hue is approximately proportional to the average wavelength of a
color), and the Q component represents the saturation (saturation measures
the amount of white in a color). The Y component is the grayscale signal
used to display images in a monochrome (black and white) TV. The RGB-to-
luminance transformation uses the weights from the Y component to convert
an RGB image to a grayscale image. The following linear combination is
used (MathWorks)

grayscale = 0.2989 ·R+ 0.5870 ·G+ 0.1140 ·B,

where R, G and B represents the three layers in the color image.

2.6.2 Principal Component Transform

Principal component transformation (PCT) (also referred to as Karhunen-
Loéve transformation or Hotelling transformation) is a transformation used
to analyze, and possibly reduce the dimension of, multi-dimensional data
sets (Johnson and Wichern, 2002, p.426). In the case of image analysis
the data set has three dimensions (the three layers of the color image array)
that should be reduced to a one-dimensional data set (grayscale image). The
pixel values are regarded as samples from an unknown probability distribu-
tion. The PCT-method seeks to maximize the proportion of total population
variance explained (see Definition 21) by the new lower-dimensional data
set.
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The PCT-method is an orthogonal linear transformation that transforms
the data set into a new coordinate system. This is done in such a manner
that the greatest variance lies in the direction of the first axis, the second
greatest variance lies in the direction of the second axis, and so on. The new
axes are mutually orthogonal, meaning that the new data sets (vectors) are
mutually independent.

If a data set consists of n measurements on p variables, and the number
of variables should be reduced to k < p, principal component transformation
might be used. Principal components are linear combinations of the vectors
x1,x2, . . . ,xp, all with the same length n. From p vectors, p principal
components are calculated. The new lower-dimensional data set will consist
of only one or some of the principal components.

Definition 20 (Principal Component). If X is a p× n matrix and ai is a
p×1 vector, where a′iai = 1, i = 1, 2, . . . , p, then the ith principal component
yi is the linear combination a′iX that maximizes the variance

V ar(a′iX), and meets the requirement (2.6.2)

Cov(a′iX,a
′
kX) = 0, for k < i (2.6.3)

(Johnson and Wichern, 2002, p.427).

Theorem 6 (Principal Component). Let the p vectors x1,x2, . . . ,xp, all
with the same length n, represent a data set of n measurements on p vari-
ables. Let the p vectors x′1,x

′
2, . . . ,x

′
p be the rows in a p× n matrix X. Let

Σ be the covariance matrix corresponding to the n × p matrix X′. Let the
eigenvalue-eigenvector pairs of Σ, (λ1, e1), (λ2, e2), . . . , (λp, ep), be ordered
such that λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0, and normalized such that e′iei = 1, i =
1, 2, . . . , p. Then the ith principal component yi is given by

yi = e′iX, i = 1, 2, . . . , p. (2.6.4)

Lemma 2 (Maximization). If a is a p×1 vector and Σ is a p×p positive def-
inite matrix with eigenvalue-eigenvector pairs (λ1, e1), (λ2, e2), . . . , (λp, ep)
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where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0, then

max
a6=0

a′Σa
a′a

=λ1, attained when a = e1, and (2.6.5)

max
a⊥e1,e2,...,ek

a′Σa
a′a

=λk+1, attained when a = ek+1, k = 1, 2, . . . , p− 1.

(2.6.6)

For proof of Lemma 2, see Johnson and Wichern (2002, p.81).

Proof of Theorem 6. Since the covariance matrix Σ is real and symmetric it
has real eigenvalues according to Theorem 3. It must then be positive defi-
nite according to Theorem 4. Theorem 2 shows that Σ has an orthonormal
set of p eigenvalues. So, e′iei = 1, for i = 1, 2, . . . , p and ei ⊥ ej, for i 6= j.
By using Equation 2.6.5 it follows that

λ1 =
e′1Σe1

e′1e1
= e′1Σe1 = V ar(e1X).

From Theorem 5 we get that V ar(e1X) = e′1Σe1. Similarly, by using
Equation 2.6.6 it follows that

λk+1 =
e′k+1Σek+1

e′k+1ek+1
= e′k+1Σek+1 = V ar(ek+1X), k = 1, 2, . . . , p− 1.

The eigenvalues maximizes the variance for each i = 1, 2, . . . , p, so the max-
imization of Equation 2.6.2 holds. It remains to prove that Equation 2.6.3
also holds. Since Σ is a symmetric matrix, we have p orthonormal eigenvec-
tors. Therefore e′iek = 0, for i 6= k and

Cov(yi,yk) = Cov(e′iX, e
′
kX) = e′iCov(X,X)ek = eiCov(X)ek

= e′iΣek = e′iλkek = λke′iek = 0

Definition 21 (Total Population Variance). The total population variance
is defined as the sum of the diagonal elements in the covariance matrix Σ

(Johnson and Wichern, 2002, p.429)

Total population variance = σ11 + σ22 + · · ·+ σpp = tr(Σ).
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Theorem 7.

tr(Σ) = λ1 + λ2 + · · ·+ λp.

For proof of Theorem 7, see Nicholson (1995, p.309).

Lemma 3 (Total Variance Explained). From Theorem 7 it immediately
follows that the proportion of total variance explained by the ith principal
component is

λi
λ1 + λ2 + · · ·+ λp

, i = 1, 2, . . . , p.

2.6.3 Application

Figure 2.2 shows an RGB color image of a skin lesion. When the PCT-

Figure 2.2: Three-layer color image.

method is applied on this image, the three separate grayscale images in
Figure 2.3 are produced.

The graph in Figure 2.4 shows the proportion of variance explained by
the first, second and third principal component. The proportion of variance
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(a) (b) (c)

Figure 2.3: Principal components. (a) First. (b) Second. (c) Third.

Figure 2.4: Proportion of total variance explained by the three principal
components, respectively.
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explained by the first principal component is more than 95%, so there are
good reasons to use this as a grayscale image for further analysis. The
grayscale image produced by using the RGB-to-luminance transformation
(see Figure 2.5(b)), is noticeably different from the first principal component
image. PCT is a common data reduction method for image analysis in the

(a) (b)

Figure 2.5: Grayscale image based on (a) principal component transform
(b) RGB-to-luminance transform.

purpose of image segmentation (Fleming et al., 1998; Hance et al., 1996;
Schmid-Saugeon et al., 2003; Zagrouba and Barhoumi, 2004, 2005). It is also
worth noting that the last principal component contains most of the image
noise, and by removing it has a positive effect on the segmentation (Schmid,
1999c, p.55).

2.7 Binary Images

While both the truecolor images and the grayscale images have pixel values
from a certain range (depending on the data class), a binary image consists
of pixels with value 0 or 1. When a binary image is made from a grayscale
image, a threshold value is set. All pixels with value below the threshold
will be set to 0, while the rest will be set to 1. The threshold value can
be decided from a number of criteria, according to what the binary image
is meant to represent. The simplest is to choose a fixed threshold. If this
cannot be done, an automatic selection of threshold value must be used.
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2.7.1 Otsu’s Method

Nobuyuki Otsu developed this method in 1979 (Otsu, 1979):

The pixels of a grayscale image is represented by L gray levels. The
number of pixels at level i is denoted by ni. The gray-level histogram is
normalized and regarded as a probability distribution where

pi = ni/N, pi ≥ 0,
L∑
i=1

pi = 1,

where N is the total number of pixels. The pixels are put in one of two
classes, C0 or C1. The task is to find the optimal threshold value k∗. All
pixels with value below this threshold will be put in class C0, the rest in C1.
The probability of class occurrence is

ω0 = P (C0) =
k∑
i=1

pi = ω(k),

ω1 = P (C1) =
L∑

i=k+1

pi = 1− ω(k).

The probabilities sum up to 1 (as they should):

ω0 + ω1 =
k∑
i=1

pi +
L∑

i=k+1

pi =
L∑
i=1

pi = 1.

The total mean and class means are, respectively

µT =
L∑
i=1

ipi,

µ0 =
k∑
i=1

P (i|C0) =
k∑
i=1

ipi/ω0 = µ(k)/ω(k),

µ1 =
L∑

i=k+1

P (i|C1) =
L∑

i=k+1

ipi/ω1 =
µT − µ(k)
1− ω(k)

,

where

ω(k) =
k∑
i=1

pi and µ(k) =
k∑
i=1

ipi.
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The relation between total mean and class means is

ω0µ0 + ω1µ1 = µT ,

since

ω0µ0 + ω1µ1 = ω0

k∑
i=1

ipi/ω0 + ω1

L∑
i=k+1

ipi/ω1

=
k∑
i=1

ipi +
L∑

i=k+1

ipi =
L∑
i=1

ipi = µT .

The total variance and the class variances are, respectively

σ2
T =

L∑
i=1

(i− µT )2pi,

σ2
0 =

k∑
i=1

(i− µ0)2P (i|C0) =
k∑
i=1

(i− µ0)2piω0,

σ2
1 =

L∑
i=k+1

(i− µ1)2P (i|C1) =
L∑

i=k+1

(i− µ1)2piω1.

The within-class variance and between-class variance (also referred to as
intra- and inter-class variance) are, respectively

σ2
W =ω0σ

2
0 + ω1σ

2
1,

σ2
B =ω0(µ0 − µT )2 + ω1(µ1 − µT )2 = ω0 ω1(µ1 − µ0)2. (2.7.1)
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The right equal-sign in Equation 2.7.1 follows from

σ2
B =ω0(µ2

0 − 2µ0µT + µ2
T ) + ω1(µ2

1 − 2µ1µT + µ2
T )

=ω0µ
2
0 − 2ω0µ0µT + ω0µ

2
T + ω1µ

2
1 − 2ω1µ1µT + ω1µ

2
T

= (ω0 + ω1)(ω0µ0 + ω1µ1)2 + ω0µ
2
0 + ω1µ

2
1

− 2ω0µ0(ω0µ0 + ω1µ1)− 2ω1µ1(ω0µ0 + ω1µ1)
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Theorem 8 (Relation between variances). The relation between within- and
between-class variance, and total variance is

σ2
W + σ2

B = σ2
T . (2.7.2)
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Proof of Theorem 8.
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For measuring how good the estimator fits the parameter, Otsu intro-
duces three criteria from discriminant analysis;

λ = σ2
B/σ

2
W , κ = σ2

T /σ
2
W , η = σ2

B/σ
2
T .

Because of Theorem 8, maximizing one of the discriminant criteria is equiva-
lent to maximizing another. The criterion η is chosen for convenience. Since
σ2
T is independent of the threshold level k, it is enough to maximize σ2

B to
find the optimal threshold value k∗.

Let σ2
B(k) be the between-variance for threshold value k. From (2.7.1)

we get

σ2
B(k) =ω0ω1(µ1 − µ0)2 = ω(k)[1− ω(k)]

[µT − µ(k)
1− ω(k)

− µ(k)
ω(k)

]2
=ω(k)[1− ω(k)]

[ω(k)[µT − µ(k)]− µ(k)[1− ω(k)]
ω(k)[1− ω(k)]

]2
=

[ω(k)µT − µ(k)]2

ω(k)[1− ω(k)]
.

From 2.7.1 we see that σ2
B takes the minimum value of zero for ω(k) = 1 or

ω(k) = 0. These cases occurs when all pixels are either of class C0 or C1.
For 0 < ω(k) < 1 the value is positive and bounded, and the maximum is
guaranteed to exist.

The value η(k∗) has one very interesting interpretation. It can be used as
a measure for the separability of classes or the bimodality of the histogram.
It is uniquely determined within the range 0 ≤ η(k∗) ≤ 1.

Calculating η(k∗) for the grayscale images in the training sample showed
no concurrence between η(k∗) and the visually inspected bimodality of the
histogram.

2.8 Morphological Operations

Morphological operations are widely used in image analysis (Ganster et al.,
2001; Hance et al., 1996; Rajab et al., 2004; Schmid, 1999b; Lee et al., 1997;
Gómez et al., 2008). As mentioned in Section 2.4.1, a morphological filter
can be used for noise-removing. It is not recommended without any previous



2.8 Morphological Operations 29

knowledge of the image, since morphological filters are very shape sensitive.
If prior knowledge of the objects of interest is available, morphological oper-
ations can be used to remove, smooth out or intensify certain objects present
in the image.

Morphological operations are transformations that replace a pixel value
with a new one on the basis of the values of the neighboring pixels. De-
pending on the size and shape of the neighborhood, the transformation is
sensitive to certain objects in the image. The neighborhood is called a struc-
turing element. The structuring element might be of any size and shape.
The current pixel will always be the center pixel of the structuring element.
This means that if the structuring element is a 7 × 1 vector, the current
pixel will be the fourth pixel in the vector. If the structuring element is a
3× 3 square, the current pixel will be the middle pixel.

2.8.1 Dilation and Erosion

There are two fundamental morphological operations; dilation and erosion.
In a binary image, dilation adds pixels to the boundaries of an object, while
erosion removes pixels from the boundaries. In a grayscale image, dilation
sets the new pixel value to the maximum of the pixels in the neighborhood,
while erosion sets the new pixel value to the minimum of the pixels in the
neighborhood (Burdick, 1997, p.155-158). Say you have a binary image like
the one in Figure 2.6(a). The image is dilated with a 3× 3 pixel square, the
result will be the image in Figure 2.6(c). Every pixel of value 1 from the
old image is now surrounded by 8 pixels of value 1. Figure 2.6(d) shows the
dilated image eroded with the same 3× 3 structuring element. Every pixel
that is not surrounded by 8 white pixels is removed.

2.8.2 Opening and Closing

Two important complex morphological operations are opening and closing,
which both are combinations of dilation and erosion. Morphological opening
is performed when, for example, removal of small unwanted objects or pieces
of objects is wanted. A structuring element is created. The structuring
element must be large enough to contain the unwanted objects. First, the
image is eroded, and the unwanted objects are removed. But, the boundaries
of larger or different shaped wanted objects are also removed. To restore
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(a) (b)

(c) (d)

Figure 2.6: (a) Original binary image. (b) After dilation, new pixels of value
1 colored gray. (c) After dilation, all pixels of value 1 colored white. (d)
After erosion.
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the original size and shape of the wanted objects a dilation with the same
structuring element is performed. This dilation does not restore the removed
objects (Burdick, 1997, p.160-162).

Morphological closing can for example fill small holes within an object
or connect two objects that are located close to each other. The structuring
element must in this case be larger than the holes or the distance between
the objects that are to be connected. The image is first dilated and then
eroded with the same structuring element. The image in Figure 2.6(d) is
the image in Figure 2.6(a) closed with a 3× 3 structuring element.

2.9 Mapping

Mapping of a matrix or array in this context is used for describing the trans-
formation of pixel destinations from the original image to a transformed im-
age. There are two directions of transformation; forward transformation and
inverse transformation. In forward transformation, each pixel in the original
image is given a new location in the transformed image. This can, depending
on the transformation, lead to holes in the transformed image; there might
be pixels in the transformed image that are not given any value. This prob-
lem can be solved by using inverse transformation. In this case, each pixel in
the transformed image is given a value according to the transformation and
the pixel values in the original image. Most transformations lead to loca-
tions falling between pixels. These locations are called sub-locations. There
are several methods for choosing the most appropriate locations based on
the sub-locations. Among the most common methods are nearest neighbor
and bilinear interpolation.

2.9.1 Rotation

The rotation of an image is a mapping. The pixel values in the rotated
image are results of the pixel values in the original image. When rotating
about the center of the image, the inverse rotation transformation leads to
the following pixel sub-locations (Burdick, 1997, p.137):

i = ir cos(α)− jr sin(α) + ci(1− cos(α)) + cj sin(α),

j = ir sin(α) + jr cos(α)− ci sin(α) + cj(1− cos(α)),
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where

(i, j) is the location in the original image,

(ir, jr) is the sub-location for the rotated image,

(ci, cj) is the location of the center of the image and

α is the angle of rotation.

The decimal numbers i and j must be converted into integers that can refer
to a location in the original image. One way of doing this is by a method
called nearest neighbor. This is a very simple and intuitive method. The
decimal numbers i and j are simply rounded up or down to their nearest
neighbor, and the value of pixel (ir, jr) in the rotated image will be that
of the pixel in the original image closest to (i, j). Nearest neighbor is fast
compared to bilinear interpolation and only pixel values already present in
the original image are allowed in the rotated image.

When using bilinear interpolation, the value of the pixels in the trans-
formed image will be weighted sums of the values of the four pixels in the
original image surrounding the sub-location. The weight of each value de-
pends on the distance from the sub-location to the pixel, and the angle
between them (Burdick, 1997, p.135).

2.10 Connectivity

When analyzing a binary image, the various aspects of the different pixel
clusters or objects, are investigated. An object is normally defined as a
cluster of white pixels. To decide whether two pixels belong to the same
object or not, the connectivity has to be defined. Normally when speaking
of connectivity, it is the two connectivities 4-connection and 8-connection,
that are referred to. If 4-connection is used, it means that two pixels belong
to the same object if they are connected on one of the four sides; above,
below, to the right or to the left. The 8-connection allows pixels to be
connected in the diagonal directions as well (Burdick, 1997, p.154-155).

In Figure 2.7 there are 6 or 4 objects, counting using 4-connection or
8-connection, respectively. With 4-connection, the four pixels at the right of
the image will be regarded as four different objects, while using 8-connection
the same four pixels are regarded as two objects. Throughout the thesis,
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8-connection will be used for connectivity, if otherwise is not specified.

Figure 2.7: Illustrating connectivity.



34 Mathematics, Statistics and Image Processing



Chapter 3

Pre-processing

Before the segmentation algorithm can be applied, a rather extensive pre-
processing is needed. All parameters are chosen empirically based on the
training sample of 68 images. All images used to exemplify the pre-processing,
the removal of artifacts and the segmentation algorithm are taken from the
training sample.

3.1 Masking

All the images contains a dark surrounding and a disk-shaped illuminated
center, as shown in Figure 3.1. It is the illuminated center that is of inter-
est. The surrounding is not entirely black, so to discriminate between the
surrounding and the disk, a black mask with a disk-shaped hole is imposed
on the image. At the same time, the image is cropped to a square, as in
Figure 3.2. The mask covers the entire dark area plus the outer, darkest,
illuminated area. This means that not the whole image is taken into con-
sideration, but the masking is necessary to avoid false segmentation. With
no black mask, the segmentation algorithm will just distinguish between the
dark and the light area, and the lesion will remain undetected. The radius
should be as large as possible, to be sure to include the whole lesion, but
small enough to leave out the darkest areas. The optimal radius was found
to be 800 pixels. It can be seen in Figure 3.7 that after 800 pixels distance
from the center of the image, the luminance decays rapidly, and the qual-
ity is therefore poor. Unfortunately, the illuminated disk is not necessarily
centered, but this is dealt with in Section 3.4.1.

35
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Figure 3.1: Illuminated center and near-black surround (2400×3276 pixels).

Figure 3.2: The image with a superimposed black mask.
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3.2 Filtering

For noise-removing, a median filter was used. The neighborhood was selected
to be a 5 × 5 pixel square. This is a very small neighborhood compared
to the size of the images, which are at the end 1600 × 1600 pixels. In
comparison uses Schmid (1999a) a 9×9 pixel neighborhood on his 480×480
pixel images. As pointed out by Hance et al. (1996), the median filter is
computer intensive. With modern computers, this is no longer a crucial
issue for images of this size. By applying the median filter to the 8 bit pixel
arrays, before they are converted into double, filtering the three color layers
takes 7-8 seconds (mean time for training sample). For 16 bit pixel arrays,
the mean running time is 12 seconds. Compared to the overall running
time for the whole segmentation program (about 6 minutes), this is fully
acceptable.

The purpose of the filtering is to remove noise while preserving image
details. The mean absolute differences for the images in the training set
before and after filtering lie between 0.27 and 0.71 for the red band, between
0.14 and 0.49 for the green band, and between 0.20 and 0.70 for the blue
band. The maximum absolute differences lie between 9 and 127 for the red
band, between 6 and 49 for the green band, and between 7 and 95 for the
blue band in the training-set images. This is larger differences than reported
by Lee (2001, p.47), using a multi-stage median filter.

3.3 Color Representation

The images are so-called truecolor images, meaning that the three layers
of the image represents the three basic colors; red, green and blue. The
color standard used is sRGB, which is a standard RGB color space. D65
is used as white point. The RGB color space is not uniform, as opposed
to for example L*u*v*. Selecting the color space is one of the first crucial
choices to be made. Every color space has its advantages and disadvantages.
Schmid (1999c, p.167) shows in his thesis that the RGB space gives higher
proportion of total variance explained by the two first principal components
(see Section 2.6.2) than L*u*v*. The principal component transformation
also creates a color space, if all three components are used. This is an image-
dependent color space, as opposed to RGB, L*u*v* and most other color
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spaces.

3.3.1 Gray-conversion

For the image analysis, the 3-D color image is converted to a grayscale image
using principal component transformation (see Section 2.6.2). This method
minimizes the proportion of total variance unexplained when the new 2-D
image is a result of a weighted sum of the three color layers, where the
weights are computed individually for each image. Proportion of total vari-
ance explained lies typically above 0.80 (61, 90%). The smallest proportion
of variance explained in the training set was 0.70. It is the images with light
lesions that have the lowest proportion of total variance explained by the
first principal component. Gómez et al. (2008) point out that the direction
of the principal components is influenced under the presence of hair. In this
thesis, the PCT-method is used for gray-conversion after the hairs have been
removed.

When it comes to analyzing the luminance of the image, a weighted sum
of the three layers with fixed weights is used.

When converting a three-layer color image to a one-layer grayscale image
by the PCT-method, only the pixels that will be used in further analysis are
taken into consideration when deciding the weights. Therefore the pixels
belonging to the black surround will not be used in the principal component
transform. Including the near-black pixels in the surround will result in a
lower proportion of total variance explained by the first principal component.

3.4 Illumination

A great challenge for the segmentation is the non-uniform and non-central
illumination. The image is brighter near the center and darker near the
edges, but unfortunately the strongest illuminated area of the image is not
necessarily at the center of the image, and it does not have the same location
from image to image. This is due to the angle between the dermoscope and
the skin. When the dermoscope is not held perpendicular to the skin, the
strongest illuminated area of the image will not be at the center of the
image. Non-perpendicular angle between dermoscope and skin also results
in non-circular illumination. Left unattended, the non-uniform illumination
results in unsatisfying lesion-segmentation. When the lesion is light brown,
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the segmentation algorithm fails to recognize it, since it is no darker than
the poorest illuminated areas of skin.

3.4.1 Centering the Illuminated Disk

The illuminated disk, as seen in Figure 3.1, is not necessarily situated at
the center of the 2460× 3276 pixel image. The disk is not off-centered more
than approximately 40 to 100 pixels in each direction, but for a correct
analysis of the luminance, centering the disk is necessary. This is done by
first cutting a 2400×2400 pixel square from the center of the original image.
This new square image contains the entire illuminated disk. The RGB image
is converted to a grayscale image using the RGB-to-luminance transform.
The 0.5-quantile of the grayscale image is calculated. The grayscale image
is converted into a binary image, using the 0.5-quantile as threshold. This
quantile is chosen on the basis of the 68 images in the training sample.
For all images, this quantile finds the entire disk. The binary image shows
the illuminated disk as 1’s and the dark surroundings as 0’s, as seen in
Figure 3.3(a). The largest object in the image is found (the disk), and all

(a) (b)

Figure 3.3: (a) Off-centered illuminated disk in a 2400× 2400 pixel square.
(b) The new 2000× 2000 matrix with centered illuminated disk.

other objects are removed (noise). The center of the square made up by the
leftmost, rightmost, uppermost and lowermost pixel of value 1 is found. The
present 2400× 2400 pixel image is cropped. The new image is 2000× 2000
pixels of size, and the center coincides with the center found in the binary
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image, as seen Figure 3.3(b). This new image contains the entire illuminated
disk.

3.4.2 Center of Illumination

The brightest illuminated area of each image must be found. The brightest
illuminated area may fall on skin or on the lesion. In the latter case, the
brightest illumination will not lead to the brightest spot on the image. The
2000× 2000 pixel color image is converted into a grayscale image using the
RGB-to-luminance transform, and the 0.75-quantile is calculated. Then a
binary image with the 0.75-quantile as a threshold is created. The 0.75-
quantile is chosen on the basis of the 68 images from the training sample. A
lower quantile will result in more images where the entire lesion is not cov-
ered, a higher quantile will result in more images where the outer boundary
of the illuminated disk is reached. For the training sample, the 0.75-quantile
covered the entire lesion, but did not reach the borders of the illuminated
disk in 57 (84 %) of the images. A morphological opening operation with a
5× 5 square as structuring element is applied to the binary image to avoid
outlying pixels of value 1. The center of the square made up by the leftmost,
rightmost, uppermost and lowermost pixel of value 1 is found. This will, in

(a) (b)

Figure 3.4: Binary image with the 0.75-quantile as threshold (a) surrounding
the lesion (b) not surrounding the lesion (2000× 2000 pixels).

most cases, be close to the center of illumination. Even in the few cases
where this method fails to find the approximate center of illumination, it
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does more good than damage and will in any case help significantly with
the segmentation. As seen in Figure 3.4(a) the 0.75-quantile covers an area
big enough to contain the whole lesion, but small enough not to exceed the
borders of the illuminated disk. If the lesion is very big, situated near the
boundaries of the disk, or the dermoscope is very tilted, the area defined
by the 0.75-quantile may not contain the whole lesion, or it may exceed the
borders of the illuminated disk, as seen in Figure 3.4(b).

Although the center of illumination may not be correct in the case of
Figure 3.4(b), and the chosen correction matrix may not be the optimal one,
illumination correction results in a great improvement for segmentation, as
seen in Figure 3.12. When the center of illumination has been found, a
1700 × 1700 pixel square image is cut from the center of the 2000 × 2000
pixel image, independently of the center of illumination. The reason that
the center of illumination is calculated from the 2000× 2000 pixel image, is
in case the 0.75-quantile exceeds the 850-pixel radius disk. In that case, the
center of illumination would not have been found with only the 1700× 1700
square.

3.4.3 Illumination Correction Matrix

To correct the non-uniform illumination, an illumination correcting matrix
has been made. This matrix is made on the basis of one of the images with
near-central illumination and homogeneous skin color, as seen in Figure 3.5.

First the RGB image is converted into a grayscale image using the RGB-
to-luminance transform. Then the center of illumination is found, using the
same methods as in Section 3.4.2. A 2000 × 2000 pixel matrix with center
coinciding with the center of illumination is cropped from the original image.
This is the matrix seen in Figure 3.6(a). The central disk of radius r = 1000
is then used to create a new grayscale image, but now the conversion is done
by principal component transformation, as seen in Figure 3.6(b).

The illumination correction matrix is supposed to reverse the non -
homogeneous illumination effect. Based on the right part of Figure 3.6(b),
where there is only skin, a graph illustrating the mean illumination as a
function of distance from the center of the image is made, and can be seen
in Figure 3.7. The graph is made by calculating the mean value of all pix-
els in a certain distance from the center of the image. Near the center the
graph is very irregular, due to the small number of pixels in a short distance
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Figure 3.5: Small skin lesion surrounded by skin with homogeneous color
(2400× 2400 pixels).

(a) (b)

Figure 3.6: Grayscale image based on (a) RGB-to-luminance and (b) PCT
(2000× 2000 pixels).
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Figure 3.7: Mean illumination as a function of the distance from the center
of the image.

from the center. After about 200 pixels from the center of the image the
graph decays with an approximately constant value until it reaches about
800 pixels from the center. From here on and out it decays more rapidly.
All values from 1 to 200 are set to the mean of the values from 1 to 200.
The rest of the graph is smoothed with a 11 pixel long window. The graph
is then normalized, such that the values from 1 to 200 are set to 1, and then
the graph is reversed, as seen in Figure 3.8. The rapid decay from 800 pix-
els from the center and out is not wanted in the correction matrix, since it
represents the outer boundary of the illuminated disk. This outer boundary
will not be present in the 1600 × 1600 pixel images that is used for image
segmentation. A new graph is therefore made based on interpolation of the
existing graph. The interpolation polynomial in Newton form is used.

The new graph is based on three separate graphs. From 1 to 200 the value
is set to 1. From 201 to 700 the value is set to the newtonian interpolation
based on the values of x0 = 201, x1 = 400 and x2 = 700, yj = f(xj), j =
0, 1, 2. From 701 to 1000 the values are set to the newtonian interpolation
based on the values of x0 = 701, x1 = 750 and x2 = 800, yj = f(xj), j =
0, 1, 2. The resulting graph can be seen in Figure 3.8.

A 2000×2000 correction matrix is made based on the interpolated graph.
The value of each pixel at a certain distance from the center of the matrix,
equals the value at the same location on the interpolated graph, as seen in
Figure 3.9.

This matrix reverses the unwanted effect of non-central and non-uniform
illumination by preserving the values of the pixels in the brightest illu-
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Figure 3.8: Smoothed graph (blue) and interpolated graph(red).

Figure 3.9: The general correction matrix (2000× 2000 pixels).
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minated area, while increasing the pixel-values in the poorer illuminated
areas. When the center of illumination of an image has been found, the
image-adjusted correction matrix is made. The general correction matrix is
cropped to a 1700× 1700 matrix. The matrix is cropped so that the center
of illumination of the image coincides with the center of the disk of ones in
the correction matrix, as seen in Figure 3.10.

Figure 3.10: The correction matrix for the image in Figure 3.11 (1700×1700
pixels).

Figure 3.11 shows an image before and after scalar multiplication with
the correction matrix.

Figure 3.13 shows the segmentation of an image with a light brown lesion.
To the left the segmentation is done without any correction for non-uniform
illumination. To the right the same segmentation algorithm is applied to
the image after illumination-correction.
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(a) (b)

Figure 3.11: The image (a) before and (b) after scalar multiplication with
correction matrix.

(a) (b)

Figure 3.12: The image (a) before and (b) after scalar multiplication with
a possibly incorrect correction matrix.
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(a) (b)

Figure 3.13: Segmentation (a) without and (b) with illumination-correction.

Basing the correction matrix on only half an image may seem a little
optimistic, or unwise. While the other parameters in the pre-processing
are tuned on the basis of the various results of all the 68 images in the
training sample, the correction matrix is based on quite a small sample.
Making a different correction matrix, taking more images into consideration
was proposed. But, as the current correction matrix shows such satisfying
performance, the proposal was left unexplored. The points of interpolation
are parameters tuned according to all the 68 images.

The problem with non-circular illumination is left unattended, since the
present circular correction matrix is sufficient for the non-uniform illumina-
tion not to influence the segmentation.
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Chapter 4

Removal of Artifacts

All algorithms for segmentation of skin lesions need to pay extra attention
to the removal of artifacts, either in pre- or post-processing, or during the
segmentation itself. Artifacts are in this case, anything present in the image
that is not skin or lesion. This might be hairs, air bubbles, scales, or felt-pen
marks drawn on the skin by the patient or the physician. Among these, the
presence of hairs is the biggest obstacle for correct segmentation for most
algorithms. This is because the color of hairs in most cases is very close to
the color of the skin lesion. Left unattended, the hairs will be classified as
lesion and lead to incorrect segmentation.

Both the scale-removal and the hair-removal algorithms are based on
1700 × 1700 pixel images. The final segmentation algorithm uses a 1600 ×
1600 pixel image, but to be able to remove artifacts in contact with the
image boundary, that would otherwise be regarded as noise and not removed
because of their short length, it is necessary to use a slightly bigger image
for artifact removal.

In addition to hairs, the presence of scales and air bubbles may lead to
incorrect segmentation. The scales are removed in a separate scale remov-
ing algorithm, while the air bubbles usually do not affect the segmentation.
The presence of an air bubble changes the color of the skin/lesion under-
neath. But this color-change is not radical. The air bubbles are usually
quite small, and will therefore not affect the shape of the histogram used
in the segmentation algorithm. If the air-bubble covers a very large area of
the lesion, it might have an effect on the segmentation, but these images are
excluded from the study. If the air bubble has a very distinct edge, as seen

49



50 Removal of Artifacts

in Figure 4.1, the hair removing algorithm removes the edge because of its
dark color.

(a)

(b) (c)

Figure 4.1: (a) Air bubble with distinct borders. (b) The borders detected
by the hair-removing algorithm. (c) The borders replaced by skin-colored
pixel values.



4.1 Scales 51

4.1 Scales

Scales (also referred to as graduations or rulers) are the black lines printed
on the glass plate of the dermoscope to have easy access to a measurement
of the size of the lesion. The scales are clearly seen in the upper part of
Figure 4.2(a). For automatic segmentation and classification the scales have
no purpose since all the images are taken with the same magnification, and
have the same spatial resolution.

The scales and the hairs are different in several ways. The scales are often
darker than the hairs, they are shorter and they are straight. Therefore the
scales and the hairs are removed separately. First the scales are removed
(as seen in Figure 4.2) by the following algorithm:

• The three-layer image has to be reduced to a one-layer image. The
RGB-to-luminance transformation was chosen. The scales are so dark,
that the luminance is what differs the scale pixels the most from the
rest of the pixels in the image.

• The detection of scales is done separately for the vertical direction
and the horizontal direction. The scales are not situated at the same
place in every image, so to make sure they are detected, the image is
rotated 0, 30 and 60 degrees. The rotation is done by using inverse
transformation and nearest neighbor. Rotating three times proved to
be sufficient for the 68 images in the training sample. The resulting
images from the three rotations are combined at the end of the pro-
cedure. This means that if scale objects were found and replaced in
more than one rotation (this can happen when dark hairs are taken
to be scales), all objects in all rotations are replaced by skin-valued
pixels at the end.

• For each rotation, a binary image is created. The threshold level of
the binary image is set to 0.4. The fixed threshold value was obtained
empirically on the basis of the images in the training sample. A fixed
value can be chosen since the scales are always the same. The pixels
belonging to the inner disk with a 450 pixel radius are set to 1. The
scales are always situated outside this disk. The resulting image can
be seen Figure 4.2(b).
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If the scale objects are not detected on basis of the binary image with
0.4 as threshold level, a new binary image with 0.6 as threshold level
is created.

• Each black pixel in the binary image is investigated in the vertical
and horizontal direction. For the vertical direction, the procedure is
as follows: For each black pixel, the 10 pixels to the right and the 10
pixels to the left are checked. If there is one or more white pixels both
to the right and the left, this pixel is considered to possibly belong to a
scale. Then the 10 pixels above and the 10 pixels below are checked. If
all the pixels above or all the pixels below are black, the current pixel
is temporarily stored as a scale pixel. This way we find all the pixels
in the vertical direction belonging to an object that is thin enough
and long enough to be part of a scale. The code used in MatLab is as
follows:

if (sum(bw(i,t(j)-10:t(j))) > 0 & ...

... sum(bw(i,t(j):t(j)+10)) > 0)

if sum(bw(i-10:i,t(j)))==0 | sum(bw(i:i+10,t(j)))==0

bb_v(i,t(j)) = 1;

end

end

where bw is the binary image, i is the row number, t(j) is the column
address of the black pixel and bb_v is the matrix where possible scale
pixels in the vertical direction are stored. The same procedure is
followed to detect scales in the horizontal direction, only the direction
is changed:

if sum(bw(i-10:i,t(j))) > 0 & sum(bw(i:i+10,t(j))) > 0

if (sum(bw(i,t(j)-10:t(j)))==0 | ...

... sum(bw(i,t(j):t(j)+10))==0)

bb_h(i,t(j)) = 1;

end

end.

The result is two binary images, one for scales in the vertical direction,
and one for scales in the horizontal direction.
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• The objects are labeled, and those object not resembling scales are
removed. All objects smaller than 100 pixels or bigger than 900 pixels
are removed. All objects with eccentricity (see Noise-removal in
Section 4.2) smaller than 0.95 are removed. The remaining objects
might be the scales. It happens that dark hairs are taken for scales, and
therefore detected by this algorithm. To avoid this, one last criterion
remains. If the number of objects in the binary image after the removal
is less than 10, which is the minimum number of scales present in each
image, all objects are removed. The 10 objects also have to be situated
on the same half of the image. The result is seen in Figure 4.2(c).

• A morphological dilation operation with a 7× 7 pixel square as struc-
turing element is applied to the scale objects. The resulting pixels are
replaced by skin-colored or lesion-colored pixels, according to whether
the scale is located on the skin or in the lesion. Each scale pixel found
in the vertical direction is replaced by the value from linear interpola-
tion of the 10th non-scale pixel to the left and the 10th non-scale pixel
to the right. If the scales are found in the horizontal direction, the
pixels used for interpolation are the 10th non-scale pixel above and
the 10th non-scale-pixel below the current scale pixel. The image with
the scale pixels replaced can be seen in Figure 4.2(d).

The scale removing algorithm works for all the 68 images with a few
exceptions. All scales, and nothing but scales, were removed in 56 of the
images. In another 7 images fractions of dark, thin hairs were removed
in addition to the scales. In 4 of the images tiny areas inside the lesions
were removed. But since they are replaced by the interpolation value of the
neighborhood, this has microscopic effect on the segmentation, due to the
small size of the replaced areas. For the last image, the algorithm did not
remove all the 11 scales. The scales were situated in a very dark area (due
to the lightning) and were therefore not detected.
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(a) (b)

(c) (d)

Figure 4.2: (a) The original image. (b) The binary image. (c) Detected
scale objects, after dilation. (d) Final image with scales removed.
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4.2 Hairs

The presence of hair on the skin surrounding the lesion is a great obstacle
for correct segmentation. The hair is of non-negligible confusion for the
segmentation algorithm. Especially the presence of dark, thick hairs will
lead to incorrect segmentation, but also lighter hairs if they appear near
boundary of the lesion.

It is possible to remove hairs physically by using a razor (Burroni et al.,
2005; Rubegni et al., 2002), but it is a point to keep the procedure for
diagnosis of skin lesion as simple as possible, both for physician and patient.
In digital image analysis, he simplest way to remove hairs is by filtering.
Hairs can, because of their long and thin structure, be filtered out if the
filter has the needed smoothing capabilities and/or the window size of the
filter is big enough. Morphological operations are used to filter out the
hairs in Ganster et al. (2001), Rajab et al. (2004) and Gómez et al. (2008).
Morphological filtering of the image is a problem, because the shape of the
structuring element effects the result (Schmid, 1999c, p.13). It is especially
problematic when histogram analysis is to be performed, because it produces
a kind of pre-segmented image (Schmid, 1999a). Xu et al. (1999) use a
Gaussian filter for hair removal, but as mentioned in Section 2.4.1, it has
poor edge-preserving capabilities. A median filter will respect the shape of
the lesion more than a Gaussian or morphological filter, and is used for hair-
removing purposes in Zagrouba and Barhoumi (2004), Celebi et al. (2007),
Magliogannis (2003) and Zhang et al. (2000). The median filter works good
for thin hairs, but when the hairs get thicker, the median filter is unable to
remove the hairs. Increasing the window size will lead to over-smoothing of
the image. Therefore, DullRazor-algorithm is used for thick, dark hairs in
both Zagrouba and Barhoumi (2004) and Celebi et al. (2007).

The DullRazor-algorithm was introduced in Lee et al. (1997), and is used
in Zagrouba and Barhoumi (2005) and Lee (2001), in addition to Zagrouba
and Barhoumi (2004) and Celebi et al. (2007). The DullRazor-algorithm
works as follows: Four structural elements are created, each one is an 11 pixel
long line, and the orientation is 0, 45, 90 and 135 degrees. The grayscale
morphological closing operation with the four structuring elements is applied
to the three color bands (red, green, blue). A binary hair mask is computed
based on the difference between the original image and the closed image.
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If the difference is above a certain pre-defined threshold value, the current
pixel is stored as a hair pixel. Each hair pixel is checked to ensure that it
belongs to a long and thin structure. Finally, the hair pixels are replaced
by a value calculated by interpolation of nearby pixels.

As pointed out in Fleming et al. (1998), the morphological approach is
relatively slow. Fleming et al. (1998) reports a method based on Steger’s
line detection algorithm. To determine if a line segment belongs to a hair
or not, various constraints are calculated (number of pixels in the segment,
curvature and more). In Schmid (1999a) and Schmid-Saugeon et al. (2003)
another method based on morphological grayscale operations is introduced.
Here a spherical structuring element is used when a morphological grayscale
operation is applied to the three layers of an L*u*v* image. A pre-segmented
threshold value is used for making a binary hair mask, as in Lee et al. (1997).

The algorithm for removing hairs in this thesis has several separate steps:

1. Create one-layer image

2. Rotate

3. Create binary image

4. Identify possible hair pixels

5. Remove those pixels not belonging to hairs

6. Replace hair pixels

One-layer image

To remove unwanted objects, the three-layer color image must first be re-
duced to a one-layer grayscale image. Both the PCT-image and the RGB-
to-luminance have been tried, as well as the three color layers separately.
Out of these five options, the red color layer gave the best results. The
contrast between hair and skin is large for both the red and the blue color
layer, while for the green layer it is quite small. Therefore, the red or the
blue layer should be used. The red color layer can be seen in Figure 4.3.

Rotation

The detection of hair is done by detecting the hairs separately in horizontal
and vertical direction. The image is rotated 0, 22.5, 45 and 67.5 degrees,
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Figure 4.3: The red layer of the image.

by using the inverse transformation and nearest neighbor, as explained in
Section 2.9. By examining the 68 images in the training sample, it was
found that four rotations was the minimum to detect all the hairs necessary
for correct segmentation.

Binary image

Five binary images are made. The threshold value is found by using Otsu’s
method (see Section 2.7.1). Otsu’s method chooses the threshold that max-
imizes the between-class variance of the two classes (pixels given the value
0, pixels given the value 1). In most cases, Otsu’s threshold differentiates
between the lesion pixels and the skin pixels. Otsu’s method is used for
approximate localization of the lesion in Celebi et al. (2007). Since it is the
hairs with color close to the color of the lesion that needs to be removed,
Otsu’s method serves the aim.

Since Otsu’s method sometimes over-segments and sometimes under-
segments, the five binary images are made by multiplying Otsu’s threshold
by 0.85, 0.90, 0.95, 1.00 and 1.05, respectively. The binary images consist of



58 Removal of Artifacts

a white background with black objects, as seen in Figure 4.4. The objects
are hairs, lesions and parts thereof, and parts of the skin. The five scalars,
0.85 to 1.05, is based on the results from the 68 images of the training
sample.

(a) (b) (c)

Figure 4.4: Binary images with threshold value equal to (a) 0.85 times
Otsu’s threshold, (b) 0.95 times Otsu’s threshold, and (c) 1.05 times Otsu’s
threshold.

Possible hair pixels

As seen in Figure 4.4, both hairs and lesion appear as black pixels in the
binary images. The black pixels belonging to hairs must therefore be dif-
ferentiated from those belonging to lesion or skin. Hairs are long and thin
structures, and can therefore be identified by morphological operations us-
ing structuring elements that takes advantage of the difference in the shape
of the hairs and the lesion. The hairs are detected in vertical and horizontal
direction.

For the vertical direction a 21 pixel long horizontal line is used as struc-
turing element. The binary image is closed, and the result is shown in
Figure 4.5(a). Compared to the original binary image in Figure 4.4(a), all
black pixels with less than 10 black pixels to the right and to the left is
replaced by white pixels. These pixels are considered to belong to objects
that are thin enough to be hairs. The difference between the closed image
and the binary image is shown in Figure 4.5(b). This image is opened with
an 11 pixel long line in the vertical direction as structuring element. The
result is seen in Figure 4.5(c). White pixels that are not part of a continuous
vertical line, at least 11 pixel long, are replaced by black pixels. This proce-
dure is repeated for all five binary images, and the five resulting images are
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combined, and the result, seen in Figure 4.6(a) are all the pixels considered
to possibly belong to a hair in the vertical direction.

(a) (b) (c)

Figure 4.5: (a) The image after closing. (b) The difference between
Fig. 4.4(a) and Fig. 4.5(a). (c) After opening.

The same procedure is applied to find hairs in the horizontal direction,
the only difference is that the structuring element used for the closing is
vertical, and the structuring element used for the opening is horizontal.
There are now two binary images, one for the hairs in the vertical direction,
and one for the hairs in the horizontal direction.

(a) (b)

Figure 4.6: Pixels possibly belonging to hairs in (a) vertical direction, and
(b) horizontal direction.

When very thick hairs are present in the image, the 21 pixel long struc-
turing element used in the initial closing is too short to detect them. There-
fore, two more binary images are made, one for thick hairs in the vertical
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direction, and one for thick hairs in the horizontal direction. The procedure
is as described above, but the structuring element for the initial closing is
41 pixels long, and for the final opening it is 31 pixels long. The thick hairs
has to be part of a longer element than the thin hairs, because the initial
opening detects a lot more than hairs when the structuring element gets
longer. There are only rare cases when a thick hair is too short or too curly
to be detected by a 31 pixel long structure. The possible thick hair pixels
are shown in Figure 4.7.

(a) (b)

Figure 4.7: Pixels possibly belonging to thick hairs in (a) vertical direction,
and (b) horizontal direction.

Noise-removal

As seen in Figure 4.6 and Figure 4.7, there is a lot of noise; small objects that
are not hairs. These cluster will be identified and removed by the following
procedure. In each matrix all the pixel clusters or objects are labeled. For
each object the eccentricity and the length of the major axis is calculated.
The eccentricity and the length of the major axis is calculated on the basis of
the ellipse with the same second central moments (see Definition 16) as the
object. The eccentricity of an ellipse is the ratio between the length between
the foci of the ellipse, and its major axis length. An ellipse with eccentricity
0 is a perfect circle, while an ellipse with eccentricity 1 is a straight line.

For the thin hairs, the object is removed if the length of the major axis
is shorter than 100 pixels. For the thick hairs, the object is removed if the
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length of the major axis is shorter than 250 pixels. It is considered to be
too short to be a hair. If the eccentricity of an object is less than 0.975, it
is also removed, both for thin and thick hairs. It is considered not to be
slim and straight enough to be a hair. The remaining pixels are believed to
belong to a hair, as seen in Figure 4.8.

(a) (b)

(c) (d)

Figure 4.8: Pixels considered to belong to (a) hairs in the vertical direction,
(b) hairs in the horizontal direction, (c) thick hairs in the vertical direction,
and (d) thick hairs in the horizontal direction (no hairs).
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Replacement of hair-pixels

The two vertical hair matrices are combined, and the two horizontal hair
matrices are combined. A dilation operation with a 7 × 7 square as struc-
turing element is now applied on the two hair matrices, and the result is the
matrices in Figure 4.9.

(a) (b)

Figure 4.9: Dilated hair objects in (a) vertical direction, and (b) horizontal
direction.

The dilation process makes the hairs thicker and with smoother bor-
ders. This is done because most hairs create a shadow on the skin that is
not detected by the hair-detection algorithm. But this shadow must be re-
moved and replaced by some skin-colored or lesion-colored pixels, according
to whether the detected hair is located on the skin or on the lesion.

These are the pixels that should be replaced. For calculating the new
pixel values, linear interpolation is used. For each hair pixel in the vertical
direction, the 10th non-hair pixel to the right and the left is found, and
the linear interpolation is based upon their values and position. In case
the dilation did not cover all the pixels in the shadow of the hair, the 10th
non-hair pixel is chosen. For the pixels belonging to horizontal hair-objects,
the 10th non-hair pixel found above and below are used for interpolation.
The result is seen in Figure 4.11.

The above described procedure is applied on the images for all four
rotations. At the end, all images are rotated back to the initial position
and combined. Some of the hairs detected at one rotation or threshold,



4.2 Hairs 63

are detected at other rotations or thresholds as well. But since the hair
removal is unsupervised, it is not known beforehand which rotations and
which thresholds are necessary to detect all the hairs.

In Figure 4.10 all the pixels belonging to hairs, after the dilation, are
shown.

Figure 4.10: All the hair pixels.

Taking a close look on the image in Figure 4.11 it is possible to see traces
of hairs. This is because the replaced pixels are more homogeneous in color
than the surrounding skin. To avoid this, more sophisticated methods for
calculating the new values of the hair pixels can be used. The interpolation
can be more complex, using higher orders, more points and two dimensions
instead of one. This will be more time-consuming than a simple linear inter-
polation. Since the new pixel values are meant to be used for segmentation
purposes only, and not for further analysis of the interior of the lesion, the
linear interpolation showed satisfactory results. Lee et al. (1997) uses inter-
polation to calculate the output value, while Schmid (1999b) uses the value
obtained in the morphological closing operation.

After segmentation, the hair pixels inside the lesion is replaced by their
original value. This means that another hair removing algorithm is needed
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Figure 4.11: Final image with hairs and scales removed.

for removing hair inside the lesion. When replacing hair pixels inside the
lesion, it is much more important that the new value is as similar as possible
to the (unknown) true value. Wighton et al. (2008) proposes an algorithm for
this, using inpainting, a method originally used to restore damaged artwork.

4.2.1 Improvement of the Hair-Removing Algorithm

The procedure can be improved by having more rotations. This is kept to
a minimum to save time. When removing hair and scales for the purpose of
a correct segmentation, there are two main objectives; removing the dark,
thick hairs, since they will be identified as lesions by the segmentation al-
gorithm, and removing the hairs near the border of the lesion, since they
will be identified as parts of the lesion. When these two objectives are at-
tained, further improvement of the hair removal algorithm must be carefully
weighed against the time use.

One might ask whether it is necessary to use a 1700× 1700 pixel image
for the removal of hairs. The answer seems to be no. It is possible to
downsample the image and still detect the hairs . Downsampling the images
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to every third row and every third column showed promising results, and
improved the computation time significantly.
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Chapter 5

Segmentation of Skin Lesions

Before doing any analysis on a skin lesion, it first has to be recognized and
segmented from the surrounding skin. This can of course be done manu-
ally or semi-automatically (Cheng et al., 2008; Menzies et al., 2005; Stanley
et al., 2007), but it is time-consuming and subjective (see Chapter 6). There
are a number of different methods for unsupervised or semi-automatic seg-
mentation of skin lesions. The Laplacian filter, described in Burdick (1997,
p.105), is used in Burroni et al. (2004, 2005), but without reports on the
success rate. The JSEG-algorithm, motivated by Fisher’s multiclass linear
discriminant analysis (described in Johnson and Wichern (2002, p.628)),
is used in Celebi et al. (2007), non-linear diffusion is used in Fleming et al.
(1998) and in Schmid (1999c). Thresholding is used by Ganster et al. (2001)
and by Lee (2001), the latter in combination with histogram analysis. Local
thresholding in combination with histogram analysis is used by Magliogan-
nis et al. (2006). Segmentation based on histogram analysis in combination
with scale-space filtering is used by Lim and Lee (1990). Histogram analysis
is used in the pre-processing in Zagrouba and Barhoumi (2004, 2005).

This thesis proposes a fully automatic lesion segmentation program based
on histogram analysis. Schmid (1999c, p. 62) points out that histogram
analysis is the fastest and least complex way to segment an image. Be-
fore segmentation, the image has been through an extensive pre-processing
including

• Conversion from DNG to ppm

• Filtering

67
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• Centering

• Illumination Correction

• Removal of Artifacts (scales and hair)

5.1 Color Space and Gray Conversion

The hairless three-layer RGB truecolor image is now ready to get segmented,
but first a proper choice of gray-conversion must be made. It is, of course,
possible to use all three color layers, doing three separated histogram anal-
ysis and merging the results together, but as shown below, the results from
histogram analysis on a grayscale image is satisfying. Some methods for
unsupervised segmentation of skin lesions use only the blue wavelengths
(Elbaum et al., 2001), the blue channel of RGB (Ganster et al., 2001; Rajab
et al., 2004) or give more weight to the blue channel of RGB (Lee, 2001,
p.49). The reason for this choice is that the blue wavelengths are absorbed
by the melanin in the epidermis, and a melanocytic lesion will therefore
appear much darker than the surrounding skin. The drawback is that non-
melanocytic lesions may not be segmented correctly. Blum et al. (2004)
exclude the non-melanocytic lesions. Differentiating between melanocytic
and non-melanocytic lesions can be a challenge even for trained dermatol-
ogists (Stolz et al., 2002, p.42). Menzies (1999) criticizes the exclusion of
non-melanocytic lesions.

The image is converted into a one-layer grayscale image using the princi-
pal component transformation. The choice fell on the PCT-method after in
addition considering the RGB-to-luminace method, and the three color lay-
ers separately. The Histogram Pursuit (HP) algorithm, presented in Gomez
et al. (2007), and developed further as the Independent Histogram Pursuit
(IHP) in Gómez et al. (2008), is an interesting alternative to the widely used
PCT-method.

5.2 Threshold Segmentation

In threshold segmentation, the pixels in an image are divided into two or
more groups based on their value. For lesion segmentation, the final goal
is two groups; skin and lesion. Threshold segmentation can be divided into
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two sub-groups; global thresholding and local thresholding (also referred to
as adaptive thresholding). In global thresholding, the same threshold value
is used for all pixels in the image, while in local thresholding, the threshold
value varies over the image. The method presented in this thesis uses global
thresholding. The disadvantage of global thresholding is that the spatial
information is ignored. The result is that pixels clearly belonging to the
skin, because of their location far from the lesion, are categorized as lesion
pixels. To make up for this disadvantage, post-processing is applied to the
binary image resulting from the thresholding.

5.2.1 Histogram Analysis

Histogram analysis is one way to do threshold segmentation. Several of the
methods referred to earlier in this chapter, rely on the analysis of bimodal
or multimodal histograms (Lim and Lee, 1990; Magliogannis et al., 2006;
Zagrouba and Barhoumi, 2004; Gomez et al., 2007; Lee, 2001, p. 48). Most
images of skin lesions will produce bimodal or multimodal histograms, de-
pending on the number of bins and the smoothing, but it is important to
include a method for threshold segmentation for unimodal histograms. The
histogram analysis presented in this thesis gives a suggestion for segmenta-
tion when the histogram is unimodal.

The pixel values of a digital image can be considered as being observa-
tions of an underlying probability distribution. The distribution is unique
for each image, and unique for each color layer. By regarding the pixel val-
ues as observations from a probability distribution, the histogram can be
regarded as an approximation to the real, underlying distribution. The his-
tograms presented here are really frequency histograms. The height of each
bin represents the number of pixels belonging to this bin. For a histogram
to be regarded as a probability distribution, it should be normalized so it
will integrate to one (Martinez and Martinez, 2002, p.114). Normalizing the
histogram will not effect the shape of the histogram or the relative height
of the bins. Since the histogram analysis done in this thesis relies solely on
the shape of the histogram, normalization is not performed.

Since the number of pixels (over 2 millions for each color layer), is so
high, one can expect the histogram to be close to the distribution.

When an image has two clearly separated areas, one for skin and one for
the lesion, and each area is more or less homogeneous, the histogram will
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show two distinct peaks, as in Figure 5.1.

(a) (b)

Figure 5.1: (a) Lesion and skin clearly separable by the human eye. (b) The
mode representing the lesion is easily detected.

The leftmost mode represents the lesion, which consists of low pixel
values, the mode to the right represents the skin. The classical histogram
analysis in its simplest form is now to choose a threshold value between
these two modes, often the minimum or the point in the middle of the
peaks. This threshold is then used to make a binary image. All pixels
below the threshold are considered to belong to the lesion, all pixels above
the threshold are considered to belong to the skin. This leads to correct
segmentation in the above mentioned cases, but for images where the lesion
is light colored or non-homogeneous, or the skin is non-homogeneous, the
mode to the left will totally disappear, as in Figure 5.2(b).

Even when the left part of the histogram in Figure 5.2 is zoomed in on,
as in Figure 5.3 it is not easy to detect the lesion mode.

Number of bins and smoothing

The number of bins in the histogram is a parameter that affects the output
of a histogram analysis, and there is no objective way to choose this num-
ber. The number of bins must be high enough for the histogram to show
all the important details, but low enough not to overfit the sample to the
distribution. The simplest and most effective thing to do is to choose one
common number of bins for all images. When MatLab computes the best
threshold value for converting grayscale images into binary images using
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(a) (b)

Figure 5.2: (a) Lesion and skin clearly separable by the human eye. (b) The
mode representing the lesion is not easily detected.

Figure 5.3: The left half of Figure 5.2(b).
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Otsu’s method, the number of bins is 256. This speeds up the computation,
because then double numbers can be converted into the 8-bit integer class
uint8. In the following method, the number of bins is 100, chosen on the
basis of the 68 images in the training sample. The optimal histogram for
threshold segmentation has, as mentioned above, two modes. For most im-
ages investigated in this thesis, 100 bins will produce two or more modes,
and in very rare cases the histogram will be unimodal.

There are ways to automatically choose number of bins in a histogram.
One of simplest is Sturge’s Rule: If n is the number of of observations in a
random sample, then the number of bins, k, in the histogram is (Martinez
and Martinez, 2002, p.264)

k = 1 + log2 n.

For the images in this thesis, Sturge’s Rule gives 22 as number of bins, which
is a number too low.

Scott’s Rule is more elaborate, and is based not only on the number of
observations, but also on the sample standard deviation (see Definition 10).

If n is the number of observations in a random sample and s is the
standard deviation of the sample, then the optimal bin width, ĥ, is (Martinez
and Martinez, 2002, p.265)

ĥ = 3.5 · s · n−1/3.

For skewed data, the bin width obtained by Scott’s Rule can be multiplied
with a skewness factor (Martinez and Martinez, 2002, p.266);

skewness factor =
21/3σ

e5σ2/4(σ2 + 2)1/3(eσ2 − 1)1/2
.

Instead of letting the bin width depend on the sample standard deviation,
the Freedman-Diaconis Rule lets the bin width depend on the interquartile
range (IQR), defined in Definition 14.

The optimal bin width according to the Freedman-Diaconis Rule is (Mar-
tinez and Martinez, 2002, p.266)

ĥ = 2 · IQR · n−1/3.
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While the number of bins using Sturge’s Rule is too low, using Scott’s
Rule, Scott’s Rule multiplied by the skewness factor, or the Freedman-
Diaconis Rule produces bin widths that are much too narrow, and hence
too many bins. The number of bins using Scott’s Rule are around 300 for
the images in the training sample, while the Freedman-Diaconis Rule sug-
gests the number of bins to be around 500 for the training sample.

Sturge’s Rule, Scott’s Rule and the Freedman-Diaconis Rule can not be
used uncritically. There are several assumptions on the underlying distri-
bution that have to be made (see Martinez and Martinez (2002, p.263) for
details). Even if these assumptions are fulfilled, the rules are based on nor-
mal distribution, and is therefore not necessarily fit for histogram analysis
of skin-lesion images.

The histogram can also be smoothed to suppress insignificant local min-
ima and maxima. Gómez et al. (2008) and Zagrouba and Barhoumi (2004)
do this by applying 15 iterations of a mean filter with a window size of 3
bins. Smoothing the histogram proved to be unnecessary for the algorithm
presented in this thesis.

5.3 Segmentation Algorithm

Several segmentation algorithms based on histogram analysis focus on find-
ing the correct skin mode and lesion mode (Gómez et al., 2008; Lee, 2001,
p.48). While the skin mode is relatively easy to detect in most cases, finding
the true lesion mode can be a much more difficult task. The problem is that
a lesion can contain pixels with colors from a wide range, distributed in such
a manner that the histogram for lesion pixels will be multimodal. There-
fore, this algorithm concentrates on finding the peak and the left bound of
the skin mode, and makes an estimate of the location of the lesion mode.
Finally, the lower limit of the bin situated at equal distance from the esti-
mated location of the lesion mode and the peak of the skin mode is taken
as the global threshold value.

5.3.1 Skin Mode

The skin mode is found simply by finding the global maximum of the his-
togram. In most cases, the skin mode is much bigger than the lesion mode,
but as seen in Figure 5.5(b), the lesion mode can be quite big. Therefore,
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only the 75 rightmost bins are taken into consideration when searching for
the skin-mode peak. Several images gives histograms with skin modes with
two peaks, as in Figure 5.4(b) and Figure 5.4(d).

After the peak of the skin mode has been found, the next search is for the
left bound of the mode. The bound is a local minimum situated between the
peak of the skin mode and the first bin. Since the skin mode can have two
peaks, the search for a local minimum starts 10 bins to the left of the skin-
mode peak. All pixels to the left of the bound are taken into consideration
when estimating the location of the lesion mode. 10 bins is considered to be
the minimum distance between the peak and bound of the skin mode. This
number is found empirically on the basis of the 68 images in the training
sample. The smallest distance between the peak of the skin mode and the
bound was 19 bins, as seen in Figure 5.4(b).

A local minimum is regarded as the bound of the skin mode if it fulfills
the criterion that the current bin is smaller than the four bins to the left and
the four bins to the right. A local minimum fulfilling this criterion is found
where a visual inspection would place the bound in most cases. There are
cases where no bound is found because the transition between the skin mode
and the rest of the histogram does not create a local minimum that fulfills
the bound-criterion. This is the case for Figure 5.5(e) with the histogram
shown in Figure 5.5(f). When this happens, a lower limit is created, and
the minimum between the lower limit and the skin-mode peak is regarded
as the bound. The lower limit must be present, or else the search for a
minimum will in most cases result in bin number one. The lower limit is
found in two steps. First, the cumulative sum of the number of pixels in the
bins is calculated. When the cumulative sum has reached 0.1% of the total
number of pixels in the histogram, the search for a peak begins. The reason
for not starting the search for a peak at the first bin is to avoid regarding
small fluctuations in the bottom of the intensity range as significant peaks.
A local maximum is considered to be a peak if the two bins to the right
of the current bin are smaller than the current bin. The first peak will be
the lower limit. If such a peak is not found, the histogram is considered
unimodal (see Section 5.3.3), as seen in Figure 5.5(d).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Images challenging for histogram analysis. (a)-(b) The global
maximum and the bound of the skin mode is no more than 19 bins apart.
(c)-(d) The skin mode has a double peak, where the peak to the right is the
global maximum. (e)-(f) Multiple lesion modes.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Images challenging for histogram analysis. (a)-(b) The lesion
mode peak is nearly as high as the skin mode peak. (c)-(d) Unimodal
histogram. (e)-(f) No obvious lesion mode.
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5.3.2 Lesion Mode

As already pointed out, the lesion might consist of several modes. Instead of
searching for the biggest mode (Lee, 2001, p.48), or smoothing the histogram
until a pre-set number of modes has appeared (Gomez et al., 2007; Gómez
et al., 2008; Zagrouba and Barhoumi, 2004), the mean of the pixels believed
to be lesion pixels is estimated. The lesion pixels are all pixels to the left of
the bound of the skin mode.

Regarding the pixel values of the grayscale image situated to the left
of the bound in the histogram as samples from an underlying (unknown)
distribution, an estimator for the expected value of this distribution can be
calculated.

Estimator

An estimator is a function of the random variables X1, X2, . . . , Xn. A point
estimator is a function with a scalar output. Choosing the right estimator for
the expected value of an unknown distribution might seem like a shot in the
dark, but with a few quite mild assumptions on the unknown distribution,
the task gets a lot easier. In fact, the only assumptions needed are that both
mean and variance exist, and that the variance is finite.

An estimator for the mean is the first method of moments estimator, µ′1.
This estimator is found by equating the first sample moment and the first
population moment (Definition 17);

m1 =µ′1

1
n

n∑
i=1

Xi =EX = µX .

The best estimator for a parameter is of course the estimator closest to the
parameter. Since the parameter is unknown, some other criterion has to be
used for finding an good estimator. There is not one objective criterion, but
a widely used one is that the parameter should be unbiased.

Definition 22 (Bias). The bias of a point estimator θ̂ of a parameter θ is
the difference between the expected value of θ̂ and θ:

Bias(θ̂) = Eθ̂ − θ. (5.3.1)
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The first method of moments estimator is unbiased since

Eµ′1 = E

(
1
n

n∑
i=1

Xi

)
=

1
n
E

(
n∑
i=1

Xi

)
=

1
n
nEX1 = µX ,

(for proof, see Casella and Berger (2002)) and the bias is then

Bias(µ′1) = Eµ′1 − µ = µ− µ = 0.

The pixel values come from a sample truncated at value of the skin-
lesion bound. By making additional assumptions on the distribution, for
example that the distribution is symmetrical, the effect of the truncation
could be taken into consideration when estimating the expected value. By
investigating the histograms in Figure 5.4 and Figure 5.5, it is difficult to
find any assumptions that would be valid in all (or nearly all) cases.

5.3.3 Unimodal histograms

If an image produces a unimodal histogram (as defined at the end of Sec-
tion 5.3.1), there is no obvious way to estimate the mean of the lesion mode
or the whereabouts of the skin-mode bound. For unimodal histograms, the
location of skin-mode bound is set to 1/3 of the distance between the first
bin and the skin-mode peak. The mean of the lesion mode is estimated as
above. The reason for choosing 1/3 is based on the location of the skin-mode
bound and the skin-mode peak in the multimodal histograms of the training
sample.

5.3.4 Global Thresholding

Before making the grayscale image into a binary image, a morphological
opening operation with a structuring element of the shape of a disk with a
radius of 20 pixels is applied to the grayscale image. This is necessary for
correct segmentation of skin lesions that have honeycomb-like network, as
seen in Figure 5.6.

After finding the location of the skin mode (the global maximum), and
the location of the lesion mode (the population mean), the global threshold
value is the lower limit of the bin situated at equal distance from the lesion
mode and the skin-mode peak. The normalized grayscale image, the source



5.3 Segmentation Algorithm 79

Figure 5.6: Lesion with honeycomb-like network.
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(a) (b)

(c) (d)

Figure 5.7: The first principal component of the image in Figure 5.6 (a) be-
fore and (b) after opening. Segmentation (c) without and (d) with opening.
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of the histogram, is now made into a binary image, by using the calculated
threshold. The global threshold value lies in most cases to the left of the
skin-mode bound. One might think that the threshold value therefore is
too high. There are pixels belonging to the lesion that are light enough to
resemble skin pixels, and pixels belonging to the skin that are dark enough
to resemble lesion pixels. This means that the bound of the lesion mode (if
present) lies to the right of the bound of the skin mode. By choosing a the
global threshold value as done here, pixels belonging to the skin will appear
in the lesion group (black pixels), but will be removed in the post-processing
(see Section 5.4).

5.4 Separation of Lesion and Skin

The binary image resulting from the global thresholding is first inverted, all
black pixels are turned white, and all white pixels are turned black. This is
done because a binary object is defined as a cluster of white pixels on a black
background. In the post-processing, 4-connection is used for all operations.

In addition to the lesion, other objects might be present in the binary
image. The skin lesion must be recognized and the other objects removed.
One can suspect the lesion for being the largest object in the binary image.
This is true in most cases, but if the dermoscope has been tilted, the skin near
the boundary of the illuminated disk can appear very dark. The illumination
correction is not able to correct poor illumination beyond a certain angle
between the dermoscope and the skin. Therefore, first all objects in contact
with the black mask is removed, as seen in Figure 5.8.

The next step in the post-processing is to fill holes. A hole is a black
area surrounded by white pixels that cannot be reached from any of the
four corners of the image. The filling is necessary when there are light areas
inside the lesion, as seen in Figure 5.9.

After filling the holes, the image is opened, using a disk of radius 10
pixels as structuring element. This is done to remove thin arms and break
isthmuses created by the closing operation applied before the conversion to
binary image, as seen in Figure 5.10.

All objects are then labeled, and the largest object is considered to be
the lesion. In some cases there is more than one lesion in an image. Only
the largest lesion will then be detected. An alternative is to allow user input
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(a) (b)

Figure 5.8: The binary image of Figure 5.4(a) (a) before and (b) after the
objects in connection with the mask have been removed.

(a) (b)

Figure 5.9: The binary image of Figure 5.6 (a) before and (b) after filling
the holes.
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(a)

(b) (c)

Figure 5.10: (a) The image on which the segmentation is based. (b) The
binary image before and (c) after the opening.
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on number of lesions. Figure 5.11 shows an image with two skin lesions.

(a)

(b) (c)

Figure 5.11: (a) The image on which the segmentation is based. (b) After
the post-processing. (c) The two largest objects.

If the largest object, considered to be the lesion, covers less than 0.1% of
the area of the image, the post-processing is done over again, but now the
objects in direct contact with the mask are not removed.
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5.5 Drawing of Borders

Even if the lesion now is separated from the skin, the borders need to be
drawn. The purpose of drawing the borders is for evaluation of the segmen-
tation. This can be done by an algorithm made by Fred Godtliebsen and
Tor-Arne Øig̊ard, described below.

• The binary image is filtered by an average filter with a 15× 15 square
neighborhood. The result is a blurring of the binary image, as seen in
Figure 5.12(b). Only the transition between black and white is blurred.
The regions of black and the regions of white keep their color.

• The absolute difference between the filtered image and 0.5 is calcu-
lated. The result, as seen in Figure 5.12(c), is an image where the
previous all black and all white regions are gray (pixel value 0.5),
while the blurred edges of the lesion are close to black.

• A binary image with 0.1 as threshold is created. Only the darkest
pixels of the image in Figure 5.12(c) are set to 0. The result, seen
in Figure 5.12(d), is a thin and smooth connected line marking the
boundary of the black region in Figure 5.12(a).
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(a) (b)

(c) (d)

Figure 5.12: (a) The binary image after post-processing. (b) After filtration.
(c) The absolute difference. (d) The final borders.
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The borders in Figure 5.12(d) are superimposed on the original image of
the skin lesion, as seen in Figure 5.13.

Figure 5.13: Original image with borders superimposed.

There are several other methods to draw a border around an object
in a binary image, one of them is outlining, a morphological method, de-
scribed in (Burdick, 1997, p.159). Godtliebsen and Øig̊ard’s method gives a
smoother border, and is therefore preferred for evaluation since it resembles
hand-drawn borders.

The results of the segmentation of Figure 5.1(a), 5.2(a), 5.4(a), 5.4(c),
5.4(e), 5.5(a), 5.5(c), 5.5(e), 5.6, 5.10(a) and 5.11(a) are seen in Figure 5.14
and Figure 5.15.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14: Images with borders superimposed, based on segmentation of
(a) Figure 5.1(a), (b) Figure 5.2(a), (c) Figure 5.4(a), (d) Figure 5.4(c), (e)
Figure 5.4(e) and (f) Figure 5.5(a).
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(a) (b)

(c) (d)

(e)

Figure 5.15: Images with borders superimposed, based on segmentation of
(a) Figure 5.5(c), (b) Figure 5.5(e), (c) Figure 5.6, (d) Figure 5.10(a) and
(e) Figure 5.11(a).
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Chapter 6

Evaluation of Segmentation

Algorithms

The most intuitive way to evaluate a segmentation algorithm for skin le-
sions is to compare the segmented images with segmentation done by expert
dermatologists. This is a popular evaluation method, used by Celebi et al.
(2007), Fleming et al. (1998), Ganster et al. (2001), Hance et al. (1996), Lim
and Lee (1990), Magliogannis (2003), Gómez et al. (2008) and Magliogannis
et al. (2006). Different error metrics are used. Using segmentation done by
expert dermatologists or other physicians is criticized in several studies. The
main drawback of using hand drawn borders as ground truth for evaluating
a segmentation algorithm, is that a hand-drawn border is based on subjec-
tive criteria, and the difference between borders drawn by dermatologists
are too big. Even more alarming is that the same dermatologist is not able
to reproduce her own drawing (Schmid-Saugeon et al., 2003; Guillod et al.,
2002; Schmid, 1999c, p.171).

Both Guillod et al. (2002) and Schmid-Saugeon et al. (2003) note that
using hand-drawn borders as gold standard is somewhat contradictory to
the objectives of automated image segmentation. The use of automated
image segmentation is motivated by the need of objective and reproducible
borders, the contrary of what borders drawn by dermatologists achieve.

Zhang et al. (2008) do a study on unsupervised evaluation methods, but
the conclusion is that unsupervised methods perform poor when comparing
segmentation obtained from different algorithms, or when comparing human
segmentation versus unsupervised segmentation. One approach might be to
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use synthesized images where the true segmentation is objective (Rajab
et al., 2004), but the evaluation based on synthetic images can seldom be
generalized (Zhang et al., 2008).

The evaluation of the performance of the segmentation algorithm is done
by subjective evaluation or visual assessment. Each segmented image is
evaluated by a dermatologist and given a rating. This form of evaluation
is not ideal, but can give a sense of the performance of the algorithm. The
method is used by Schmid-Saugeon et al. (2003), Schmid (1999b) and Lee
(2001) (here by the author himself). The only objective way to evaluate the
segmentation algorithm is to see wether the segmentation leads to correct
classification (melanoma/non-melanoma) of the lesion.

The evaluation of the segmentation in this thesis is done by two der-
matologists, each given the same sample of 80 segmented skin lesions. The
dermatologist is asked to give each segmented image a rating from 1 to 4
(good-acceptable-poor-bad). The 80 images are taken from the test sample.
This means that the parameters used in the segmentation algorithm (the
number of bins in the histogram) are chosen independently of the 80 images
that are evaluated. This is true also for the parameters of the pre-processing.
All the 80 images comes from the sample from Germany, where the patients
are not referred. The images are the 80 first images in the test sample, after
exclusions have been done according to the exclusion criteria in Section 1.5.

6.1 Comparison With Other Algorithms

Rosado et al. (2003) do a meta-analysis of 30 studies on computer diagnosis
of melanoma, in 20 of them the segmentation was done automatically. The
conclusion is that too many of the articles provide too little information
on the methods used, for being able to compare the performance of the
different algorithms. The result is a 9-point requirement list. Even if this
meta-analysis focuses on classification and not segmentation, several of the
points in the requirement list are necessary to follow to be able to do a
comparison on segmentation algorithms. Menzies et al. (2005) recommend
the same 9 requirements.

The criteria recommended by Rosado et al. (2003) that are clearly trans-
ferable to segmentation algorithms are (1) Selection of lesions should be ran-
dom or consecutive, (2) Inclusion and exclusion criteria should be clearly
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stated and (8) Classification (segmentation) should be carried out on an
independent test set.

Since no segmentation algorithm is parameter-free, the technical infor-
mation about the images is needed to do a comparison of algorithm per-
formance. The format of the image, the size, the spatial resolution, the
depth (bit/pixel) and the color space is a minimum of information required
to be able to do a comparison on segmentation algorithms. In addition all
pre-processes, such as filtering, removal of artifacts and gray-conversion (if
any), must be described. When this information is missing, the comparison
of algorithms is either very difficult or very time consuming. Since there is
no common or objective method for evaluation of the segmentation, a com-
parison of several algorithms must run the algorithms on the same sample of
images. An algorithm adjusted to one specific format, size, resolution, depth
and color-space will necessarily perform poorer when these assumptions of
the images are changed. Running other algorithms on ones own sample for
comparison of performance gives ones own algorithm a benefit too big to be
ignored.
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Chapter 7

Discussion

A segmentation algorithm based on a new approach for histogram analysis
is presented and tested with great success. The algorithm is simple, efficient
and intuitive. Specifically this thesis presents two major algorithms; one for
removal of hair and one for skin lesion segmentation.

7.1 Hair Removal

The hair-removal algorithm performs good in all the investigated cases. The
performance of a hair-removal algorithm depends on two things; if it removes
enough hair for correct segmentation, and if it removes other non-artifacts
(pieces of skin or lesion). To do an objective evaluation of the hair-removing
algorithm, one could manually detect all the hair pixels, and compare the
segmentation based on the image with automatic hair removal and manual
hair removal. This would be a very time consuming evaluation method and
is therefore not processed. Instead, the performance of the algorithm is
visually inspected. Of the 68 images in the training sample and the 224
images in the test sample there were no indications that poor hair-removal
was a source for incorrect segmentation. The indications would be hairs near
the lesion that are not removed and therefore included in the lesion when
segmentation is done, or parts of the lesion recognized as hair, replaced
by skin-colored pixel values and therefore excluded when segmentation is
performed. The hair removal affects the shape of the histogram. How it
affects the histogram is not as easily predicted, but it is clear that a lot of
unremoved hair would possibly move the skin-mode bound and affect the
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lesion-mode mean.

7.1.1 Comparison With Other Algorithms

Comparing the algorithm presented in this thesis with the algorithms pre-
sented in Schmid-Saugeon et al. (2003) and Lee et al. (1997) (described in
Chapter 4.2), the use of morphological operations stands out as the com-
mon basis for all three algorithms. Schmid-Saugeon et al. (2003) and Lee
et al. (1997) perform morphological operations on grayscale images, and use
a pre-defined threshold value to compare the original image with the pro-
cessed image. The algorithm presented in this thesis applies morphological
operations to binary images, and avoids the hard-thresholding. Another ad-
vantage of using binary images is that morphological operations run much
faster on binary images than on grayscale images. The algorithm of Schmid-
Saugeon et al. (2003) is not recommended if histogram analysis is performed
for lesion segmentation (Schmid, 1999a).

The DullRazor algorithm was tested on the 68 images in the training
sample, but had a poorer performance than the algorithm presented in this
thesis. To remove enough hair by DullRazor, the threshold had to be set
so low that a lot of non-hair pixels were included. It must be noted that
the size of the images originally used for evaluation of DullRazor were much
smaller (512× 486 pixels) than the images used in this thesis (1700× 1700
pixels) and adjusting the size of the structuring element on DullRazor might
lead to better performance.

7.2 Segmentation Algorithm

The segmentation algorithm presented provides a fast and stable segmenta-
tion based on histogram analysis and global thresholding. The novelty in
the histogram analysis is that instead of searching for the two modes rep-
resenting the skin and the lesion, this algorithm finds the skin mode and
the valley separating the skin mode from the multiple lesion modes. The
pixel values are regarded as random samples from the underlying, unknown
distribution of the lesion, and the expected value of this distribution is es-
timated by calculating the sample mean. The only assumptions made on
the distribution are that both the mean and variance exist, and that the
variance is finite. The global threshold value is set to the lower limit of the
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bin located at equal distance from the lesion-mode mean and the skin-mode
peak. In most cases, looking at the histogram, the threshold is to the right
of the valley separating the lesion modes from the skin mode. At first, this
might seem like it should lead to over-segmentation, setting the threshold
on the skin mode. Generally, it does not, because the limit between lesion
values and skin values is not clear cut. There are pixels belonging to the
lesion with values that are more skin-like, and skin pixels with lesion-like
values.

7.2.1 Comparison with other algorithms

As discussed in Section 6.1, an unbiased comparison of the performance of
several segmentation algorithms is difficult due to the lack of information
published. It is possible to compare an algorithm with others on the method
level.

Some skin lesion segmentation algorithms rely on the calculations of skin
or background color (Celebi et al., 2007). This is done by taking the mean of
a sample of pixels believed to belong to the skin. The drawback is obvious;
for non-homogeneous skin, the value of the background color relies heavily
on the pixel sample. Since this calculation is done before segmentation, the
skin-pixel sample cannot be too big, or else it is a risk that the sample is
taken from the lesion.

Other algorithms (Elbaum et al., 2001; Ganster et al., 2001; Rajab
et al., 2004; Blum et al., 2004; Lee, 2001, p.49) restrict the segmentation
to melanocytic lesions only, either by relying on blue color bands or wave-
lengths, or by explicitly excluding non-melanocytic lesions from the study.
Even an expert dermatologist has problems distinguishing certain types of
non-melanocytic skin lesions from the melanocytic group of lesions, so this
rules out a small but important class of lesions.

Among the algorithms based on histogram analysis an assumption of
a multimodal histogram is made in Lim and Lee (1990), Zagrouba and
Barhoumi (2004), Magliogannis et al. (2006). The algorithm presented in
this thesis has a solution to analysis of unimodal histograms, and therefore
includes a bigger group of skin lesions.

The segmentation algorithm presented in this thesis is close to parameter-
free. The only parameters present in the histogram analysis is the number
of bins in the histogram and the shape of the local minimum regarded as
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skin-mode bound. These two parameters might have to be adjusted for sam-
ples of images with different spatial resolution or size, but should otherwise
be independent on the lesions in the sample.

Gomez et al. (2007) requires the number of classes in the image as input.
In Fleming et al. (1998) the number of regions is a pre-set parameter. Lim
and Lee (1990) introduce a parameter when searching for valley location.
Xu et al. (1999) use image-dependent parameters, which makes the segmen-
tation algorithm only semi-automatic. The histogram analysis in Zagrouba
and Barhoumi (2004) relies heavily two parameters. The values of these pa-
rameters are adjusted to the sample used in Zagrouba and Barhoumi (2004)
and is not necessarily the optimal values for other samples.

7.2.2 Challenges

Though the algorithm delivers good results for the big majority of the tested
images, there are two groups of lesions that are not correctly segmented. One
group is when there are areas belonging to the lesion that are lighter than
the skin and are situated on the boundaries of the lesion. In these cases,
the light area will be regarded as skin. The other group is images with
more than one skin lesion. If the lesions are well separated, the problem can
be solved by letting the physician give number of lesions as input. When
the lesions lie close together, the result is an over-segmentation. It may be
possible in these cases to divide the image pixels into three classes, based
on the location of the skin mode, the first and the second minimum.

All images in the training sample and the test sample come from peo-
ple with white skin. Although this is the group most likely to develop
melanoma, there is no guarantee that a person with darker skin never will
develop melanoma. The segmentation algorithm has to be tested on im-
ages taken from person with darker skin, to verify that the algorithm is
skin-color independent. If it shows that the algorithm works only on images
from white-skinned people, it has to be adjusted.

7.3 Expert Evaluation of Segmentation Algorithm

80 of the images from the test sample were evaluated by two dermatologists.
The exact results can be seen in Appendix B. Two prints of each image
were presented; one print of the original image, and one print of the original
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image with the borders superimposed. The dermatologists were asked to
give each border a rating from 1 to 4, were 1 = “good”, 2 = “acceptable”,
3 = “poor” and 4 = “bad”.

Of the 80 images, there were only one image were the rating done by
the dermatologist differed more than 1. In this special case, dermatologist I
gave the segmentation rating 1, while dermatologist II gave the rating 4.
Probably the dermatologists have disagreed on which object in the image
was the actual lesion. This image is excluded from the evaluation.

Among the remaining 79 images, the two dermatologists gave the rating
“good” or “acceptable” to 69 (87%) of the images. 7 (9%) of the images were
given the rating “poor” or “bad” by both dermatologists. The remaining 3
(4%) of the images were given the rating “acceptable” by one dermatologist
and “poor” by the other.

The images in the test sample that were not evaluated by dermatologists
showed similar performance, as would be expected, since the training sample
and the test sample are independent.

The expert evaluation of the segmentation algorithm is promising. A
high number of borders are rated “good” or “acceptable”. A real evaluation
is not available until an automated diagnosis algorithm is developed, and it
is possible to check whether the segmentation leads to correct diagnosis or
not.

7.4 Further Work

The segmentation algorithm presented in this thesis has two major limita-
tions; lesions with diameter greater than approximately 16 mm are excluded,
and lesions lighter than the surrounding skin will not be correctly segmented.
Both obstacles are possible to overcome. For big lesions, it is possible to
add an optional input,“big”, to the program, where the removal of objects
in contact with the mask will not be done. Whether this gives a satisfying
result or not has to be investigated on a sample of images with big lesions.
Light lesions might be detected by locating the right bound of the skin mode,
and then estimate the location of the lesion bound as done in Section 5.3.2.
A method for including light areas situated on the edge of a dark lesion is
also needed.

From the expert evaluation of the 80 test images, the tendency is that
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the segmentation algorithm fails when the lesion consists of several darker
objects separated by skin. Criteria for including objects located near the
lesion is a possible solution to this problem.

The hair-removing algorithm performs the way it should, removing the
hairs that otherwise would affect the segmentation. The hair pixels are
replaced by skin-colored pixels for hairs outside the lesion, and by lesion-
colored pixels for hairs inside the lesion. A more elaborate method than
linear interpolation is needed if the hair-removing algorithm should be used
for removing hairs for analysis of the lesion.

Testing the segmentation algorithm on a sample with more malign me-
lanomas needs to be done to assure that the algorithm performs good in all
cases.

The evaluation of the performance of the segmentation algorithm is lim-
ited. At least one more dermatologist should evaluate the borders, and more
lesions from the test sample should be included in the evaluation.



Appendix A

MatLab Code for Unsupervised Segmentation of

Skin Lesions

Presented here are all the programs used to do the unsupervised segmenta-
tion of skin lesions as described in the thesis.

Main Program

The main program segmentfunc has an RGB image as input, and returns
the borders of the lesion in that image. If more than one lesion is present,
the number of lesions can be specified as an optional input. Several other
programs are called in the main program.

segmentfunc

This program reads the image file, centers the image and corrects for non-
central and non-uniform illumination. It calls other programs for removal
of artifacts and segmentation.

circlefunc

This program creates a black mask with a disk-shaped white hole in the
middle. The radius of the disk must be specified in the input.

rgb2pc

This program calculates the three principal components obtained from an
RGB image. An optional input vector specifies which pixels are to be used
in the transformation.
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scaleremovalfunc

This program identifies the pixels belonging to the scales printed on the
glass of the dermoscope. The scale pixels are replaced by skin-valued or
lesion-valued pixels.

ladyshave

This program identifies the pixels belonging to hairs in the image. The hair
pixels are replaced by skin-valued or lesion-valued pixels.

bordersfunc

This program calculates a global threshold value on the basis of histogram
analysis. A binary image with white background and black objects is re-
turned.

lesionfunc

Using the binary image obtained in bordersfunc as input, this program re-
moves the objects that are not lesions, and finally draws a border around
the lesion object.

Correction Matrix

In segmentfunc, a matrix named corr ppm is loaded. This matrix is made
using the program correctionfunc. This program calls interpolfunc and vec-
tor2matrix.

correctionfunc

This program has an RGB image as input, and calculates a vector of the
pixel value mean as a function of distance from the center of the image.

interpolfunc

This program calculates the interpolation polynomials on Newton’s form
based on an input vector and interpolation points chosen by the user.
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vector2matrix

This program creates a disk-shaped object placed on a black background
with pixel values according to the values of the input vector.



11/13/08 12:44 PM /Applications/matlab/Masteroppgave/segmentpdf.m 1 of 3

  1 function segment = segmentfunc(xx,nr) 
  2  
  3 % This is the main program of the lesion segmentation program. The 
  4 % program reads the ppm-file, centers the image and corrects for 
  5 % non-central and non-homogeneous illumination. The resulting image is then 
  6 % sent for scale-removal, hair-removal and segmentation. The input is an 
  7 % RGB image of class uint8 or uint16. An optional input is the number of 
  8 % lesions. The default is 1 lesion. 
  9  
 10 %% The Images 
 11  
 12 if nargin == 1              % If the number of lesions is not specified 
 13     nr = 1;                 % in the input, it is set to 1. 
 14 end 
 15  
 16 x00 = imread(xx);  
 17  
 18 % The maximum value of the data class is found for gray-conversion. 
 19 if length(class(x00)) == 5 & class(x00) == 'uint8' 
 20     maxclass = 255; 
 21 elseif length(class(x00)) == 6 & class(x00) == 'uint16' 
 22     maxclass = 65535; 
 23 else 
 24     output = 'class not supported' 
 25     return 
 26 end 
 27  
 28 [n m l] = size(x00); 
 29  
 30 r0 = 800;   rdiff1 = 400;   rdiff2 = 200;   rdiff3 = 50;                                                      
 31 r1 = r0+rdiff1; r01 = r0+rdiff2;    r02 = r0+rdiff3; 
 32  
 33 % Crops a (2*r1 x 2*r1)-square from the center of the rectangular image. 
 34 x00 = x00(floor(n/2)-r1+1:floor(n/2)+r1,floor(m/2)-r1+1:floor(m/2)+r1,:);    
 35  
 36 %% Filtering 
 37  
 38 % The each color layer of the image is filtered with a median filter,  
 39 % using a (5 x 5) pixel square as neighborhood. The filtering is done  
 40 % before conversion to double to save computation time.  
 41  
 42 x01 = ordfilt2(x00(:,:,1),13,ones(5,5));                                     
 43 x02 = ordfilt2(x00(:,:,2),13,ones(5,5)); 
 44 x03 = ordfilt2(x00(:,:,3),13,ones(5,5)); 
 45 x00 = cat(3,x01,x02,x03);   x00 = double(x00); 
 46  
 47 %% Masking 
 48  
 49 % The illuminated disk is the only part of the image that is of any 
 50 % interest. Therefore a black mask with a disk-shaped hole is superimposed 
 51 % on the image. The disk-shaped hole has different radiuses for different 
 52 % purposes. 
 53  
 54 mask = circlefunc(r0);                                                       
 55 r = find(mask == 1); q = find(mask == 0); 
 56  
 57 mask2 = circlefunc(r1); 
 58 r2 = find(mask2 == 1); 
 59  
 60 mask3 = circlefunc(r01); 
 61 r3 = find(mask3 == 1); 
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 62  
 63 mask4 = circlefunc(r02); 
 64 r4 = find(mask4 == 1); 
 65  
 66 %% Finding the center of the illuminated disk 
 67  
 68 % The rgb-image is converted into a grayscale image, by calculating the  
 69 % luminace for each pixel triplet. A binary image with the 0.5-quantile as  
 70 % threshold is created. The object with the largest area is identified,  
 71 % and all other objects are removed. 
 72  
 73 x = rgb2gray(x00/maxclass); 
 74 light = quantile(x(:),0.5);                                                  
 75 bw = im2bw(x,light);   
 76  
 77 [labeled, num] = bwlabel(bw); 
 78 data = regionprops(labeled,'Area','PixelList'); 
 79 main = find([data.Area] == max([data.Area])); 
 80 bw = zeros(size(bw)); 
 81 g = data(main).PixelList; 
 82 for j = 1: length(g(:,1)) 
 83     bw(g(j,2),g(j,1)) = 1; 
 84 end 
 85  
 86 % The center of the square made by the leftmost, rightmost, uppermost and 
 87 % lowermost pixel of value 1 is found. This is the center of the 
 88 % illuminated disk. 
 89  
 90 [t t1] = find(bw == 1,1);                                                                                               
 91 [t t2] = find(bw == 1,1,'last');                                           
 92 t = t1 + floor((t2-t1)/2);                                                   
 93  
 94 [s s1] = find(bw' == 1,1); 
 95 [s s2] = find(bw' == 1,1,'last'); 
 96 s = s1 + floor((s2-s1)/2);                                                   
 97  
 98  
 99 % Cuts out a (2*r01 x 2*r01)-square with the center coinciding with the 
100 % center of the illuminated disk. 
101 a = s-r01+1; b = 2*r01+a-1; c = t-r01+1; d = 2*r01+c-1;                      
102 x00 = x00(a:b,c:d,:); 
103  
104  
105 %% Finding the center of illumination 
106  
107 % A binary image with the 0.75-quantile as threshold is created. The binary  
108 % image is then morphologically opened to avoid outlying pixels of value 1. 
109  
110 x = rgb2gray(x00/maxclass); 
111 light = quantile(x(r3),0.75);                                                
112 bw = im2bw(x,light);                                                        
113  
114 se = strel('square',5);                 % Creates the structuring element. 
115 bw = imopen(bw,se);                                                       
116  
117 % The center of the square made by the leftmost, rightmost, uppermost and 
118 % lowermost pixel of value one is found. This is the center of 
119 % illumination. 
120  
121 [t t1] = find(bw == 1,1);                                                                                              
122 [t t2] = find(bw == 1,1,'last');                                            
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123 t = t1 + floor((t2-t1)/2);                                                   
124  
125 [s s1] = find(bw' == 1,1); 
126 [s s2] = find(bw' == 1,1,'last'); 
127 s = s1 + floor((s2-s1)/2);  
128  
129 %% Correction Matrix 
130  
131 % The correction matrix is cut to a (r02xr02)-matrix with center coinciding 
132 % with the center of illumination. 
133  
134 load corr_ppm                       % Loads the genreal correction matrix.  
135  
136 % The correction matrix is cropped to the right size. The min-max makes 
137 % sure that the bounds of the new correction matrix is inside the borders 
138 % of the general correction matrix. 
139 [w w] = size(corr_ppm);                                                    
140 a = min(max(w/2-r02+r01-s+1,1),301);     
141 c = min(max(w/2-r02+r01-t+1,1),301);     
142 b = 2*r02+a-1;  d = 2*r02+c-1;          
143  
144 corr_ppm = corr_ppm(a:b,c:d); 
145  
146 % Multiplies the rgb-image with correction matrix. 
147 x00 = x00(rdiff2-rdiff3+1:end-(rdiff2-rdiff3),rdiff2-rdiff3+1:end-(rdiff2-rdiff3),:); 
148 x0 = x00.*cat(3,mask4,mask4,mask4).*cat(3,corr_ppm,corr_ppm,corr_ppm); 
149  
150 %% Removal of scales and hair 
151  
152 x0 = scaleremovalfunc(x0,maxclass);     % Returns an image without scales. 
153 x0 = ladyshave(x0,maxclass);            % Returns an image without hairs.    
154  
155 % The image is cut to its final size; (r0xr0). 
156 x0 = x0(rdiff3+1:end-rdiff3,rdiff3+1:end-rdiff3,:).*cat(3,mask,mask,mask); 
157 x00 = x00(rdiff3+1:end-rdiff3,rdiff3+1:end-rdiff3,:); 
158  
159 % The image is segmented. 
160 border = bordersfunc(x0,r);             % Returns a binary image. 
161  
162 % The lesion is identified, and the borders are drawn. 
163 lesion = lesionfunc(x00,border,r,nr);   % Returns the borders. 
164  
165 segment = lesion;  
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 1 function circle = circlefunc(r); 
 2  
 3 %% This function creates an (r x r) binary image with black corners and a 
 4 %% white disk of radius r 
 5  
 6 y = -r:1:r; 
 7  
 8 x1 = ceil(sqrt(r^2 - y.*y) + r); 
 9 x2 = floor(-sqrt(r^2 - y.*y) + r); 
10  
11 x = logical(ones(2*r,2*r)); 
12  
13 for i = 1: 2*r 
14     x(i,x1(i):end) = 0; 
15     x(i,1:x2(i)) = 0; 
16 end 
17  
18 x(1:r,:) = x(end:-1:r+1,:); 
19 x(:,r+1:end) = x(:,r:-1:1); 
20 circle = x; 
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 1 function pc = rgb2pc(x0,r) 
 2  
 3 %% This function converts an RGB image to three grayscale images, based on  
 4 %% the principal component transform. The input is the RGB image and a 
 5 %% vector, r, that indicates which pixels that should be used in the 
 6 %% conversion. The default of r is all pixels. 
 7  
 8 [n m l] = size(x0); 
 9  
10 if nargin == 1 
11     r = 1: n*m; 
12 end 
13  
14 x = zeros(n,m,l); 
15  
16 % Generates a (3 x r) matrix from the r pixels of each color layer. 
17 x01 = x0(:,:,1); x02 = x0(:,:,2); x03 = x0(:,:,3);                           
18 Xr = [x01(r)'; x02(r)'; x03(r)'];                                            
19  
20 % Calculates the eigenvalues and the corresponding eigenvectors of the 
21 % covariance matrix. 
22 [V,D] = eig(cov(Xr'));                                                       
23 e1 = V(:,3); e2 = V(:,2); e3 = V(:,1);                                                                 
24  
25 % Calculates the three principal components on the basis of the 
26 % eigenvalues. 
27  
28 xr1 = e1'*Xr;                                                                                                              
29 x1 = zeros(n,m); 
30 x1(r) = xr1;   
31 x(:,:,1) = x1; 
32  
33 xr2 = e2'*Xr;                
34 x2 = zeros(n,m); 
35 x2(r) = xr2; 
36 x(:,:,2) = x2; 
37  
38 xr3 = e3'*Xr;                
39 x3 = zeros(n,m); 
40 x3(r) = xr3; 
41 x(:,:,3) = x3; 
42  
43 % Returns the PCT matrix. 
44 pc = x; 
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  1 function scaleremoval = scaleremovalfunc(x00,maxclass) 
  2  
  3 %% This function removes the scales from a dermoscopic image, and replaces  
  4 %% the scale-pixels with skin-colored pixels. The input is a truecolor 
  5 %% RGB image. This image is converted to a grayscale image and then  
  6 %% converted to a binary image. The pixels belonging to a scale is 
  7 %% recognized by being situated in a structure that is long and thin. A 
  8 %% scale object must be of a certain size (100 to 900 pixels) and 
  9 %% eccentricity (minimum 0.95) to be accepted. The 11 scales must be 
 10 %% situated in a certian position to be accepted. The scale pixels are 
 11 %% replaced by a value obtained by linear interpolation. The output is the  
 12 %% RGB image with replaced scale-pixels. 
 13  
 14 [n m l] = size(x00); 
 15  
 16 % Adds a black frame of size f around the image. 
 17 f = 20; x0 = zeros(n+2*f,m+2*f,l);  x0(f+1:n+f,f+1:m+f,:) = x00;                      
 18 [n m l] = size(x0);                  
 19  
 20 % Creates a disk of radius r6 pixels, all scales are outside this disk. 
 21 r6 = 450;   diff = n/2-r6;  circ = logical(zeros(n,m));  
 22 circ(diff+1:n-diff,diff+1:n-diff) = circlefunc(r6);       
 23  
 24 % Creates a black mask with a disk-shaped hole. The pixels belonging to the 
 25 % black mask are not replaced, since they are not used in the final 
 26 % segmentation. 
 27 r0 = 800; mask = zeros(n,m); diff = n/2-r0; 
 28 circ2 = circlefunc(r0); mask(diff+1:n-diff,diff+1:m-diff) = circ2; 
 29 qq = find(mask == 0); 
 30  
 31  
 32 deg = [0 30 60];                        % Angles of rotation.                                                           
 33              
 34 xgray = rgb2gray(x0/maxclass);          % Converts to gray. 
 35 num_scales = 10;                        % The minimum number of scales. 
 36 xx = x0; 
 37  
 38 % Identifies zero and non-zero pixels. The zero pixels will not be checked 
 39 % for scale objects. 
 40 p = find(x0(:,:,1) > 0);    q = find(x0(:,:,1) == 0); 
 41  
 42 se = strel('square',7);                 % Structuring element 
 43  
 44 % If the scales are not found in the first binary image, a new binary image 
 45 % with a different threshold will be made. 
 46 thresh = [0.4 0.6];  
 47 for w = 1: 2 
 48     for d = 1: length(deg)                                                       
 49      
 50         x0rot = imrotate(x0,deg(d),'crop');     % Rotates the full image. 
 51         xp1 = x0rot(:,:,1); xp2 = x0rot(:,:,2); xp3 = x0rot(:,:,3);              
 52      
 53         xp11 = imrotate(xgray,deg(d),'crop'); % Rotates the grayscale image. 
 54         xp11 = xp11 - min(xp11(p)); xp11 = xp11/max(xp11(p));  % Normalizes. 
 55     
 56  % Creates binary image with 0.4 (or 0.6) as threshold. The pixels possibly  
 57  % belonging to a scale object are black (0). The pixels that are black in 
 58  % the original image, or are situated inside the central disk, are set to 
 59  % 1. 
 60          
 61         bw = logical(zeros(n,m)); 
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 62         bw(p) = im2bw(xp11(p),thresh(w));  
 63         bw(q) = 1;    bw(circ == 1) = 1;                                                      
 64      
 65         bb_v = logical(zeros(n,m)); bb_h = logical(zeros(n,m));   
 66  %% Each row in the binary image is checked for scale pixels. 
 67  % For each black pixel, check if there are white pixels to the left AND to  
 68  % the right. If this is true, check if all pixels in the neighborhood  
 69  % above OR below are black. If this is true, the current pixel is stored  
 70  % as a possible vertical scale-pixel. The same procedure is repeated for 
 71  % the horizontal direction. 
 72         for i = f+1: n-f                                                                                                 
 73             t = find(bw(i,:) == 0);                                                                  
 74             if length(t) > 0                                                     
 75                 for j = 1: length(t) 
 76                     if sum(bw(i,t(j)-10:t(j))) > 0 & sum(bw(i,t(j):t(j)+10)) > 0     
 77                         if sum(bw(i-10:i,t(j))) == 0 | sum(bw(i:i+10,t(j))) == 0     
 78                             bb_v(i,t(j)) = 1;                                    
 79                         end 
 80                     end 
 81                     if sum(bw(i-10:i,t(j))) > 0 & sum(bw(i:i+10,t(j))) > 0       
 82                         if sum(bw(i,t(j)-10:t(j))) == 0 | sum(bw(i,t(j):t(j)+10)) == 0   
 83                             bb_h(i,t(j)) = 1;                                    
 84                         end 
 85                     end 
 86                 end 
 87             end             
 88             clear t                                                              
 89         end 
 90         
 91 %% Vertical scale objects 
 92 % Each vertical scale object is labeled, and its area and eccentricity is  
 93 % caclulated. 
 94      
 95         [labeled, num] = bwlabel(bb_v);                                        
 96         data = regionprops(labeled,'PixelList','Eccentricity','FilledArea');     
 97         E = [data.Eccentricity]; F = [data.FilledArea]; 
 98      
 99 % All objects smaller than 100 pixels, bigger than 900 pixels, or with  
100 % eccentricity smaller than 0.95 are removed. 
101         t = find(F < 100 |F > 900 | E < 0.95);                                   
102    
103         for i = 1: length(t)                                                     
104             g = data(t(i)).PixelList; 
105             for j = 1: length(g(:,1)) 
106                 bb_v(g(j,2),g(j,1)) = 0; 
107             end 
108         end 
109                            
110  % Counts the objects in the upper part of the scale matrix. If the number  
111  % of objects is greater than or equal to the number of scale objects, the  
112  % upper matrix is dilated. The pixels belonging to a scale is replaced by  
113  % a value obtained from linear interpolation. If the number of objects is 
114  % too low, the objects are removed. 
115          
116         bb_v(qq) = 0; 
117         [labeled,numU] = bwlabel(bb_v(1:n/2,:));                                  
118         if numU > num_scales-1                                                   
119             bb_v(1:n/2,:) = imdilate(bb_v(1:n/2,:),se);                        
120             for i = f+1: n/2                                                     
121                 t = find(bb_v(i,:) == 1);                                        
122                 if length(t) > 0                                                 
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123                     for j = 1: length(t)                                                                                        
124                         left_r = find(bb_v(i,1:t(j)) == 0,10,'last'); 
125                         right_r = find(bb_v(i,t(j):end) == 0,10); 
126                         r = [left_r(1) t(j)+right_r(end)-1]; 
127                          
128                         xp1(i,t(j)) = interp1(r,xp1(i,r),t(j)); 
129                         xp2(i,t(j)) = interp1(r,xp2(i,r),t(j)); 
130                         xp3(i,t(j)) = interp1(r,xp3(i,r),t(j)); 
131                     end 
132                 clear t                                                              
133                 end 
134             end 
135         else 
136             bb_v(1:n/2,:) = 0; 
137         end 
138          
139 % Same procedure for the lower half of the matrix. 
140         [labeled,numD] = bwlabel(bb_v(n/2+1:end,:)); 
141         if numD > num_scales-1                                                   
142             bb_v(n/2+1:end,:) = imdilate(bb_v(n/2+1:end,:),se); 
143             for i = n/2+1: n-f                                                         
144                 t = find(bb_v(i,:) == 1);                                            
145                 if length(t) > 0                                                     
146                     for j = 1: length(t)                                                                                          
147                         left_r = find(bb_v(i,1:t(j)) == 0,10,'last'); 
148                         right_r = find(bb_v(i,t(j):end) == 0,10); 
149                         r = [left_r(1) t(j)+right_r(end)-1]; 
150                         xp1(i,t(j)) = interp1(r,xp1(i,r),t(j)); 
151                         xp2(i,t(j)) = interp1(r,xp2(i,r),t(j)); 
152                         xp3(i,t(j)) = interp1(r,xp3(i,r),t(j)); 
153                     end 
154                 clear t                                                              
155                 end 
156             end 
157         else 
158             bb_v(n/2+1:end,:) = 0; 
159         end 
160  
161         clear E F 
162      
163 %% Horizontal scale objects 
164 % Follows the same procedure as for vertical scale objects. 
165      
166         [labeled, num] = bwlabel(bb_h); 
167         data = regionprops(labeled,'PixelList','Eccentricity','FilledArea'); 
168         E = [data.Eccentricity]; F = [data.FilledArea]; 
169         t = find(F < 100 | F > 900 |E < 0.95); 
170      
171         for i = 1: length(t) 
172             g = data(t(i)).PixelList; 
173             for j = 1: length(g(:,1)) 
174                 bb_h(g(j,2),g(j,1)) = 0; 
175             end 
176         end 
177             
178         bb_h(qq) = 0; 
179         [labeled,numL] = bwlabel(bb_h(:,1:m/2)); 
180         if numL > num_scales-1  
181             bb_h(:,1:m/2) = imdilate(bb_h(:,1:m/2),se); 
182          
183             for i = f+1: n-f 
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184                 s = find(bb_h(i,1:m/2) == 1); 
185                 if length(s) > 0 
186                     for j = 1: length(s) 
187                         up_r = find(bb_h(1:i,s(j)) == 0,10,'last'); 
188                         low_r = find(bb_h(i:end,s(j)) == 0,10); 
189                         r = [up_r(1) i+low_r(end)-1]'; 
190                         xp1(i,s(j)) = interp1(r,xp1(r,s(j)),i); 
191                         xp2(i,s(j)) = interp1(r,xp2(r,s(j)),i); 
192                         xp3(i,s(j)) = interp1(r,xp3(r,s(j)),i); 
193                     end 
194                 clear s 
195                 end 
196             end 
197         else 
198             bb_h(:,1:m/2) = 0; 
199         end 
200      
201         [labeled,numR] = bwlabel(bb_h(:,m/2+1:end)); 
202         if numR > num_scales-1 
203             bb_h(:,m/2+1:end) = imdilate(bb_h(:,m/2+1:end),se); 
204             for i = f+1: n-f 
205                 s = find(bb_h(i,m/2+1:end) == 1); 
206                 if length(s) > 0 
207                     for j = 1: length(s) 
208                         up_r = find(bb_h(1:i,s(j)) == 0,10,'last'); 
209                         low_r = find(bb_h(i:end,s(j)) == 0,10); 
210                         r = [up_r(1) i+low_r(end)-1]'; 
211                         xp1(i,s(j)) = interp1(r,xp1(r,s(j)),i); 
212                         xp2(i,s(j)) = interp1(r,xp2(r,s(j)),i); 
213                         xp3(i,s(j)) = interp1(r,xp3(r,s(j)),i); 
214                     end 
215                 clear s 
216                 end 
217             end 
218         else 
219             bb_h(:,m/2+1:end) = 0; 
220         end 
221  
222         x_x = cat(3,xp1,xp2,xp3);                                                
223         if d > 1                % Rotates back to original position. 
224             x_x = imrotate(x_x,-deg(d),'crop');                                  
225         end 
226      
227         % Combines current color image with the ones from earlier rotations.  
228         xx = max(xx,x_x);                                                        
229     end 
230 % If scale objects have been found for the 0.4-threshold, the procedure is 
231 % not repeated. 
232     if sum(bb_v(:)) + sum(bb_h(:)) > 0 
233         break 
234     end 
235 end 
236  
237 xx = xx(f+1:n-f,f+1:m-f,:);     % Removes the frame.                                                
238  
239 % Returns the original-sized image with the scale replaced by skin-colored 
240 % pixels. 
241 scaleremoval = xx;                                                          

112 Appendix A



11/13/08 3:39 PM /Applications/matlab/Masteroppgave/ladyshave_pdf.m 1 of 4

  1 function shaved = ladyshave(x00,maxclass) 
  2  
  3 %% This function removes hair in a dermosopic image, and replaces the hair  
  4 %% pixels with skin colored pixels. The hairs are divided into two  
  5 %% categories, thin and thick, and they are found in two directions, 
  6 %% vertical and horizontal. The image is rotated four times, each time  
  7 %% with an angle of 22.2 degrees. The input is an RGB image. The red layer  
  8 %% of the image is used as a grayscale image. The grayscale image is then  
  9 %% converted into a binary image, using 5 different thresholds. The  
 10 %% thresholds are calculated on the basis of Otsu's method. In the binary 
 11 %% image, the possible hair pixels are black. To be accepted as a hair 
 12 %% pixel, the pixel must belong to a long and thin structure. The hair 
 13 %% object must have a minimum major axis, and a minimum eccentricity. The 
 14 %% hair pixels are replaced by a value found by linear interpolation. 
 15  
 16 [n m l] = size(x00);                     
 17  
 18 % Adds a black frame of width f around the image. 
 19 f = 20; x0 = zeros(n+2*f,m+2*f,l); x0(f+1:n+f,f+1:m+f,:) = x00;                      
 20 [n m l] = size(x0);                                                          
 21  
 22 % This defines the region of interest. Pixels outside this region need not  
 23 % be replaced. 
 24 r0 = 800; 
 25 mask = zeros(n,m); diff = n/2-r0; 
 26 circ = circlefunc(r0); mask(diff+1:n-diff,diff+1:m-diff) = circ; 
 27 qq = find(mask == 0); 
 28  
 29 deg = [0 22.5 45 67.5];             % Angle of rotation.                                                    
 30  
 31 bb_2 = zeros(n,m);                                                           
 32 xx = x0;                                                                     
 33 xp1 = x0(:,:,1)/maxclass; 
 34  
 35 % Finds the zero and non-zero pixels in the original image. The zero pixels 
 36 % are not taken into consideration. 
 37 p = find(xp1 > 0);  q = find(xp1 == 0); 
 38 grayth = graythresh(xp1(p));                        % Otsu's threshold.       
 39 w = [0.85 0.9 0.95 1 1.05];  
 40  
 41 for d = 1: length(deg)                              % For all rotations. 
 42      
 43     x = imrotate(x0,deg(d),'crop');                 % Rotates the image 
 44     xp1 = x(:,:,1);     xp2 = x(:,:,2);     xp3 = x(:,:,3);                          
 45     xp11 = xp1/maxclass; 
 46  
 47     bb_v = logical(zeros(n,m));      bb_h = logical(zeros(n,m));                                
 48     bb_v20 = logical(zeros(n,m));    bb_h20 = logical(zeros(n,m));  
 49         
 50     for v = 1: length(w)    % For all multiples of the Otsu's threshold.                                                     
 51                                  
 52 % Creates a binary image where the threshold value is a multiple of Otsu's  
 53 % threshold. The possible hair pixels will appear black (0). 
 54         level = w(v).*grayth;                                                
 55         bw = im2bw(xp11,level); bw(q) = 1; 
 56          
 57 % To identify possible hair pixels in the vertical direction, a closing 
 58 % operation with a horizontal structuring element is applied to the binary 
 59 % image. The closing operation removes all objects thin enough to be a hair. 
 60 % The original binary image is then substracted from the closed image, and  
 61 % the resulting image shows possible hair pixels as white pixels. An  
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 62 % opening operation with a vertical structuring element is applied, to  
 63 % remove objects that are too short to be a hair. 
 64         se = strel('line',21,0); 
 65         se2 = strel('line',11,90); 
 66         bw_closed = imclose(bw,se); 
 67         bw_diff = logical(bw_closed - bw); 
 68         bb_v = max(bb_v,imopen(bw_diff,se2)); 
 69          
 70 % The same procedure is applied to identify possible hair pixels in the  
 71 % horizontal direction, but with transposed structuring elements. 
 72         se = strel('line',21,90); 
 73         se2 = strel('line',11,0); 
 74         bw_closed = imclose(bw,se); 
 75         bw_diff = bw_closed - bw; 
 76         bb_h = max(bb_h,imopen(bw_diff,se2)); 
 77          
 78 % To identify thick hairs, the same procedure is applied, but with longer 
 79 % structuring elements. 
 80          
 81         se = strel('line',41,0); 
 82         se2 = strel('line',31,90); 
 83         bw_closed = imclose(bw,se); 
 84         bw_diff = bw_closed - bw; 
 85         bb_v20 = max(bb_v20,imopen(bw_diff,se2)); 
 86          
 87         se = strel('line',41,90); 
 88         se2 = strel('line',31,0); 
 89         bw_closed = imclose(bw,se); 
 90         bw_diff = bw_closed - bw; 
 91         bb_h20 = max(bb_h20,imopen(bw_diff,se2)); 
 92     end 
 93      
 94 %% Thin vertical hairs 
 95 % The possible hair objects are labeled. The eccentricity and major  
 96 % axis length of the corresponding ellipse are calculated. 
 97     [labeled, num] = bwlabel(bb_v);                                    
 98     data = regionprops(labeled,'PixelList','Eccentricity','MajorAxisLength');  
 99     E = [data.Eccentricity]; M = [data.MajorAxisLength]; 
100          
101 % All objects with major axis shorter than 100 pixels or eccentricity less  
102 % than 0.975 are removed. 
103     t = find(M < 100 | E < 0.975);                                       
104          
105     for i = 1: length(t) 
106         g = data(t(i)).PixelList; 
107         for j = 1: length(g(:,1)) 
108             bb_v(g(j,2),g(j,1)) = 0;                                     
109         end 
110     end 
111           
112     clear E M t                                                              
113  
114 %% Thick vertical hairs 
115 % Same procedure as thin hairs, except the minimum length of the major 
116 % axis. 
117          
118     [labeled, num] = bwlabel(bb_v20); 
119     data = regionprops(labeled,'PixelList','Eccentricity','MajorAxisLength'); 
120     E = [data.Eccentricity]; M = [data.MajorAxisLength]; 
121     t = find(M < 250 | E < 0.975);                                                   
122          
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123     for i = 1: length(t) 
124         g = data(t(i)).PixelList; 
125         for j = 1: length(g(:,1)) 
126             bb_v20(g(j,2),g(j,1)) = 0; 
127         end 
128     end 
129  
130     clear E M t 
131  
132 %% Thin horizontal hairs 
133 % Same procedure as with vertical hairs. 
134            
135     [labeled, num] = bwlabel(bb_h); 
136     data = regionprops(labeled,'PixelList','Eccentricity','MajorAxisLength'); 
137     E = [data.Eccentricity]; M = [data.MajorAxisLength]; 
138     t = find(M < 100 | E < 0.975); 
139          
140     for i = 1: length(t) 
141         g = data(t(i)).PixelList; 
142         for j = 1: length(g(:,1)) 
143             bb_h(g(j,2),g(j,1)) = 0; 
144         end 
145     end 
146  
147     clear E M t 
148  
149 %% Thick horizontal hairs 
150 % Same procedure as with thick vertical hairs. 
151     [labeled, num] = bwlabel(bb_h20); 
152     data = regionprops(labeled,'PixelList','Eccentricity','MajorAxisLength'); 
153     E = [data.Eccentricity]; M = [data.MajorAxisLength];  
154     t = find(M < 250 | E < 0.975); 
155         
156     for i = 1: length(t) 
157         g = data(t(i)).PixelList; 
158         for j = 1: length(g(:,1)) 
159             bb_h20(g(j,2),g(j,1)) = 0; 
160         end 
161     end 
162  
163     clear E M t                                                              
164  
165          
166 %% Dilation of the binary images 
167 % The dilation is done to include the shadows in the hair objects. 
168  
169     bb_v = max(bb_v,bb_v20);    bb_h = max(bb_h,bb_h20); 
170     se = strel('square',7);                                              
171     bb_v = imdilate(bb_v,se); bb_h = imdilate(bb_h,se);                  
172          
173   
174 %% Replacement of the hair pixels with skin-valued pixels 
175 % Each vertical (horizontal) hair-pixel value is replaced by the value  
176 % obtained from linear interpolation. The pixels used for interpolation are  
177 % the 10th non-hair pixel to the right (above) and the 10th non-hair pixel  
178 % to the left of (below) the current hair pixel. Only the pixels in the 
179 % region of interest will be replaced. 
180  
181     bb_v(qq) = 0; bb_h(qq) = 0; 
182  
183     for i = f+1: n-f                                                     
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184              
185         t = find(bb_v(i,:) == 1);                                         
186         s = find(bb_h(i,:) == 1);   
187              
188         if length(t) > 0                    % Vertical hairs.                                                
189             for j = 1: length(t)                                         
190                 left_r = find(bb_v(i,1:t(j)) == 0,10,'last'); 
191                 right_r = find(bb_v(i,t(j):end) == 0,10); 
192                 r = [left_r(1) t(j)+right_r(end)-1]; 
193                  
194                 xp1(i,t(j)) = interp1(r,xp1(i,r),t(j)); 
195                 xp2(i,t(j)) = interp1(r,xp2(i,r),t(j)); 
196                 xp3(i,t(j)) = interp1(r,xp3(i,r),t(j)); 
197             end 
198         end 
199              
200         if length(s) > 0                    % Horizontal hairs.                                                 
201             for j = 1: length(s)                                         
202                                                                              
203                 upper_r = find(bb_h(1:i,s(j)) == 0,10,'last'); 
204                 low_r = find(bb_h(i:end,s(j)) == 0,10); 
205                 r = [upper_r(1) i+low_r(end)-1]'; 
206                      
207                  
208                 xp1(i,s(j)) = interp1(r,xp1(r,s(j)),i); 
209                 xp2(i,s(j)) = interp1(r,xp2(r,s(j)),i); 
210                 xp3(i,s(j)) = interp1(r,xp3(r,s(j)),i); 
211             end 
212         end 
213              
214         clear s t                                                
215     end 
216    
217     x_x = cat(3,xp1,xp2,xp3);                                            
218     % Rotates back to the original position. 
219     x_x = imrotate(x_x,-deg(d),'crop');                                  
220     % Combines the matrix with the hairs replaced with previous 
221     % combinations of matrices with hairs replaced. 
222     xx = max(xx,x_x);  
223 end 
224   
225 xx = xx(f+1:n-f,f+1:m-f,:);         % Removes the frame. 
226  
227 % Returns an RGB image with the hair pixels replaced by skin-valued pixels. 
228 shaved = xx; 
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 1 function borders = bordersfunc(x0,r,name) 
 2  
 3 %% This function segments the lesion from the background skin. First the  
 4 %% RGB-image is transformed into a grayscale image by the PCT-method. The  
 5 %% grayscale image is filtered with a median filter. A histogram with 100  
 6 %% bins is made. First the maximum of the histogram is found. This bin is  
 7 %% called the skin mode. Then the first local minimum to the left of the  
 8 %% skin mode is found. The mean of all pixel values to the left of the  
 9 %% local minimum is calculated. This mean is called the lesion mode. A  
10 %% morphological opening operation is applied to the grayscale image. A  
11 %% binary image is made from the opened grayscale image, where the  
12 %% threshold is the middle point between the lesion mode and the skin mode. 
13  
14 xpc = rgb2pc(x0,r);                 % Conversion to principal components. 
15 x1 = xpc(:,:,1);                    % 1st principal component. 
16 x1 = ordfilt2(x1,13,ones(5,5));     % Filters to avoid outliers. 
17 x1(r) = x1(r) - min(x1(r)); x1(r) = x1(r)/max(x1(r));   % Normalizes. 
18  
19 h = hist(x1(r),100);                % Creates histogram with 100 bins. 
20  
21 % The skinmode is the highest bin among the 75 rightmost bins. 
22 skinmode = 24 + find(h(25:end) == max(h(25:end)));        
23  
24 % Finds the first bin, t, containing more than 2014 pixels (0.1% of the  
25 % total number of pixels). 
26 p = round(length(r)*0.001); 
27 for t = 1: round(skinmode/3) 
28     if sum(h(1:t)) > p 
29         break 
30     end 
31 end 
32  
33 % Finds the first peak to the right of t, but with minimum 5. 
34 t = max(t,5); 
35 for i = t: skinmode-10 
36     if h(i+1:i+2) < h(i)  
37         break 
38     end 
39 end 
40  
41 % Check if the histogram is unimodal. The histogram is considered to be 
42 % unimodal if no peak has been found between t and skinmode - 10. Then the 
43 % skin mode bound is chosen to be skinmode/3. 
44 if i == skinmode-10 
45     minh = round(skinmode/3); 
46     i = t; 
47 else 
48  
49 % If a peak is found, the bound of the skin mode is searched for between  
50 % the peak and the skinmode. A local minimum is concidered to be the bound 
51 % if the four bins to the left and the four bins to the right are taller 
52 % than the current bin. 
53  
54     for j = skinmode-10:-1:i 
55         if h(j-4:j-1) > h(j) & h(j+1:j+4) > h(j) 
56             minh = j; 
57             break 
58         end 
59     end 
60  
61  % If no bound is found, the bound is set to be the minimum bin between  
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62  % the peak and the skinmode. 
63  
64     if j == i 
65         minh = i + find(h(i:skinmode) == min(h(i:skinmode)),1,'last') - 1; 
66     end 
67 end 
68  
69 %% Threshold value 
70 % All pixels belonging to the bins to the left of the bound are considered  
71 % to belong to the lesion mode. The mean of these pixels are set as the  
72 % location of the lesion mode peak.    
73 xx = x1(r); 
74 s = find(xx < 0.01*minh);    
75 M = mean(xx(s)); 
76  
77 % The threshold value is that of the pixels in the bin located at equal 
78 % distance from the lesion mode peak and the skin mode peak. 
79 thresh = M + (0.01*skinmode-M)/2 
80  
81 % The image is opened with a disk of radius 20 pixels as structuring 
82 % element. 
83 se = strel('disk',20); 
84 x1 = imopen(x1,se); 
85  
86 % The binary image is created. 
87 bw = im2bw(x1(r),thresh); 
88 x1(r) = bw; 
89 bw = reshape(x1,size(x1)); 
90  
91 % The function returns a binary image with the same size as the input 
92 % image. 
93 borders = bw; 
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  1 function lesion = lesionfunc(border,r,nr) 
  2  
  3 %% This function identifies the lesion and draws a border around it. The 
  4 %% input is a binary image where one or more of the black objects is a 
  5 %% lesion. The number of lesions present is also an imput. The 
  6 %% post-processing done in this function is removing those objects and 
  7 %% pixels that are not skin lesions. When only the skin lesion objects 
  8 %% remain, a border is drawn. 
  9  
 10 bw = border; 
 11 bw2 = ones(size(border));   % The binary image is reversed. 
 12 bw2(border == 1) = 0; 
 13  
 14 % All objects in contact with the mask surrounding the disk-shaped middle  
 15 % of the binary image are removed. To do this, the mask is connected to one  
 16 % object, and the whole object starting in the upper left corner is removed.   
 17 bw2(1,:) = 1; bw2(end,:) = 1; bw2(:,1) = 1; bw2(:,end) = 1; 
 18 [labeled, num] = bwlabel(bw2,4); 
 19 data = regionprops(labeled,'PixelList'); 
 20 g = data(1).PixelList; 
 21 for j = 1: length(g(:,1)) 
 22     bw2(g(j,2),g(j,1)) = 0; 
 23 end 
 24  
 25 % The image is filled, meaning that all black regions that cannot be 
 26 % reached from any of the four corners without traversing white pixels are 
 27 % turned white. 
 28 bw2 = imfill(bw2,'holes'); 
 29  
 30 % The image is opened, using a disk with 10 pixel radius as structuring 
 31 % element. 
 32 se = strel('disk',10); 
 33 bw2 = imopen(bw2,se); 
 34  
 35 % The objects are labeled. 
 36 [labeled, num] = bwlabel(bw2,4); 
 37 data = regionprops(labeled,'Area'); 
 38  
 39 if nr == 1          % If there is only one lesion present. 
 40     mainArea = max([data.Area]) % The largest object is found. 
 41 % If the largest object covers less than 0.1% of the image, the 
 42 % post-processing is done without removing the objects in contact with the  
 43 % mask.  
 44     if mainArea < round(length(r)*0.001)     
 45         bw = border; 
 46         bw2 = ones(size(bw)); 
 47         bw2(bw == 1) = 0; 
 48         bw2 = imfill(bw2,'holes'); 
 49         figure, imagesc(bw2), colormap(gray) 
 50         se = strel('disk',10); 
 51         bw = imopen(bw2,se); 
 52         [labeled, num] = bwlabel(bw,4); 
 53         data = regionprops(labeled,'Area','PixelList'); 
 54         mainArea = max([data.Area]) 
 55     end 
 56     main = find([data.Area] == mainArea);                    
 57  
 58 % A binary image with white background and a black object consisting of the 
 59 % pixels in the largest object is created. 
 60     bw2 = ones(size(bw)); 
 61     g = data(main).PixelList; 
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 62     for j = 1: length(g(:,1)) 
 63         bw2(g(j,2),g(j,1)) = 0; 
 64     end   
 65 % If more than one lesion (nr) is present in the image, the nr largest  
 66 % objects are recognized. If an object covers less than 0.1% of the image, 
 67 % it is not concidered to be a lesion. 
 68 else     
 69     bw = zeros(size(bw)); 
 70     for t = 1: nr 
 71          
 72         [labeled, num] = bwlabel(bw2,4); 
 73         data = regionprops(labeled,'Area','PixelList'); 
 74  
 75         main = find([data.Area] == max([data.Area])); 
 76          
 77         Area =[data.Area]; 
 78         mainArea = Area(main) 
 79         if Area(main) < round(length(r)*0.001) 
 80             break 
 81         end 
 82         g = data(main).PixelList; 
 83         for j = 1: length(g(:,1)) 
 84             bw(g(j,2),g(j,1)) = 1; 
 85         end 
 86          
 87         for j = 1: length(g(:,1)) 
 88             bw2(g(j,2),g(j,1)) = 0; 
 89         end 
 90     end 
 91 end 
 92  
 93 %% Drawing of borders 
 94 % The binary image with only the lesion object present is filtered with an 
 95 % average filter. The absolute value between the filtered image and 0.5 is 
 96 % calculated for each pixel. A binary image with 0.1 as threshold value is 
 97 % created from the absolute difference image. The black pixels in this 
 98 % binary image are the border pixels. 
 99      
100 H = fspecial('average',15); 
101 blurred = filter2(H,bw2); 
102 x2 = abs(blurred - 0.5); 
103 c = im2bw(x2,0.1);  
104  
105 % The binary image consisting of black border pixels on a white background 
106 % is returned. 
107 lesion = c;  
108  
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 1 function correction = correctionfunc(x0,r0) 
 2  
 3 %% This function creates a (2*r0x2*r0) correction matrix based on a single 
 4 %% RGB image of class uint8. The correction matrix in disk-shaped. The  
 5 %% input is the RGB image and the radius of the wanted correction disk. 
 6  
 7 x0 = imread(x0);              % Reads the image. 
 8 x0 = double(x0);              % Converts to double. 
 9  
10 % A square image is cropped from the original rectangle image. The size is 
11 % (2*(r0+100)x2*(r0+100)). 
12 [n m l] = size(x0); 
13 r01 = r0+100; 
14 x0 = x0(floor(n/2)-r01+1:floor(n/2)+r01,floor(m/2)-r01+1:floor(m/2)+r01,:); 
15  
16 % Creates black masks. 
17 mask = circlefunc(r0);                                                       
18 r = find(mask == 1); 
19  
20 mask2 = circlefunc(r01); 
21 r2 = find(mask2 == 1); 
22  
23 % Converts the rgb-image to a grayscale image. 
24 x = rgb2gray(x0/255); 
25  
26 %% Finds the center of illumination. 
27  
28 % Creates a binary image using the 0.75-quantile as threshold. Opens the 
29 % binary image to avoid outlying pixels of value 1. 
30 se = strel('square',5); 
31 light = quantile(x(r2),0.75);                                                 
32 xbw = im2bw(x,light);                                                        
33 xbw = imopen(xbw,se);                                                        
34  
35 % Finds the center of the square made up by the leftmost, rightmost, 
36 % uppermost and lowermost pixel of value 1. 
37 [t t1] = find(xbw == 1,1);                                                                                         
38 [t t2] = find(xbw == 1, 1,'last');                                           
39 t = t1 + floor((t2-t1)/2);                                                  
40  
41 [s s1] = find(xbw' == 1,1); 
42 [s s2] = find(xbw' == 1,1,'last'); 
43 s = s1 + floor((s2-s1)/2);                                                   
44  
45 % Cuts the image to the size of (r0xr0) with the center of illumination  
46 % coinciding with the center of the new image. 
47 a = s-r0+1; b = 2*r0+a-1; c = t-r0+1; d = 2*r0+c-1; 
48 x = x(a:b,c:d); 
49 x0 = x0(a:b,c:d,:); 
50  
51 xpc = rgb2pc(x0,r);         % The principal components are calculated. 
52 x = xpc(:,:,1);             % The first PC is used as grayscale image. 
53  
54 % Creates a vector, s, containing the mean values of the pixels belonging 
55 % to the right half of the image, according to their distance from the 
56 % center.  
57  
58 for r = 1: r0 
59      
60     y = -r:1:r; 
61     x1 = ceil(sqrt(r^2 - y.*y) + r); 
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62      
63     for i = 1: 2*r 
64         if x1(i) < r0 
65             t1 = x(i+r0-r,x1(i)+r0-r:x1(i)+r0-r+1); 
66         else 
67             t1 = x(i+r0-r,x1(i)+r0-r-1:x1(i)+r0-r); 
68         end 
69         t(i) = sum(t1).*0.5; 
70     end  
71     s(r) = mean(t); 
72 end 
73  
74 % Smooths the vector by moving average with an 11 pixel long window. 
75 s = smooth(s,11); 
76  
77 % Reverses the graph. 
78 s = s/max(s); 
79 one = ones(r0,1); 
80 s = one./s; 
81  
82 % Sends the graph to interpolation. 
83 interpol = interpolfunc(s); 
84  
85 % Creates the correction matrix. 
86 matrix = vector2matrix(interpol); 
87  
88 correction = matrix; 
89  
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 1 function interpol = interpolfunc(s) 
 2  
 3 %% Based on a vector,s, and interpolation points, t1-t5, chosen by the  
 4 %% user, this function returns a new vector based on Newton's  
 5 %% interpolation. The input is the vector, s. 
 6  
 7 r0 = length(s); 
 8  
 9 figure, hold on, plot(s), axis([1 1000 0 5]) 
10  
11 % The user chooses the points of interpolation. 
12 t1 = input('Choose first point for interpolation '); 
13 t2 = input('Choose second point for interpolation '); 
14 t3 = input('Choose third point for interpolation '); 
15 t4 = input('Choose fourth point for interpolation '); 
16 t5 = input('Choose fifth point for interpolation '); 
17  
18 %% Interpolation by Newton's interpolation algorithm. 
19 % The interpolation is done separately on two parts of the vector; first 
20 % the part from t1+1 to t3, with interpolating points t1+1,t2 and t3; then 
21 % the part from t3+1 to the end of the vector, with interpolating points 
22 % t3+1, t4 and t5. 
23  
24 % Part one. 
25  
26 w1 = [t1+1 t2 t3]; 
27 n = length(w1); 
28 y(1) = 1; 
29 y(2:n) = s(w1(2:n)); 
30 c = zeros(1,n); 
31  
32 c(1) = y(1); 
33 for k = 2: n 
34     d = w1(k)-w1(k-1); 
35     u = c(k-1); 
36     for i = k-2: -1: 1 
37         u = u*(w1(k)-w1(i)) + c(i); 
38         d = d*(w1(k)-w1(i)); 
39     end 
40     c(k) = (y(k)-u)/d; 
41 end 
42  
43 r = t1+1:1:t3; 
44 p(1:t1) = 1; 
45 one = ones(1,length(r)); 
46 w11 = w1(1)*one; 
47 w12 = w1(2)*one; 
48  
49 p(r) = c(1) + c(2).*(r-w11) + c(3).*(r-w11).*(r-w12);  
50  
51 % Part two. 
52  
53 w2 = [t3+1 t4 t5]; 
54 n = length(w2); 
55 y = s(w2); 
56 c = zeros(1,n); 
57  
58 c(1) = y(1); 
59 for k = 2: n 
60     d = w2(k)-w2(k-1); 
61     u = c(k-1); 
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62     for i = k-2: -1: 1 
63         u = u*(w2(k)-w2(i)) + c(i); 
64         d = d*(w2(k)-w2(i)); 
65     end 
66     c(k) = (y(k)-u)/d; 
67 end 
68  
69 r = t3+1:1:r0; 
70 one = ones(1,length(r)); 
71 w21 = w2(1)*one; 
72 w22 = w2(2)*one; 
73  
74 % The resulting two parts are combined to one vector. The interpolated  
75 % vector is shown in the same window as the input vector. 
76 p(r) = c(1) + c(2).*(r-w21) + c(3).*(r-w21).*(r-w22);  
77 plot(p,'r') 
78  
79 % Returns the interpolated vector. 
80 interpol = p; 
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 1 function matrix = vector2matrix(s)                                          
 2  
 3 %% This function creates a matrix from a vector. The matrix has the 
 4 %% dimension (2*r0x2*r0), where r0 is the length of the vector. The pixel 
 5 %% values of the matrix corresponds to the pixel values of the graph, where 
 6 %% position in the graph corresponds to distance from origo in the matrix.  
 7 %% The result is a disk on black (0) background.  
 8  
 9 r0 = length(s); 
10 x3 = zeros(r0*2,r0*2); 
11  
12 for r = 1: r0 
13      
14     y = -r:1:r; 
15  
16     x1 = ceil(sqrt(r^2 - y.*y) + r); 
17     x2 = floor(-sqrt(r^2 - y.*y) + r); 
18      
19     t1 = find(x1 == 0); 
20     x1(t1) = 1; 
21     t2 = find(x2 == 0); 
22     x2(t2) = 1; 
23      
24     for i = 1: 2*r 
25         if x1(i) < r0 
26             x3(i+r0-r,x1(i)+r0-r:x1(i)+r0-r+1) = s(r); 
27         else 
28             x3(i+r0-r,x1(i)+r0-r-1:x1(i)+r0-r) = s(r); 
29         end 
30         if x2(i) < r0 
31             x3(i+r0-r,x2(i)+r0-r:x2(i)+r0-r+1) = s(r); 
32         else 
33             x3(i+r0-r,x2(i)+r0-r-1:x2(i)+r0-r) = s(r); 
34         end 
35     end  
36 end 
37  
38 x4 = imrotate(x3,90,'crop'); 
39  
40 r1 = find(x3 == 0); 
41 x3(r1) = x4(r1); 
42  
43 matrix = x3; 
44  
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Appendix B

Instructions

The instructions given to the dermatologists for evaluation of the segmen-
tation.

Results

The evaluation done by dermatologist I and dermatologist II.
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I denne permen finner du en samling bilder av føflekker med tilhørende forslag til 
segmentering. Til venstre er bildet av føflekken slik det ble tatt gjennom 

dermatoskopet. Over bildet står et tall som du finner igjen i tabellen der du skal skrive 
inn vurderingen din. Til høyre finner du det samme bildet med grensen til føflekken 

tegnet opp. Du skal vurdere denne grensa på en skala fra 1 til 4 (1, 2, 3 eller 4), som 
har følgende verdier 

 
1: good 

2: acceptable 
3: poor 

4: bad 
 

 
Takk for hjelpen. 

 
 

Kajsa Møllersen  
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image grade image grade

expert I II accepted I II accepted

91
1 1 x

124
1 1 x

93
1 1 x

126
1 1 x

95
2 2 x

130
1 1 x

97
2 2 x

132
3 3 -

99
1 2 x

133
1 1 x

101
2 1 x

135
2 2 x

103
1 1 x

136
2 2 x

105
2 2 x

137
2 2 x

107
2 2 x

139
1 1 x

108
1 1 x

140
3 3 -

110
2 3 /

144
1 2 x

112
2 2 x

146
3 3 -

113
2 2 x

150
3 4 -

114
3 3 -

152
2 2 x

116
2 2 x

154
3 4 -

117
2 1 x

156
1 1 x

118
1 1 x

157
1 1 x

119
2 1 x

159
2 2 x

121
2 1 x

160
2 3 /

123
2 1 x

163
1 2 x
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image grade   image grade  

I II accepted I II accepted

165
1 1 x

195
1 2 x

167
1 1 x

197
1 1 x

168
1 1 x

198
1 2 x

169
1 1 x

199
2 2 x

170
1 1 x

200
1 1 x

172
2 1 x

202
2 1 x

174
1 1 x

204
1 1 x

175
2 2 x

205
1 2 x

176
1 1 x

206
1 1 x

177
1 1 x

208
2 2 x

179
2 1 x

210
1 2 x

181
2 2 x

212
1 1 x

182
4 1

213
1 1 x

184
2 3 /

214
1 2 x

186
1 1 x

216
1 2 x

188
1 1 x

218
2 1 x

189
1 1 x

220
2 2 x

190
2 1 x

222
1 1 x

191
1 1 x

224
1 2 x

193
3 3 -

225
1 2 x
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