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ABCC9-related Intellectual disability
Myopathy Syndrome is a KATP channelopathy
with loss-of-function mutations in ABCC9
Marie F. Smeland1,16*, Conor McClenaghan2,16, Helen I. Roessler 3,16, Sanne Savelberg3,

Geir Åsmund Myge Hansen1, Helene Hjellnes1, Kjell Arne Arntzen4,5,6, Kai Ivar Müller 4,5,

Andreas Rosenberger Dybesland6,7, Theresa Harter2, Monica Sala-Rabanal2,14, Chris H. Emfinger2,

Yan Huang2,15, Soma S. Singareddy2, Jamie Gunn8, David F. Wozniak8, Attila Kovacs9, Maarten Massink3,

Federico Tessadori 3,10, Sarah M. Kamel 10, Jeroen Bakkers 10,11, Maria S. Remedi12,

Marijke Van Ghelue1,13,17, Colin G. Nichols 2,17 & Gijs van Haaften3,17*

Mutations in genes encoding KATP channel subunits have been reported for pancreatic dis-

orders and Cantú syndrome. Here, we report a syndrome in six patients from two families

with a consistent phenotype of mild intellectual disability, similar facies, myopathy, and

cerebral white matter hyperintensities, with cardiac systolic dysfunction present in the two

oldest patients. Patients are homozygous for a splice-site mutation in ABCC9 (c.1320+ 1 G >

A), which encodes the sulfonylurea receptor 2 (SUR2) subunit of KATP channels. This

mutation results in an in-frame deletion of exon 8, which results in non-functional KATP

channels in recombinant assays. SUR2 loss-of-function causes fatigability and cardiac dys-

function in mice, and reduced activity, cardiac dysfunction and ventricular enlargement in

zebrafish. We term this channelopathy resulting from loss-of-function of SUR2-containing

KATP channels ABCC9-related Intellectual disability Myopathy Syndrome (AIMS). The phe-

notype differs from Cantú syndrome, which is caused by gain-of-function ABCC9 mutations,

reflecting the opposing consequences of KATP loss- versus gain-of-function.

https://doi.org/10.1038/s41467-019-12428-7 OPEN

1 Department of Medical Genetics, University Hospital of North Norway, 9019 Tromsø, Norway. 2 Department of Cell Biology and Physiology, and Center for
the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO 63110, USA. 3 Department of Genetics, Center for
Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands. 4 Department of Neurology, University Hospital of North Norway,
9019 Tromsø, Norway. 5Department of Clinical Medicine, UiT—The Arctic University of Norway, 9019 Tromsø, Norway. 6 The National Neuromuscular Centre
of Norway, University Hospital of North Norway, 9019 Tromsø, Norway. 7Department of Physiotherapy, University Hospital of North Norway, 9019 Tromsø,
Norway. 8Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA. 9Department of Medicine, Washington University
School of Medicine, St. Louis, MO 63110, USA. 10Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT Utrecht, the Netherlands. 11 Department of Medical
Physiology, Division of Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands. 12 Department of Medicine, Division of
Endocrinology, Metabolism and Lipid Research, Washington University, St Louis, MO 63110, USA. 13Department of Medical Genetics, the Arctic University of
Norway, 9019 Tromsø, Norway. 14Present address: Department of Anesthesiology, Washington University, St Louis, MO 63110, USA. 15Present address:
Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China. 16These authors contributed equally: Marie F. Smeland, Conor McClenaghan,
Helen I. Roessler. 19These authors jointly supervised this work: Marijke Van Ghelue, Colin G. Nichols, Gijs van Haaften. *email: marie.smeland@unn.no;
G.vanHaaften@umcutrecht.nl

NATURE COMMUNICATIONS |         (2019) 10:4457 | https://doi.org/10.1038/s41467-019-12428-7 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-3409-0756
http://orcid.org/0000-0003-3409-0756
http://orcid.org/0000-0003-3409-0756
http://orcid.org/0000-0003-3409-0756
http://orcid.org/0000-0003-3409-0756
http://orcid.org/0000-0002-8686-4226
http://orcid.org/0000-0002-8686-4226
http://orcid.org/0000-0002-8686-4226
http://orcid.org/0000-0002-8686-4226
http://orcid.org/0000-0002-8686-4226
http://orcid.org/0000-0001-9975-0546
http://orcid.org/0000-0001-9975-0546
http://orcid.org/0000-0001-9975-0546
http://orcid.org/0000-0001-9975-0546
http://orcid.org/0000-0001-9975-0546
http://orcid.org/0000-0003-4424-9732
http://orcid.org/0000-0003-4424-9732
http://orcid.org/0000-0003-4424-9732
http://orcid.org/0000-0003-4424-9732
http://orcid.org/0000-0003-4424-9732
http://orcid.org/0000-0002-9418-0422
http://orcid.org/0000-0002-9418-0422
http://orcid.org/0000-0002-9418-0422
http://orcid.org/0000-0002-9418-0422
http://orcid.org/0000-0002-9418-0422
http://orcid.org/0000-0002-4929-2134
http://orcid.org/0000-0002-4929-2134
http://orcid.org/0000-0002-4929-2134
http://orcid.org/0000-0002-4929-2134
http://orcid.org/0000-0002-4929-2134
mailto:marie.smeland@unn.no
mailto:G.vanHaaften@umcutrecht.nl
www.nature.com/naturecommunications
www.nature.com/naturecommunications


KATP channels are nucleotide-gated potassium channels
formed by the obligate co-assembly of pore-forming Kir6.x
subunits and regulatory sulfonylurea receptors (SURx),

which couple the membrane potential to metabolic state in
multiple cell types1,2. In mammals, two Kir6.x isoforms are
encoded by the paralogous KCNJ8 (Kir6.1; [OMIM: 600935]) and
KCNJ11 (Kir6.2; [OMIM: 600937]) genes, which are each co-
located with genes encoding two SUR isoforms, ABCC9 (SUR2;
[OMIM: 601439]) and ABCC8 (SUR1; [OMIM: 600509]),
respectively, on chromosomes 12 and 11. Molecular heterogeneity
is further increased by alternative splicing of ABCC9 mRNA,
yielding two major splice variants, SUR2A and SUR2B— while
multiple other splice variants have also been reported1,3–8. Pan-
creatic and neuronal KATP channels are predominantly formed by
Kir6.2 and SUR1, smooth muscle KATP channels are comprised of
Kir6.1 and SUR2B, and the predominant combination in striated
muscle is Kir6.2 and SUR2A3.

The causative role of gain-of-function (GoF) or loss-of-
function (LoF) mutations in the Kir6.2/SUR1-dependent pan-
creatic KATP channels in neonatal diabetes and congenital
hyperinsulinism, respectively, was established nearly two decades
ago9–12. Recently, it has been demonstrated that dominant GoF
mutations in KCNJ8 and ABCC9 underlie Cantú Syndrome (CS
[OMIM: 239850])13–15. CS is characterized by hypertrichosis,
coarse facial features, and multiple cardiovascular abnormalities,
including cardiomegaly and tortuous, dilated vasculature14–16.
Behavioral problems and mild developmental delay have been
reported in CS, but intellectual function is typically normal17.

The human consequences of LoF in Kir6.1 and SUR2 remain
uncertain. In a single report, two heterozygous LoF mutations in
an exon found only in SUR2A were associated with dilated car-
diomyopathy (DCM [MIM: 608569])18. A missense mutation in
the same exon was reported as predisposing to paroxystic adre-
nergic atrial fibrillation (AF [MIM: 614050]), but only in one 53-
year-old female patient19. The pathophysiological consequences
of complete SUR2 LoF are unclear.

We report six patients from two non-consanguineous families
from Northern Norway who exhibit a shared pathological con-
stellation including similar facies, intellectual disability and
developmental delay, anxiety, myopathy with hypotonia, muscle
weakness, and fatigability. Cardiac systolic dysfunction is found
in the two oldest patients. All have cerebral white matter
hyperintensities, and hyperreflexia is found in the oldest four. The
families are investigated by comprehensive clinical exome
sequencing, a powerful tool for identifying the genetic basis of
rare and complex syndromes, both in patients with de novo
mutations and in families with suspected recessive
inheritance20,21.

We identify a homozygous ABCC9 splice site mutation
(c.1320+ 1 G > A) in all affected individuals. We show that the
mutation causes the in-frame deletion of exon 8, resulting in
SUR2 protein lacking 52 amino acids, and loss of plasmalemmal
KATP function. Using CRISPR/Cas9 genome engineering, we
introduce frameshift mutations into ABCC9 that result in pre-
mature protein truncation, in both zebrafish and mice. These
animals lack functional SUR2 protein and myocyte KATP

channels and recapitulate the myopathy and cardiac dysfunction
observed in patients. We conclude that SUR2 LoF results in a
recessive syndrome: ABCC9-related Intellectual disability Myo-
pathy Syndrome (AIMS).

Results
Patient descriptions. Four siblings from Family 1 (aged 12–21
years) and two siblings from Family 2 (aged 29, 33) (Fig. 1a) are
described. The families are not known to be related, but are from

the same area of Northern Norway. Genetic investigations had
earlier been performed with normal results in several of the
patients, including G-banding, high-resolution Single-Nucleotide
Polymorphism (SNP) array to look for genomic deletions and
duplications, FMRI CGG repeat analysis, DMPK PCR, sequen-
cing of multiple neuromuscular disease genes, screening for
mitochondrial DNA sequence variants/deletions, and screening
for inborn errors of metabolism. Clinical photographs of the
patients are presented in Fig. 1b, c. MRI images are presented in
Fig. 1d. Clinical features are summarized in Tables 1 and 2.

Family 1. Patient 1–1 is the first child of healthy parents from
Northern Norway with probable Finnish ancestry. Pregnancy and
birth were uneventful. Weight and length were below the 2.5
percentile in childhood. Hearing loss was reported in childhood,
but a recent hearing evaluation was normal. Early psychomotor
development was described as normal, but at age 2, in-toeing, toe-
walking and reduced fine motor skills, generalized hypotonia,
lumbar lordosis, and delayed development were noted. At age 11,
neuropsychological testing identified mild intellectual disability.
From age 15, she experienced episodes of tonic/tonic–clonic
seizures, but epileptic activity was absent in repeated EEGs.
Lamotrigine treatment was partly effective. She continues to
report muscular pain, fatigue, and anxiety. Recently, hyperpro-
lactinemia was found (720 mlU L−1 (ref: 102–496 mlU L−1)). An
MRI of the pituitary, however, did not disclose pituitary adeno-
mas. She lives in her own home, but requires frequent supervision
and help. For neuromuscular evaluation of all patients, including
cerebral MRI with white matter changes, see Tables 1 and 2.

Patient 1–2 is the younger brother of 1–1. Pregnancy and birth
were uneventful. Delayed psychomotor development and lumbar
lordosis was noted early alongside eating difficulties and low body
weight. In childhood, he displayed left lower extremity weakness,
hyperreflexia, and limping. Muscle biopsy showed unspecific
changes of mitochondrial aggregation and muscle fiber caliber
variation. Mild intellectual disability was diagnosed by neurop-
sychological testing in teenage years.

Patient 1–3 is the younger brother of 1–1. Pregnancy and birth
were unremarkable. He showed delayed early psychomotor
development with generalized hypotonia and toe-walking.
Hyperreflexia was noted in the lower extremities from age 5.
Eating difficulties, nausea, abdominal pain, and low body weight
were present from childhood. Neuropsychological testing at 5
years showed mild intellectual disability. Profound muscular
pain and stiffness are reported after physical exercise. Mild
bilateral high-frequency sensorineural hearing loss was found at
age 12.

Patient 1–4 is the youngest brother of 1–1. Pregnancy and birth
were unremarkable. Eating difficulties and low body weight were
observed in early years, with weight and length at the 2.5
percentile. Delayed psychomotor development, in-toeing, lumbar
lordosis, generalized muscular hypotonia, and strabismus were
noted. At age 7, he experienced a cerebral episode with coma and
tetraplegia preceded directly by repeated vomiting, and a few days
earlier by high fever. Serum measurements showed a metabolic
acidosis with S-lactate 6, normal S-potassium (measured after
intravenous infusion), and elevated S-creatin kinase (738) at
hospital admission. Cerebral MRI revealed multiple lesions in
both hemispheres periventricularly, subcortically, in the pons and
the basal ganglia, in both gray and white matter. Acute
disseminated encephalomyelitis was discussed, and steroid
treatment was given. He regained consciousness over the
following few days. Re-evaluation of MRI findings concluded
with an “inflammatory perivascular reaction”. MRI lesions were
normalized a few weeks later, except for a white matter lesion by
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the anterior horn of the left ventricle. He regained the same
psychomotor level as before. Weight increased after that episode
and is currently > 97.5 percentile. Neuropsychological testing at
age 9 resulted in a diagnosis of mild intellectual disability.
Obstructive sleep apnea, probably related to being overweight, a

large tongue and hanging soft palate were diagnosed at age 11,
and operative treatment was recommended. Mild bilateral high-
frequency hearing loss was found at age 11.

Individual II.3 was a female fetus, conceived inbetween patients
1–2 and 1–3. The parents elected to terminate pregnancy in

1 2 3

1 2

4a 4b

1 2

5a 5b

3

Family 1
a b

c

d

Family 2

I.1

II.1
Patient 1–1

II.2
Patient 1–2

II.1
Patient 2–1

II.2
Patient 2–2

II.4
Patient 1–3

II.5
Patient 1–4

II.3
Week 21

I.2

I.1 I.2

II.3

Fig. 1 Clinical features and pedigrees of AIMS patients. a Pedigrees of both affected families. Black defines patients homozygous for the ABCC9 c.1320+ 1
G < A mutation. Black dots indicate individuals heterozygous for the ABCC9 variant. Gray triangle represents a fetus affected by probable thanatophoric
dysplasia and terminated pregnancy. b Musculoskeletal features in AIMS patients. (1) Lumbar lordosis in patient 1–4 at age 4; (2) lumbar lordosis, thin
habitus in patient 1–2 at age 10; (3) thoracolumbar scoliosis in patient 2–2 at age 28. c Facial features with prominent orbital ridges, hypotelorism, thin
upper lip, flat midface in several of the patients. (1) Family 1. Upper left: patient 1–1 at age 20. Upper right: patient 1–2 at age 16. Lower left: patient 1–3 at age
11. Lower right: patient 1–4 at age 10; (2) profile of patient 1–2 at age 10; (3) profile of patient 1–1 at age 15; (4) patient 2–2 at age 28; (5) patient 2–1 at age
32. d Cerebral MRI of AIMS patients. (1) Magnetic resonance imaging (MRI) of the brain of patient 2–1. T2-weighted fluid-attenuated inversion recovery
(FLAIR), coronal section shows widespread white matter hyperintensities. (2) MRI of the brain of patient 1–1. T2-weighted FLAIR, axial section shows
juxtacortical white matter hyperintensities
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pregnancy week 21, due to suspected thanatophoric dysplasia
with micromelia and a narrow thorax.

Family 2. Patient 2–1 is the first child of healthy parents. Preg-
nancy and birth were unremarkable. Delayed psychomotor
development and muscular hypotonia were noted in toddler
years. Due to similar findings in him and his sister, with a few
depigmented skin patches and white matter lesions on cerebral
computed tomography scan, a diagnosis of tuberous sclerosis
(TS) was suggested, but later abandoned. The MRI pattern is not
the same as in TS. Neither sibling has experienced epileptic sei-
zures. Feeding was difficult in childhood, with low body weight,
but he gained weight in adulthood, and is now overweight, with
short stature. Severe atopic eczema is currently managed by
cyclosporine, and he has multiple food allergies.

Recent neuropsychological testing led to a diagnosis of mild
intellectual disability. He has been medicated for anxiety with a
selective serotonin reuptake inhibitor for the last few years. He
reports frequent dizziness attacks. Cardiac ultrasound at age 33
revealed biventricular systolic dysfunction, moderate left ventricle
dysfunction, left ventricle ejection fraction (EF) of 35–40%, and
raised NT-proBNP. Left ventricle diameter was within the normal
range, although, cardiac MRI shows left ventricle dilatation,
without obvious pathology of the myocardium—compatible with
early-stage dilated cardiomyopathy. Treatment with an ACE-

antagonist and a beta-blocker was started. Hypertension was
diagnosed before treatment initiation. A cardiac ultrasound in
teenage years was normal. Cerebral MRIs at ages 16 and
33 showed widespread confluent white matter signal changes,
described as similar to leucodystrophy. Lesions have increased
significantly since the first investigation. MR angiography is
normal, with normal cerebral vasculature calibers. Point lesions
are found in the basal ganglia, pons, and white matter,
representing possible mineral depositions. He lives in a sheltered
home with daily help and supervision. He attends a sheltered
work program, but is easily exhausted, and needs rest during the
day. He is cheerful and social. Muscle strength is normal.

Patient 2–2 is the younger sister of 2–1. Pregnancy and birth
were unremarkable. She was treated for congenital hip dysplasia.
Psychomotor development was delayed. Cerebral MRI in child-
hood showed periventricular white matter changes, and a
diagnosis of tuberous sclerosis was considered (see above).
Hypotonia, reduced muscle strength, and exhaustibility are
reported since childhood. She has short stature and microcephaly.
She had a thin build in childhood, but is now overweight. Recent
neuropsychological testing indicates mild-to-moderate intellec-
tual disability. She lives in her own flat with assistance. She has
anxiety and has been followed by a local outpatient psychiatry
service. Cardiac ultrasound at age 29 revealed biventricular
systolic dysfunction, mildly reduced left ventricle ejection fraction
(EF) of 48%, and a hypokinetic left ventricle with normal

Table 1 General clinical features and dysmorphology of AIMS patients

Patient 1–1 1–2 1–3 1–4 2–1 2–2

Age/sex 21/female 17/male 13/male 11/male 33/male 29/female
Cognitive function Mild ID Mild ID Mild ID Mild ID Mild ID Moderate ID
Hypotonia in childhood + + + + + +
Fatigability + + + + + +
Hearing Very mild

sensorineural
hearing loss

N High-freq mild
hearing loss bilat

High-freq mild
hearing loss bilat

N N

Sleep aponoea NA NA NA + + NA
Psychiatry Anxiety Anxiety NA NA Anxiety Anxiety
Skeletal Lumbal lordosis Lumbal lordosis Lumbal lordosis Lumbal lordosis Normal Congenital hip

dislocation
Scoliosis
Elbow extension
deficit

Growth L:2.5-10p
W:2.5 -10p
OFC:10p

L:10p
W: < 2.5p
OFC:2.5-10p

L:25p
W: < 2.5p
OFC:10p

L:10p
W:97,5p
OFC:50p

L: < 2.5p (162 cm)
OFC:25p
W: > 97.5p

L: < 2.5p (147 cm)
OFC < 2.5p
W: > 97.5p

Skin Marmoration Marmoration Marmoration Marmoration Marmoration
Depigmented
patches
Atopic dermatitis

Marmoration
Depigmented
patches
Atopic dermatitis
Telangiectasia
left cheek
1 cafe au lait patch

Dysmorphology
Prominent
supraorbital ridges

+ + + + + +

Hypotelorism − + − + + −
Broad nasal tip + + − − + +
Dental malocclusion + + + + − −
Flat face + + + + + −
Thin upper lip vermillion + + + + + +
Macrodontia upper
central incisors

− + +, widely spaced +, widely spaced − +

Food intolerance/
allergies

Milk protein
intolerance

Lactose
intolerance

N Milk protein
intolerance

Food allergies,
anaphylaxia

Food allergies

ID intellectual disability, L length, N normal, NA not assessed, OFC occipitofrontal circumference, W weight
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diameter. ProBNP is normal and there are no clinical signs of
cardiac failure at this time. Cerebral MRI performed recently
shows an increase in periventricular white matter signal changes
compared with the last MRI at age 13. MR angiography of
cerebral vessels is normal.

Individual II-2 is the mother of patients 2–1 and 2–2. Recent
cardiac ultrasound, ECG and bicycle stress echocardiogram were
normal at age 51.

Individual II-3 is the younger sister of patients 2–1 and 2–2.
She is healthy, and is the mother of two healthy children. Recent
cardiac ultrasound, ECG, and bicycle stress echocardiogram were
normal at age 25.

Identification of a splice site mutation in ABCC9. We per-
formed sequencing of one affected individual from each family

(patients 1–2 and 2–1), plus their respective healthy parents,
using a targeted panel of > 4800 disease-associated genes. The
samples were analyzed for recessive variants (homozygous and
compound heterozygous) and non-Mendelian inheritance. The
two trios were analyzed independently, and from a total of
~10,000 variants in each of the families, the homozygous variant
ABCC9 c.1320+ 1 G > A was the only remaining causal candi-
date after filtering against quality, region of interest, coding
effect, minor allele frequency, and manual review of ~20 variants
in each of the two families. Next-generation sequencing (NGS)
and subsequent Sanger sequencing revealed that all six patients
were homozygous for ABCC9 c.1320+ 1 G > A. Analysis of DNA
from the four parents and one unaffected sibling from family
2 showed that they were each heterozygous for the same
mutation.

Table 2 Neurological, electrophysiological, and cardiac features of AIMS patients

Patient 1–1 1–2 1–3 1–4 2–1 2–2

Neurological examination
Cranial nerves Nystagmus

Convergent
strabismus

Intermittent
heterotropia

N Bilateral intermittent
esotropia

N N

Muscle strengtha

Hand grip N 4 4+ 4 N 4
Truncal muscle
weakness

− + − − − +

Proximal
upper limb

N N N 4 N 4

Proximal
lower limb

4 4 N 4 N 4

Achilles
contractures

− + + + − + (unilateral)

Hyperreflexia Patella: brisk
(+++ )
Achilles:
subclonus

Brachioradialis/
triceps/achilles
brisk (+++ )

N N Patella, achilles:
subclonus

Patella, achilles:
subclonus

Balance
(MiniBESTest)

Moderate–severe
difficulties
Score 16/28

Moderate
difficulties
Score 20/28

Moderate
difficulties
Score 18/28

Moderate difficulties
Score 21/28.

Moderate difficulties
Score 18/28

Moderate–severe
difficulties
Score 14/28

6 -min walk test Reduced (mean
512.5 m)
Ref: 765m

Reduced (mean
485.2 m)
Ref: 725.8 m

Reduced (mean
467.5 m)
Ref: 697.8m

Reduced (mean
428.5 m)
Ref: 672.8 m

Reduced (mean
507.5 m)
Ref: 625m

Reduced (mean
418.5 m)
Ref: 668.7 m

Electrophysiology
EMG N N N N N (slight polyfasia) N
NCV N N N N N N
Repetitive nerve
stimulation

N N N N N N

EEG N NA NA N NA N
Muscle biopsy NA Caliber changes,

mitochondrial
aggregations.

NA NA NA NA

Cerebral MRI Small subcortical
frontal
hyperintensities
MRS: N

Discrete
periventricular
white matter
hyperintensities
(posterior horns)

White matter
hyperintensities,
centrum
semiovale

Periventricular white
matter hyperintensities
anterior horn of left
lateral ventricle

Widespread white
matter
hyperintensities,
periventricular and
Centrum semiovale
MRA: N

White matter
periventricular
hyperintensities
MRA: N

Cardiac examination
Cardiac
ultrasound

N N N N Biventricular systolic
dysfunction, cardiac
failure, dilated
ventricles
(cardiac MRI)

Mild biventricular
systolic
dysfunction

Blood
pressure (mmHg)

122/83 116/74 106/78 117/69 138/98 118/81

EEG electroencephalogram, EMG electromyography, miniBESTest mini balance evaluation system test, MRA magnetic resonance angiography, MRI magnetic resonance imaging, MRS magnetic resonance
spectroscopy, NCV nerve conduction velocity, N normal, NA not assessed, Ref reference distance
aMuscle strength grading (0–5): 0= paresis 4= 50% strength reduction, 4+= 25% strength reduction 5= normal
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To exclude distant relatedness between the two families and
thus exclude the possibility of the presence of more shared rare
variants with an effect on protein function, we performed whole-
genome sequencing on one affected individual from each family
(patients 1–2 and 2–1), and determined a kinship coefficient of
0.0403. A kinship coefficient of ~0.05 is expected for unrelated
samples, confirming non-relatedness between our families.

Since the original NGS analysis was performed on a gene panel,
we analyzed the WGS data sets for candidate causal recessive and
dominant variants. The focus of the analysis was the identification
of shared variants or different variants in shared genes with possible
damaging, but not identical variants leading to the same clinical
phenotype, among the two cases. After the initial analysis, 67 shared
variants were identified, of which 66 were heterozygous and 1 was
homozygous (Supplementary Table 2). The single homozygous
variant remaining after the filtering was the above variant in
ABCC9:NC_000012.11:g.22063090C > T; NM_020297.2:c.1320+
1 G >A (Supplementary Fig. 2). This variant lies in a shared
homozygous block of 3.8 MB (chr12:18.326.590-22.176.010 hg19).
Notably, gene interactions with the homozygous ABCC9 c.1320+ 1
G >A variant cannot be excluded as participating in the syndrome.
A list of all shared variants including allele frequencies is provided
in Supplementary Table 2. For a dominant mode of inheritance, we
observed that, in 842 genes, one or more variants pass the filtering
criteria in both cases. Again, the ABCC9 variant was the only
variant seen in homozygous state in both samples (Supplementary
Fig. 3). Compound heterozygous gene candidate analysis identified
seven genes with two or more variants shared between the two
cases. None of these genes are likely to contribute to the phenotype
(Supplementary Fig. 4). Thus, after gene panel and WGS, we
identified the homozygous ABCC9 c.1320+ 1 G >A variant as
the most likely causal variant. The variant is reported at very low
allele frequency in the heterozygous state in the European
population (Finnish: 3/6586; European: (Non-Finnish) 4/66386,
Exac, June 2018). According to gnomAD, the variant is reported at
surprisingly high frequency in heterozygous state in the Finnish
population with an allele frequency of 0.0007 (18/24850). It is less
common in non-Finnish Europeans (5/128232, allele frequency
0.00004) and absent in Asian or African populations (May 2019).
Considering the probable Finnish ancestry of all patients, the
syndrome might be more prevalent in the Finnish population than
others. The homozygous state is absent in gnomAD.

The ABCC9 c.1320+ 1 G > A variant is predicted to disrupt a
splice donor site of exon 8 (Fig. 2a). To study the effect of the
mutation, we performed cDNA analysis on fibroblasts from
members of both families (Fig. 2b). Sequence analysis of the
homozygous cDNA samples revealed that the sequence variant
caused an in-frame deletion of exon 8 (r.1165_1320del) in SUR2
cDNA, and predicts a 52 amino acid (p.Ala389_Gln440del)
deletion within the SUR2 protein. Thus, all patients are
homozygous for a splice variant in ABCC9 which results in an
in-frame deletion.

The effect of exon 8 deletion on KATP channel function.
Deletion of exon 8 is predicted to disrupt multiple transmem-
brane helices in SUR2 and thus have a profound effect on
structure and function (Fig. 3a). We deleted exon 8 in SUR2
cDNA (SUR2AΔ8) and performed expression analyses on
Cosm6 cells transiently transfected with Kir6.2 alongside either
Flag-tagged SUR2A-WT or SUR2AΔ8. Western blot of whole-
cell lysates shows that exon 8 deletion results in a ~50% decrease
in SUR2 protein expression (Fig. 3b). We used a radioactive
rubidium (86Rb+) efflux assay to determine effects on KATP

channel function. Cells expressing SUR2A-WT with Kir6.2
exhibited robust rubidium efflux rates when KATP channels were

activated by metabolic inhibition (Fig. 3c). In contrast, cells
expressing Kir6.2/SUR2AΔ8 showed no rubidium efflux above
the background levels observed in GFP-transfected cells. When
Kir6.2 was co-expressed with a heteromeric 1:1 ratio of SUR2A-
WT and SUR2AΔ8, KATP-dependent efflux rate was similar to
WT rates, indicating that SUR2AΔ8 has no marked dominant-
negative effect on functional KATP expression. The effect of the
exon 8 deletion in SUR2B was also determined and, again, no
significant efflux was observed in cells expressing SUR2BΔ8
(Fig. 3d).

A complete absence of functional KATP channels was observed
in inside–out patch clamp recordings from cells co-transfected
with Kir6.2/SUR2AΔ8, in contrast to robust expression in cells
transfected with SUR2A-WT or a 1:1 mix of SUR2A-WT and
SUR2AΔ8 (Fig. 3e, f). Therefore, homomeric deletion of exon 8
results in a significant decrease in protein expression and
complete loss of KATP channel function. The decrease in
functional expression of SUR2Δ8 containing channels may arise
due to either the absence of surface-expressed channels or the
expression of nonfunctional channels, which requires more
detailed study for elucidation. Co-expression of SUR2A-WT
and SUR2AΔ8 did not affect channel regulation by ATP or
pharmacological activation by pinacidil, suggesting that in the
heterozygous context, the c.1320+ 1 G > A mutation is without
significant effect (Fig. 3g; Supplementary Fig. 5).

Fatigability and cardiac dysfunction in SUR2-STOP mice. To
model the effects of SUR2 LoF in vivo, we used a mouse line in
which a frameshift mutation, resulting in a premature stop codon
at position Y1148 (SUR2-STOP), was introduced using CRISPR/
Cas9 (Fig. 4a). Inside–out patch clamp recordings from ven-
tricular myocytes and aortic smooth muscle cells showed that
functional KATP channels were essentially absent in homozygous
SUR2-STOP mice (Fig. 4b, c; Supplementary Fig. 6), thus the
SUR2-STOP mice recapitulate the key functional channel con-
sequences of the exon 8 deletion.

SUR2-STOP mice and WT littermate controls were evaluated
on a multiple-trial inverted screen test to assess strength and
fatigability. SUR2-STOP and WT mice performed comparably in
the first trial, suggesting no significant initial deficits in strength
per se. However, in subsequent repeated trials, SUR2-STOP mice
exhibited clear decreases in performance, whereas WT mice
performance remained high (Fig. 4d). Significant genotype effects
were observed, as well as genotype x trial and genotype x session
interactions (Supplementary Table 3). These findings indicate
that SUR2-STOP mice exhibited significant performance deficits,
dependent on the specific session and trial. The total time the
mice remained inverted across the six trials was calculated, and a
significant decrease in performance was observed in SUR2-STOP
mice (Fig. 4e). Thus, global loss of SUR2 results in decreased
physical performance, suggestive of increased fatigability, which
may be related to the clinically observed myopathy.

Echocardiographic assessment revealed that left ventricle
fractional shortening was significantly decreased in SUR2-STOP
mice (Fig. 4f, g), consistent with the findings in older AIMS
patients, and in previously reported SUR2-deficient mice22. A
small, but statistically significant increase in left ventricular
internal dimension in diastole (normalized to body length) was
observed in SUR2-STOP mice, also mirroring the mild dilatation
observed our eldest patient (patient 2–1), and the dilated
cardiomyopathy previously associated with SUR2 mutations18.

Blood pressure was significantly increased in SUR2-STOP mice
(Supplementary Fig. 6C, D), consistent with the known role of
SUR2-containing vascular smooth muscle KATP channels in the
regulation of vascular tone23.
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Absence of cognitive or behavioral defects in SUR2-STOP
mice. SUR2-STOP and WT mice were evaluated on a battery of
cognitive and behavioral tests. During a 1-h locomotor activity
test, SUR2-STOP mice displayed trends toward decreased total
ambulations (whole-body movements) and vertical rearing fre-
quency, and increased rest time, but there were no significant
overall genotype effects (Fig. 5a–c). No differences were observed
in the distance traveled in the center or peripheral zones of the
test field, indices of emotionality in mice (Fig. 5d, e). In addition,
neither significant effects were found in a battery of sensorimotor
measures designed to assess balance, coordination, strength, and
speed of movement (ledge test, platform test, pole test, inclined
screen test, Fig. 5f–i) nor in tests of spatial learning and memory,
evaluated using a Morris water maze (Fig. 5j–l). Finally, an ele-
vated plus maze was used to assess anxiety-like behaviors, which
involves quantifying the reluctance of mice to move from the
“protected areas” of the enclosed arms to open arms. No sig-
nificant differences were observed between genotypes in terms of
distance traveled, time spent or entries made into the open arms,
or total distance traveled throughout the entire maze (Fig. 5m–p).
Collectively, the behavioral findings suggest that the SUR2-STOP
mice do not exhibit marked deficits in learning and memory nor
show any obvious anxiety-like behaviors.

Decreased motility in SUR2-STOP zebrafish. Assessment of a
SUR2-STOP zebrafish model (Fig. 6a, b) also demonstrated clear
phenotypic overlap with the clinical syndrome and mouse model.
cDNA was analyzed by qPCR, to assess the effect of the S985
truncation, introduced via CRISPR/Cas9, on abcc9 mRNA
expression in SUR2-STOP zebrafish larvae. This revealed ~four-
fold abcc9 mRNA decrease in mutant fish compared with wild-
type controls (Fig. 6c), consistent with aberrant mRNA being
eliminated by nonsense mediated decay. Inside–out patch clamp
recordings revealed the complete absence of functional KATP

channels in ventricular myocytes from SUR2-STOP zebrafish
(Fig. 6d). Hence, the zebrafish model also recapitulates the key
channel consequences of the exon 8 deletion.

Consistent with hypotelorism observed in multiple AIMS
patients, significantly decreased interorbital distance, normalized
to overall larval body length, was observed in SUR2-STOP
zebrafish (Fig. 6d, e). In contrast, no significant difference was
observed between the inter-eye distance in WT and SUR2-STOP
mice. Visual inspection of SUR2-STOP zebrafish revealed no
other striking dysmorphic features (Fig. 6b). We used a
behavioral tracking system to quantify locomotor activity in
zebrafish larvae (Fig. 6f). SUR2-STOP larvae displayed signifi-
cantly decreased spontaneous total movement and decreased total
swimming distance compared with control larvae (Fig. 6g, h).
Despite shorter swimming distances, SUR2-STOP embryos move
for a similar period of time as WT fish (Fig. 6i). Analysis of the
duration of high-speed movements revealed a significant decrease
in SUR2-STOP larvae (Fig. 6j). Notably, SUR2-STOP embryos
hatched normally from their chorion, a process that also requires
muscle contraction.

Cardiac abnormalities in SUR2-STOP zebrafish. We performed
high-speed video imaging24 of the hearts of wild-type and SUR2-
STOP larvae to examine cardiac function (Fig. 7a; Supplementary
Movies 1, 2). Analysis revealed systolic dysfunction—resembling the
cardiac phenotype in older patients. Both fractional shortening (FS)
and ejection fraction (EF) are significantly reduced in SUR2-STOP
mutants (FS: 29%, EF: 25%) (Fig. 7b, c). Consequently, cardiac
output is dramatically lower (28%) (Fig. 7d) due to equivalently
reduced stroke volume (Supplementary Fig. 7A). Supplementary
Fig. 8 illustrates the assessment of ventricular contractility via high-
speed video microscopy in zebrafish embryos. Ventricular end-
diastolic volume (VEDV) and end-systolic volume (VESV) were
unchanged in SUR2-STOP larvae (Fig. 7e).
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Fig. 2Molecular analysis in AIMS patients. a Genomic organization of the ABCC9 gene: (1) basic genomic structure of ABCC9 includes at least 39 potential
exons, excluding untranslated regions (UTRs). The c.1320+ 1 G > A mutation predicted to disrupt the splice donor site of exon 8 is indicated by a red
arrow. Scale bar, 5000 bp. (2) The mutation impacts both the SUR2A and SUR2B splice forms, which differ only in the last exon. Affected exon 8 in
patients is marked in red. Odd-numbered exons are presented as black boxes, even-numbered exons as gray boxes. b Analysis of the effect of the mutation
at the cDNA level in Family 1. Two control cDNA samples (indicated by a C) show the wild-type PCR product containing exon 8, parents (I:1, I:2) show
heterozygosity for the wt and a lower band lacking exon 8, whereas patient cDNA (1–2, 1–3, 1–4) only yielded the lower band
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Blood flow velocity of WT and SUR2-STOP larvae was
assessed by high-speed video imaging of the cardinal vein. An
increased velocity of red blood cells in SUR2-STOP fish (Fig. 7f)
can be associated with high blood pressure found in SUR2-
STOP mice.

No cardiac abnormalities were observed in larvae heterozygous
for the SUR2-STOP mutation (Supplementary Fig. 9).

Adult zebrafish hearts were analyzed after sectioning and H&E
staining (Fig. 7g). For assessment of ventricular size, tissue
sections revealing the largest chamber area were selected. In five
out of six SUR2-STOP fish, ventricular area was strikingly
enlarged with abnormal morphology compared with control
siblings. The atrial area shows similar morphology (Fig. 7f;
Supplementary Fig. 10). We stained cryosections of WT and

SUR2-STOP hearts with Acid Fuchsin Orange G (AFOG), which
labels myocardium orange, collagen blue, and fibrin red. This
revealed no visible fibrosis in SUR2-STOP hearts (Supplementary
Fig. 11). TUNEL (TdT-mediated nick end labeling) analysis
revealed very few apoptotic cells in WT hearts, while a sizable
number of cells were TUNEL-positive in both cardiac chambers
of SUR2-STOP fish (Fig. 7h). Myofiber structure in SUR2-STOP
hearts is not different from WT as determined by immunohis-
tochemistry staining for tropomyosin (Supplementary Fig. 12).

Discussion
The major clinical features observed in our patients consist of
delayed psychomotor development with intellectual disability,
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anxiety, muscle weakness and fatigability, and some shared dys-
morphic features. Cerebral MRI revealed white matter abnorm-
alities in all subjects. Cardiac systolic dysfunction is found in the
two oldest, possibly as an early stage of dilated cardiomyopathy.
All patients were found to be homozygous for a previously
unreported splice site mutation in ABCC9 (c.1320+ 1 G > A),
while unaffected parents are healthy heterozygous carriers of the
variant (Fig. 2). No other shared recessive mutations were

identified in the affected individuals using either next-generation
gene panel analysis or whole-genome sequencing.

We show that this splice site mutation leads to the complete in-
frame exclusion of exon 8 (SUR2Δ8) and consequent deletion of
52 amino acids within the TMD1 domain of the resultant SUR2
protein (Fig. 3). SUR2 is a regulatory subunit of KATP channels
expressed in various tissues, including striated and smooth
muscle3–5. Deletion of exon 8 results in complete loss of
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functional channel activity in recombinant SUR2/Kir6.2 KATP

channels, indicating that AIMS represents the human con-
sequence of loss of SUR2 (Fig. 3). We show that key features of
myopathy and cardiac dysfunction in AIMS are recapitulated in
novel SUR2-STOP mouse (Figs. 4, 5) and zebrafish models
(Figs. 6, 7). The animal models used in this study do not reca-
pitulate the genetic defect identified in the AIMS patients, but
were chosen as the functional effects of the frameshift mutations
introduced into SUR2-STOP mice and fish mirror the functional
effect of the SUR2Δ8 mutation. Future studies of CRISPR/Cas9
genome edited animal models in which human-disease-associated

AIMS mutations are introduced may provide further insights into
the severity and variety of phenotypes arising from specific
mutations.

How loss of SUR2-dependent KATP channel function may
result in the complex pathophysiology observed in AIMS is
discussed below.

Facial features: Affected individuals from the two families share
some similar facial features, including prominent supraorbital
ridges, flat face, and thin upper lip vermilion, as well as macro-
dontia and/or widely spaced upper central incisors and dental
malocclusion. Since the affected individuals are from two
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siblingships, more patient observations will be necessary in order
to establish whether these facial features are consistent. Some
of the individuals have hypotelorism, consistent with significantly
decreased intraorbital distance found in SUR2-STOP zebrafish
(Fig. 6f, g). This combination of facial features is markedly
different from the acromegaloid facial features that characterize
Cantú Syndrome and the associated conditions within the
same spectrum: Acromegaloid Facial Features (AFF [MIM:
102150])25 and hypertrichosis acromegaloid facial features dis-
order (HAFF)26, which all arise from GoF mutations in ABCC9.
None of our patients have hypertrichosis, unlike Cantú syndrome
patients. Therefore, Cantú syndrome and AIMS, arising from
opposing molecular mechanisms, are both dysmorphologically
and mechanistically distinct.

Neuromuscular manifestations: All patients report fatigability,
present with generalized hypotonia, and muscle strength is below
normal in all but one. Lumbar lordosis is found in all but one,
and scoliosis in one. The miniBEST test shows moderate to
severe deficits in balance in all patients, and walking distance in
the 6-min walk test is reduced in all individuals. S-CK, B-lactate,
nerve conduction velocities, and electromyography, including
repetitive nerve stimulation, are normal in all individuals, except
for discrete myopathic discharges in patient 2–2. In skeletal
muscle, KATP channels are typically closed at rest but open in
response to metabolic stress or fatigue27. Channel activation
results in action potential shortening and stabilization of the
resting membrane potential during the development of fatigue,
which serves to reduce intracellular calcium, decrease resting
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tension and protect myocytes from damage. Therefore, loss of
KATP function might be expected to result in failure to recover
from fatigue, myofiber degeneration, and excessive calcium
influx, as reflected in the inverted screen tests in the mice. In
addition, lower limb hyperreflexia was observed in the four
oldest individuals, which might be caused by the white matter
abnormalities and decreased inhibition or increased activation of
upper motor neurons.

Although the expression pattern of Kir6.2 is not identical to
that of SUR2, it is notable that previous studies of Kir6.2-null
mice, as well as mice in which an internal deletion in SUR2 was
engineered (resulting in loss of full length SUR2 but persistent
expression of a mitochondria-limited short form), have reported
that the consequent decrease of myocyte KATP activity results in
impaired exercise capacity and response, and myofiber
damage22,28. Only relatively minor histological abnormalities
were observed in a single-skeletal muscle biopsy from patient 1–2.
This is consistent with previous reports which showed that SUR2
knockout mice only exhibit significant histological abnormalities
when subjected to significant and chronic exercise29. Here, we
show that novel mouse and zebrafish models, in which CRISPR/
Cas9 was used to introduce frameshift mutations resulting in
premature stop codons and nonfunctional subunits, also exhibit
decreased performance. Specifically, SUR2-STOP mice showed a
diminished ability to hang upside down during the multiple-trial
inverted screen test, suggesting decreased strength resulting from
increased fatigability30,31 (Fig. 4d, e), while SUR2-STOP zebrafish
show decreased total overall movement and swimming speed in
tracking studies (Fig. 6i–l).

Intellectual disability and neurological abnormalities: Neu-
ropsychological testing revealed mild-to-moderate intellectual
disability in all affected individuals, and anxiety was also reported
in several patients. It is not obvious how myocyte KATP dys-
function could explain the intellectual disability or anxiety, and
there are no reports of cognitive impairment in previous SUR2
mutant animal models. Neuronal KATP channels are pre-
dominantly formed of Kir6.2 with SUR1 subunits, although
transcripts for all KATP channel subunits have been identified in
various neuronal populations32 and SUR2 is reportedly expressed
in both central and peripheral neurons33–35, where it has been
implicated in hippocampal sclerosis in aging and amyotrophic
lateral sclerosis33,36–38.

However, recent data demonstrate that SUR2-containing KATP

channels play a critical role in regulation of cerebral vascular
architecture16. In Cantú syndrome, MRI reveals diffusely dilated
and tortuous cerebral blood vessels and white matter changes as
multiple T2 subcortical or scattered hyperintensities. Transient

white matter changes suggestive of a reversible posterior ence-
phalopathic syndrome are reported in one patient. Several Cantú
syndrome patients have migraine, and some have epilepsy.
Developmental delay is common, although seeming to improve
with age16. Since KATP channel GoF results in chronic vasodila-
tion and altered neuro–vascular coupling16, it is conceivable that
KATP loss of function may impact the cerebral vasculature in a
way that results in impaired dynamic coupling of blood flow to
match neuronal metabolic demand.

Patient 1-1 has a diagnosis of epilepsy with episodes of
unconsciousness and tonic-clonic seizures, but no definitive epi-
leptic activity has been demonstrated on EEGs. Patient 1-4
experienced an episode of coma with transient widespread white
and gray matter abnormalities, which is left unexplained. Possi-
bly, these incidents could be caused by focal or generalized cir-
culatory alterations. Interestingly, white matter hyperintensities
are observed in both Cantú syndrome and AIMS. In both cases,
they could result from ischemic events due to dysregulated cer-
ebral blood flow, although the cognitive phenotype seems to be
more definite in AIMS than in Cantú syndrome. Tests for cog-
nitive deficits and anxiety did not reveal significant behavioral
impairments in SUR2-STOP mice (Fig. 5). Additional testing for
specific deficits (such as an assessment of working memory, fear
conditioning, or other nonspatial forms of learning and memory)
would be necessary to more fully characterize the behavioral
phenotype of the SUR2-STOP mice. Notably, mild cognitive
impairment, as seen in humans, can be difficult to recognize in
animals39. Whole-genome sequencing and copy number analysis
did not identify other causes of intellectual disability in our
patients.

Cardiovascular manifestations: While the younger patients
(aged 11–21) displayed no clear cardiovascular abnormalities, the
two oldest patients display cardiac biventricular systolic dys-
function, with only slightly decreased ejection fractions. No
clinical signs of heart failure were observed in patient 2–2, but
decreased ejection fraction and heart failure was observed in her
brother, patient 2–1. Cardiac MRI in patient 2–1 showed dilated
ventricles, and together with other clinical findings this may
suggest early stages of dilated cardiomyopathy. In a previous
study by Bienegraber et al., two individuals with dilated cardio-
myopathy (DCM) were found to have heterozygous, LoF, mis-
sense mutations in exon 38 of ABCC9, an exon only included in
the SUR2A splice variant, and not in SUR2B18. In that case, KATP

LoF would be expected in cardiomyocytes and skeletal muscle but
not smooth muscle, where SUR2B is expressed. The DCM
patients reported in that study were older than the patients we
report and displayed drastic reductions in ejection fraction (to

Fig. 6 Hypotolerism and decreased locomotor behavior in SUR2-STOP zebrafish larvae. a The c.2944_2957del13 indel in abcc9 and consequent frameshift
premature stop codon following S984 (p.S985Stop) and schematic of SUR2 with the site of the introduced S985Stop mutation in TM12 indicated,
downstream region in blue. b Representative images illustrating the morphology of 5 dpf wild-type and SUR2-STOP mutants as seen from a left lateral
(top) and dorsal view (bottom). Scale bars, 1 mm. c Quantitative RT-PCR to assess abcc9 expression in pools of 60 WT (three pools) and SUR2-STOP (four
pools) embryos. d Representative current traces from inside–out patch clamp recordings from ventricular myocytes of WT (black; five patches) or SUR2-
STOP (blue; six patches) zebrafish (−50mV holding potential, ATP applied as indicated). e KATP channel currents from excised patches from zebrafish
ventricular myocytes. The data from five patches (WT), and six patches (SUR2-STOP) from≥ 3 zebrafish. f, g To assess hypotelorism, the distance
between the convex tips of the eyes was measured and normalized to body length (WT, n= 8; HOM, n= 10). Scale bars, 200 μm. h Examples of
movement traces shown in red, green, and black representing high-speed, intermediate, and slow movements, respectively. i–l Five-minute video
recordings (n= 62 larvae per genotype) of 5 dpf homozygous SUR2-STOP fish and wild-type controls were analyzed for total amount of movement i, total
swimming distance (TSD) j, total swimming duration k, and duration of high-speed movements l and compared with respective wild-type larvae. The data
on the y-axis refer to the respective average value per 30-s (s) intervals. The data from four independent experiments (16 larvae per experiment) *p≤ 0.05;
**p≤ 0.01; ***p≤ 0.001; ****p≤ 0.0001 (two-tailed unpaired Student’s t test or Mann–Whitney U test). The black horizontal bar indicates the mean value
for each condition. Sample size, WT, n= 3; SUR2-STOP, n= 4 in c; WT, n= 5; SUR2-STOP, n= 5 in e; WT, n= 8; SUR2-STOP, n= 10 in g; WT, n= 62;
SUR2-STOP, n= 62 in i–l. The data from individual experiments shown as dots alongside mean ± SEM. Source data are provided as a Source Data file
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15–23%). This may suggest a progressive cardiomyopathy which
will require longitudinal analysis in AIMS.

In previously reported mouse models, SUR2 knockout resulted
in cardiac hypertrophy with LV dilation and decreased fractional
shortening22,40. Here, we show that SUR2-STOP mice also dis-
play decreased fractional shortening and LV dilation (Fig. 4f, g),
while SUR2-STOP zebrafish show marked cardiac enlargement

with reduced ejection fraction and cardiac output (Fig. 7b–d),
again consistent with the observed clinical phenotype in the older
AIMS patients. Significant cardiomegaly, with elevated cardiac
output, is observed in Cantú Syndrome. This cardiac remodeling
may arise as a secondary compensation to counter the vasodila-
tory effect of KATP GoF in vascular smooth muscle cells41,42.
SUR2 LoF, in contrast, would be expected to increase vascular
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contractility and blood pressure. However, blood pressure was
normal in AIMS patients, except for elevated systemic pressures
in the oldest patient. SUR2 and Kir6.1-null mice are
hypertensive43,44, which is again a feature of the SUR2-STOP
mice, but in humans, effects on blood pressure may be more
subtle and subject to tighter regulation through homeostatic
feedback, or perhaps not yet manifesting in our still relatively
young patients.

Other features: Mild hearing loss was found in 3/6 patients.
This is not straightforward to explain, as there is no known
function for SUR2 in auditory neurons. One explanation might be
altered vascular tone and ischemic stress of these neurons. Stra-
bismus and myopia were found in several individuals while one
also displayed nystagmus. Sensory assessment was not performed
in our animal models but should be the subject of future study.
Feeding difficulties in childhood were reported in all individuals.
KATP channels are expressed in gastrointestinal smooth muscle45,
and thus LoF may affect GI contractility and motility. The two
patients in family 2 have short stature and microcephaly. In
Cantú syndrome, there is a range of skeletal manifestations. Our
patients are not thoroughly evaluated radiologically, but do not
display obvious skeletal changes, except for scoliosis, congenital
hip dysplasia, and elbow extension deficits in patient 2–2. Lastly,
patient 1–1 presents with hyperprolactinemia lacking pituitary
adenomas. Interestingly, pituitary adenomas and elevated levels
of prolactin are recently reported in a family with Cantú
syndrome46.

Disease progression: As discussed above, the two oldest
patients exhibit decreased myocardial contractility, which may
reflect the onset of a progressive cardiomyopathy, and hyper-
tension is found in the oldest patient. It will be important to
chronicle the long-term effects of KATP LoF in all the patients to
elucidate the natural history of AIMS, which may also be
informed by longitudinal studies in the animal models presented
here. White matter hyperintensities were found to have increased
with age in the two oldest patients, where MRIs have been
repeated.

Heterozygous carriers: Lack of phenotype in the healthy het-
erozygous carriers of the ABCC9 c.1320+ 1 G > A variant is
consistent with functional studies of recombinant KATP channels
reported here, which show that SUR2Δ8 subunits do not exert
obvious dominant-negative effects in heterozygous expression
with WT subunits. Indeed, essentially normal Rb fluxes in this
case may reflect a rescue by WT subunits (Fig. 3c).

Possible additional molecular consequences: In addition to its
canonical role as a regulatory subunit of plasmalemmal KATP

channels, short-form variants of SUR2 have been identified in the
mitochondria and reported to form functional KATP channels6,
although the role of these truncated channel complexes remain
poorly understood. It is also conceivable that SUR2 proteins play

additional noncanonical (i.e., non-channel regulatory) roles,
which may or may not be impaired by the exon 8 deletion.
Importantly, the animal models employed here, in which pre-
mature stop codons were engineered into ABCC9, are not a bona
fide recapitulation of the human genetics of the AIMS patients,
and accordingly may not reiterate specific novel consequences of
the truncated SUR2Δ8 protein.

Potential pharmacotherapy: In principle, KATP channel LoF
could be countered using KATP channel activators, such as cro-
makalin, pinacidil, diazoxide or minoxidil, which are used clini-
cally as vasodilatory agents47. In the case of the AIMS patients
presented here, however, where the exon 8 deletion results in a
complete loss of functional channel expression, these drugs would
likely be ineffective. Interestingly, in each of the myocyte tissues
in which SUR2 is expressed, KATP forms part of an electrical
“brake”, where KATP activation results in membrane potential
hyperpolarization, decreased intracellular calcium, and promotes
myocyte relaxation. Loss of KATP function is therefore expected to
increase intracellular calcium and modulating myocyte calcium
handling might prove beneficial.

In the future, it is expected that AIMS patients will be identified
with additional mutations in ABCC9. Such mutations may prove
to be autosomal dominant or may exhibit only partial LoF, as is
observed in the analogous pancreatic KATP disorder, congenital
hyperinsulissm (CHI [MIM: 256450]), which arises from
LoF mutations in ABCC848. Depending on the mutational con-
sequence, some CHI patients are responsive to treatment by the
potassium channel opener diazoxide, and KATP-openers may
indeed prove beneficial in some AIMS patients.

Methods
Patients. Four siblings from Family 1 and two siblings from Family 2 (Fig. 1a,
pedigrees) were initially referred for assessment of developmental delay and/or
neuromuscular impairment, and were investigated in a clinical diagnostic setting.
Written informed consent for Next-Generation-Sequencing in both a diagnostic
and research setting was obtained from the patients’ parents. The authors affirm
that human research participants provided informed consent for publication of the
images in Fig. 1b–d. Whole-genome sequencing on patients was approved by the
Medical Ethical Committee of the University Medical Center Utrecht. All study
participants, or their legal guardian, provided informed written consent prior to
publication.

Clinical evaluation by the Neuromuscular Centre team. The clinical diagnostic
evaluation included patient history, a structured neurological examination and
physiotherapist examinations including the mini-Balance Evaluation System Test
(miniBEST)49 and 6-min walk test. The miniBEST is an assessment of dynamic
balance and postural control. There are no normative values for children or people
with intellectual disability, but the test was modified for our patients. The 6-min
walking test- 6MWT50,51 assesses distance walked over 6 min as a sub-maximal test
of aerobic capacity/endurance. For adults, normative values can be calculated by an
equation developed by Enright and Sherill (1998)50. The calculations are: men:
6MWD= (7.57 × height cm) – (5.02 × age) – (1.76 × weight kg)− 309. Women:
6MWD= (2.11 × height cm)− (2.29 × weight kg)− (5.78 × age)+ 667 m)). Nor-
mative values for children and adolescents are described by Geiger et al.51.

Fig. 7 Systolic dysfunction and enlarged heart size in SUR2-STOP zebrafish. a Box designates imaged area to assess cardiac function. The ventricular area
of the heart is highlighted, with the long axis and short axis of the ventricle indicated by dashed lines. b–e Quantification of cardiac function using individual
characteristic confocal sections from a time series of the embryonic cardiac cycle at 5 dpf. f Tracking of individual red blood cells (RBCs) measuring
cardinal vein blood flow velocity. RBCs were tracked for ten frames using ImageJ (NIH) and the plugin MTrackJ68. One representative image of each
genotype is shown. Black arrow indicates the direction of RBC movement. g Heart histology of adult SUR2-STOP mutants and respective siblings after H&E
staining. Exemplary depiction of 2 WT and 2 SUR2-STOP hearts. For assessment of ventricular chamber size, tissue sections showing the largest
ventricular area were selected. h TUNEL assay on adult hearts to detect apoptotic cells (white arrowheads) in WT and SUR2-STOP fish. Heart chambers
are indicated by white dashed line. Nuclei are stained with DAPI. All experiments were performed comparing SUR2-STOP and its WT siblings. For all
graphs, significance was determined by two-tailed unpaired Student’s t test or Mann–Whitney two-tailed U test. Asterisks indicate statistical significance
(*p≤ 0.05; **p≤ 0.01; ***p≤ 0.001; ****p≤ 0.0001). The black horizontal bar indicates the mean value for each condition. Sample size, WT, n= 20; SUR2-
STOP, n= 20 in b–e; WT, n= 14; SUR2-STOP, n= 21 in f; WT, n= 6; SUR2-STOP, n= 6 in g and h. Scale bars, 1 mm and 50 μm in a; 10 μm in f, 500 μm in
g; 100 μm (overview) and 50 μm (close up) in h. All embryos analyzed originated from group matings of adult zebrafish. a atrium, ba bulbous arteriosus, v
ventricle. The data from individual experiments shown as dots alongside mean ± SEM. Source data are provided as a Source Data file

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12428-7

14 NATURE COMMUNICATIONS |         (2019) 10:4457 | https://doi.org/10.1038/s41467-019-12428-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Normative values are not given for intellectually disabled people. The neurological
examination comprised the following: cranial nerve examination, motor function
(strength, tempo, tone), deep tendon reflexes (biceps, brachioradialis, triceps,
patella, achilles) and plantar reflexes, superficial skin sensation, vibration, pro-
prioception, cerebellar function tests, and gait. In addition, the following supple-
mentary electrophysiological investigations were performed: electromyography
(EMG), nerve conduction studies (NCS), repetitive nerve stimulation. All patients
had previously undergone cerebral magnetic resonance imaging (MRI). Blood
samples were analyzed for serum levels of CK and lactate. In addition, all patients
had audiometry, electrocardiograms (ECG), and electrocardiography done.

Illumina TruSight One gene panel analysis. DNA libraries for sequencing of
4813 genes with known associated clinical phenotypes were generated for patients
1–2 and 2–1 (Fig. 1) with their respective parents for trio analyses.

Genomic DNA was extracted from whole blood using MagAttract DNA midi 48
kit (Qiagen, katalognr 951356) on a Biorobot M48 (Qiagen) according to the
manufacturer’s protocol. Sequencing libraries were prepared from 50 ng of gDNA
using the TruSight One Sequencing Panel (Illumina, San Diego, CA, USA)
according to the manufacturer’s instructions, Paired-end 150 bp sequencing was
performed on a MiSeq (Illumina). Desktop Sequencer, targeting a mean region
coverage depth > 100x and > 97% of the region at > 10 × . Analysis of sequencing
data was performed by applying a MiSeq Reporter Enrichment Workflow
(v.2.4.60.8) including a Burrows–Wheeler Aligner (v.0.6.1-r104-tpx) and a Genome
Analysis Toolkit (v.1.6-22-g3ec78bd), with the target region defined as the exome
part with flanking 10 bp of 4813 disease-associated genes as defined by Illumina
TruSight One Sequencing panel (http://www.illumina.com/products/trusight-one-
sequencing-panel.html).

Cartagenia Bench Lab NGS (v.4) was used for variant annotation and
prioritization, considering a recessive inheritance model using Cartagenia
Inheritance analysis with the index patients defined as affected and the parents as
unaffected. The focus of the analysis was to identify potentially damaging
homozygous or compound heterozygous variants inherited in a recessive pattern
from both the parents, or variants showing non-Mendelian inheritance, indicating
a de novo event. Variants were filtered based on quality criteria (LowGQX < 10,
LowVariantFreq < 0.20, LowGQ < 30.00, R8 > 8, SB > -10, LowDP < 20) and their
presence in population frequency databases with a maximum minor allele
frequency of 1 % (ExAC, 1000 genomes, dbSNP. Splice-site analysis was restricted
to 8 intronic bp positions from the nearest intron–exon boundary and 3 exonic bp
positions from the nearest intron–exon boundary. Findings in patients 1–2 and 2–1
were validated by Sanger sequencing. Sanger sequencing for the ABCC9 sequence
variant was performed for both healthy and affected family members.

Whole-genome sequencing. DNA libraries for Illumina sequencing were gener-
ated for patients 1–2 and 2–1 using standard protocols (Illumina) from 200 –1 μg
of genomic DNA. The libraries were sequenced with paired-end (2 × 150 bp) runs
using Illumina HiSeq X Ten sequencers with a target depth of 30 × base coverage.
The Illumina data were processed with our in-house developed pipeline v 2.5.1
(https://github.com/UMCUGenetics/IAP) including Genome Analysis Toolkit
(GATK) v3.4-4652 according to the best practices guidelines53. Briefly, sequence
reads were mapped against the human reference genome GRCh37 using
Burrows–Wheeler Aligner v0.7.5a mapping tool54. Sequence reads were marked for
duplicates using Sambamba v0.5.855 and recalibrated per sample using GATK
BaseRecalibrator. Next, GATK Haplotypecaller was used to call SNPs and indels to
create gVCF’s. These gVCF’s were genotyped with GATK. Variants are flagged as
PASS only if they do not meet the following criteria: QD < 2.0, MQ < 40.0, FS >
60.0, HaplotypeScore > 13.0, MQRankSum < -12.5, ReadPosRankSum < -8.0,
snpclusters >= 3 in 35 bp. For indels: QD < 2.0, FS > 200.0, ReadPosRankSum
< -20.0. WGS statistics are provided in Supplementary Table 1.

Full analysis was performed on a merge of the reference coding regions
obtained from Ensembl (v.75) (http://www.ensembl.org/) and UCSC (https://
genome.ucsc.edu/) with ± 100 bp flanks. Cartagenia Bench Lab NGS v.4.3.5 was
used for variant interpretation and prioritization. Variant analyses were made
considering a recessive inheritance model using the Cartagenia cohort analysis tool.
The focus of the analysis was to identify shared variants or shared genes with
possible damaging, but not identical variants, amongst the two cases. Lenient
quality parameters were used to determine high quality variant calls (read depth > 4
reads, filter:pass, genotype quality > 98). Variants were filtered based on presence in
population frequency databases with a maximum MAF of 1% (ExAC, 1000
genomes, dbSNP, and GoNL). Variants are categorized as LoF (frameshift,
stopgain, startloss, stoploss), nonsynonymous, synonymous, and inframe variants.
Furthermore, splice-site analysis was restricted to 8 intronic bp positions from the
nearest intron–exon boundary and 3 exonic bp positions from the nearest
intron–exon boundary. The Kinship coefficient was calculated from WGS data.
Notably, due to multi-sample calling and noise present in the data, the kinship
coefficient of unrelated samples is expected to be around 0.05. Hence, this is usually
applied as proximate to calculate relatedness.

cDNA analysis. RNA was isolated from fibroblast cultures generated from skin
biopsiesusing an RNeasy minikit (Qiagen) according to the manufacturers

protocol. cDNA was produced using SuperScript® VILO™ cDNA Synthesis Kit
(Invitrogen). Two microliters of cDNA were used in a PCR reaction amplifying
ABCC9 exon 6–9 using primers as described in the Supplementary Methods. PCR
products were subsequently verified by Sanger sequencing.

Molecular biology and recombinant expression. For recombinant protein
expression and functional characterization, a 52 amino acid deletion (Ala386 to
Gln437; Δ8) equivalent to the human exon 8 coding region was engineered into
either a N-terminal Flag-tagged rat SUR2A construct (pcDNA_rSUR2A-Flag;
GenBank accession No. D83598.1), a wild-type rat SUR2A construct
(pCMV_SUR2A-WT; GenBank accession No. D83598.1) or a wild-type rat SUR2B
construct (pcDNA_rSUR2B-WT; GenBank accession No. AF019628.1). The rat
SUR2 sequence is 97% identical to human SUR2 and was used to allow for
comparison with an extensive number of previous studies of recombinant
SUR213,14,56–58. SUR2 cDNA (1 µg) was transiently transfected into Cosm6 cells59

(RRID: CVCL_8561) using Fugene 6 (Roche) alongside wild-type Kir6.2 (0.6 µg;
pcDNA3.1_mKir6.2; GenBank accession No. D50581.1). To mimic heterozygous
expression, Kir6.2 was co-transfected with a 1:1 ratio of SUR2A-WT and SUR2AΔ8
(0.5 µg:0.5 µg). Western blot analysis and radioactive rubidium efflux assays were
performed 48–72 h after transfection.

Western blot analysis of recombinant SUR2. Cosm6 cells were transfected with
GFP alone, Kir6.2 with Flag-tagged SUR2A-WT or Kir6.2 with Flag-tagged
SUR2AΔ8 (N-terminal Flag tag with amino acid sequence MDYKDDDDKGAP
was inserted prior to the SUR2A start codon). After 48 h, cells were harvested in
phosphate buffered saline (PBS; Gibco), pelleted, and lysed in 50 µl of PBS con-
taining 1% Triton X-100 (Sigma) by mixing for 1 h at 4 oC. Cell lysate was mixed
with 2× SDS loading buffer, and was separated by electrophoresis using a precast
4–12% Bis-Tris Gel (Nupage). Gel contents were transferred to membranes using
an iBlot 2 (Thermo-Fisher). Membranes were first incubated in a blocking solution
(PBS/1% TWEEN 20/0.4% milk; PBSTM) for 1 h at room temperature (RT) with
gentle shaking, before being washed (3× using PBS/TWEEN) and incubated in the
primary horseradish peroxidase-conjugated anti-Flag antibody (Anti-Flag M2-
HRP-conjugate Sigma # A8592; 1 in 5000 in PBSTM), or an anti-α actin antibody
(clone C4 MilliporeSigma # MAB1501;1 in 3000 in PBSTM) for 1 h/RT. Anti-actin
blots were washed (3× in PBSTM) and incubated with horseradish peroxidase-
conjugated secondary antibody (Goat anti-mouse IgG antibody-HRP conjugate,
Santa Cruz Biotechnology # sc-2005; 1 in 5000 in PBSTM) for 1 h at room tem-
perature. A Pierce ECL Western Blotting Substrate kit was used for chemilumi-
nescence detection; blots were analyzed and protein density quantified using
ImageJ (NIH) and Excel (Microsoft). Actin and SUR2AΔ8 expression was nor-
malized to values observed in WT SUR2A-Flag transfected cells in each inde-
pendent experiment.

Rubidium (86Rb+) efflux assay. Cosm6 cells were plated and transfected in
12-well plates at sufficient density to allow for ~75% confluence on the day of
experimenting. Cells were loaded with radioactive 86Rb+ by incubation (> 6 h) with
DMEM media spiked with 1 µCi ml-1 86RbCl (PerkinElmer) at 37 °C/5% CO2.
After isotope loading, cells were washed in Ringer’s solution which contained (in
mM): 118 NaCl, 10 HEPES, 25 NaHCO3, 4.7 KCl, 1.2 KH2PO4, 2.5 CaCl2, and
1.2 MgSO4, and was supplemented with 2.5 mg/ml oligomycin and 1 mM 2-deoxy-
D-glucose to induce metabolic inhibition (MI), and incubated at room temperature
for a further 10 min. Cells were then washed and Ringer’s solution was added to
each well, before being collected and replaced at the defined time points (2.5,
5, 12.5, 22.5, and 37.5 min). Cells were then lysed with 2% SDS to liberate
remaining intracellular 86Rb+ and sample radioactivity was determined by scin-
tillation counting.

Cumulative 86Rb+ efflux was calculated from the total counts from each time
point. A time-dependent divergence from a mono-exponential efflux was observed,
as noted previously58, and thus rate constants were derived from exponential
functions fit to early time points only (2.5–12.5 min). KATP-independent efflux rate
constants (k1) were obtained from GFP-only transfected cells using the equation:

Efflux ¼ 1�e�k1 :t ; ð1Þ
The KATP-dependent efflux rate constant (k2) was obtained from KATP-transfected
cells using the equation:

Efflux ¼ 1� e ð�k1 :tÞþð�k2 :tÞð Þ; ð2Þ
where k1 was obtained from GFP-transfected cells (Eq. (1)), and the number of
active channels was assumed to be proportional to k2. Efflux-time data shown
represent the mean ± SEM from at least three independent experiments with
multiple internal replicates (N ≥ 3, n ≥ 4). The Mann–Whitney U test was used to
determine statistical significance at a p- value < 0.05.

Patch clamp recording of recombinant channels. Cosm6 cells were transfected
with WT Kir6.2 (0.6 μg) and either WT SUR2A (1 μg), SUR2AΔ8 (1 μg), or a 1:1
ratio of WT and SUR2AΔ8 (0.5 μg: 0.5 μg), and 0.1 μg pcDNA3.1-eGFP to identify
transfected cells. In all, 48–72 h after transfection, excised inside out patch clamp
recordings were made. The membrane potential was voltage clamped at −50 mV.
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Symmetrical KINT solution which contained (in mM): 140 KCl, 10 HEPES, 1
EGTA (pH 7.4 with KOH) was used for pipette and bath solutions. ATP and
pinacidil were applied (in the presence of 0.5 mM free Mg2+, calculated using
CaBuf (Katholieke Universiteit Leuven) using a Dynaflow Resolve perfusion chip
(Cellectricon). Experiments were performed at 20–22 °C. KATP channel currents in
the absence and presence of nucleotides and pinacidil were normalized to the basal
current in KINT, and dose–response data were fit with a four-parameter Hill fit
according to Eq. (3), using the Data Solver Function in Microsoft Excel, where the
current in KINT= Imax= 1; Imin is the normalized minimum current observed in
ATP; [X] refers to the concentration of ATP; IC50 is the concentration of half-
maximal inhibition; and H denotes the Hill coefficient.

Normalized current ¼ Iminþ ðImax � IminÞ=ð1þ ð½X�=IC50ÞHÞ: ð3Þ

Generation of the SUR2 LoF mouse. All mouse studies were performed in
compliance with the standards for the care and use of animal subjects defined in
the NIH Guide for the Care and Use of Laboratory Animals, and were reviewed
and approved by the Washington University Institutional Animal Care and Use
Committee. SUR2-STOP mice were generated using CRISPR/Cas9-mediated
genome engineering60. In mice in which an attempt was made to generate a Cantú
Syndrome-associated missense mutation, an artefactual indel mutation in ABCC9
(c.3446_3450delACTTCinsGA) was identified in one founder individual (B6CBA
F1/J background), which results in the introduction of a premature stop codon (p.
Y1148Stop). This founder (termed heterozygous SUR2-STOP) was viable and
fertile and was crossed with C57BL/6J mice to generate F1 SUR2wt/STOP mice.
gDNA was isolated from F1 mouse tails, and PCR was used to verify the presence
of the indel mutation in positive offspring. One positively identified SUR2wt/STOP

F1 mouse was selected, and further crossed against C57BL/6J to generate F2
SUR2wt/STOP, which were in turn intercrossed to generate F3 homozygous
SUR2STOP/STOP (hereafter referred to as SUR2-STOP) and wild-type and hetero-
zygous littermates, which were used for experiments.

Electrophysiological recordings of isolated myocytes. Ventricular myocytes
were isolated from adult mice as previously described61. Inside–out patch clamp
recordings were made in symmetrical pipette and bath KINT solutions which
contained (in mM): 140 KCl, 10 HEPES, 1 EGTA (pH 7.4). Solution exchange was
achieved using a Dynaflow Resolve perfusion chip (Fluicell). MgATP and pinacidil
(both Sigma) were applied as indicated. Free Mg2+ was maintained at 0.5 mM by
supplementing ATP-containing solutions with MgCl2, where necessary. Recording
electrodes were formed from sodalime hematocrit glass (Kimble) and had a
resistance of 1–1.4 MΩ when filled. Currents were recorded at −50 mV, sampled at
3 kHz, and filtered at 1 kHz using an Axopatch 700B and Digidata 1200 (Molecular
Devices). KATP current was calculated as the difference between the current in the
absence of nucleotides and in the presence of a fully inhibiting concentration of
10 mM MgATP.

Vascular smooth muscle cells were acutely isolated form the descending
thoracic aorta, as previously described42. Whole-cell patch clamp recordings were
made in an initial Na+ bath solution (which contained, in mM): NaCl 136, KCl 6,
CaCl2 2, MgCl2 1, HEPES 10, and glucose 10 (pH 7.4) before switching to a K+
bath solution which contained (in mM) KCl 140, CaCl2 2, MgCl2 1, HEPES 10, and
glucose 10 pH 7.4, in the absence and presence of pinacidil and glibenclamide as
indicated. The pipette solution contained (in mM) potassium aspartate 110, KCl
30, NaCl 10, MgCl2 1, HEPES 10, CaCl2 0.5, K2HPO4 4, and EGTA 5, with pH
adjusted to 7.2 with KOH. The glibenclamide sensitive current density at a holding
potential of −70 mV was taken as a measure of KATP channel activity.

The data were analyzed using Clampfit (Molecular Devices) and Excel
(Microsoft) and are presented as individual replicates in scatter plots, alongside
mean ± SEM. The two-tailed t test was used to determine statistical significance at a
p-value < 0.05 using the RealStatistics add-in for Microsoft Excel.

Mouse echocardiography. Echocardiography was performed on adult (5-month-
old) mice, as previously described62. Images were acquired using the Visual Sonics
Vevo 770 Imaging System (Visual Sonics Inc., Toronto, Canada) and analyzed with
Visual Sonics software. Mice were lightly anesthetized using Avertin and M-mode
images of the parasternal long axis were obtained, from which measurements of
fractional shortening, left ventricular mass, and left ventricular internal dimension
in diastole (LVIDd) were calculated. Left ventricular mass and LVIDd were nor-
malized to the mouse body weight and length (tip of nose to base of tail) for
statistical comparisons. One-way ANOVA followed by post hoc Tuket test or Two-
tailed t tests were used to determine statistical significance using the RealStatistics
add-in for Microsoft Excel, as described.

Multiple-trial inverted screen test. The procedure involved a modification of a
previously published single-trial method that had been used to demonstrate
impaired strength in a mutant mouse model of muscular dystrophy31. This
methodology was adapted to evaluate deficits in strength related to decreases in
physical endurance, which involved conducting multiple test trials administered in
a single day. The apparatus was a wire-mesh screen (16 squares per 10 cm) that was
elevated ~50 cm. A trial consisted of placing an adult (2–3-month-old) SUR2-

STOP mouse, heterozygote (Het) SUR2-STOP mouse, or a wild-type littermate
control on the screen that was inclined to 60° with its head oriented down toward
the base of the screen. After the mouse was stabilized on the screen, it was slowly
inverted resulting in the mouse hanging upside down from the screen. Soft bedding
was placed underneath the mouse to help protect it from injury. The time a mouse
remained hanging upside down following inversion of the screen was recorded
during an initial 3-min test trial. After the first trial, a mouse was placed into a
holding cage for 5 min after which two more trials were conducted with 5 min
being spent in the holding cage between trials. After completing the three trials, a
mouse was placed back into the holding cage where it remained for 44 min, which
was followed by the same 3 × 3-min test trial procedure described above. If a mouse
remained hanging from the screen for the full 3 min duration, it was removed from
the screen and assigned a value of 180 s. The time a mouse remained hanging
upside from the screen (3-min maximum) was analyzed for each of the six trials as
well as the total duration summed across all six trials.

Behavioral and cognitive testing of SUR2-STOP mice. Cognitive and other
behavioral functions were assessed in adult (4–5-month-old) SUR2-STOP mice
and wild-type littermates by conducting a battery of tests to evaluate ambulatory
activity, emotionality, sensorimotor capabilities, learning and memory, and
anxiety-like behaviors. The battery included the following tests (in order): 1-h
locomotor activity; a series of seven simple sensorimotor measures; the Morris
water maze, object recognition; and elevated plus maze, respectively. Full
descriptions of these procedures are provided in the Supplementary Methods.

Blood pressure recordings in SUR2-STOP mice. Arterial blood pressures were
measured in 12-month-old SUR2-STOP mice and WT littermates anesthetized
with 1.5% isoflurane. The left carotid artery was catherized and a Millar pressure
transducer advanced to the ascending aorta. Pressures were recorded using Pow-
erlab data acquisition (ADInstruments), and mean arterial pressure (MAP) was
calculated using LabChart 7 (ADInstruments).

Zebrafish maintenance. All zebrafish experiments were conducted under the
guidelines of the animal welfare committee of the Royal Netherlands Academy of
Arts and Sciences (KNAW) and were approved by the local ethics committee at the
Royal Dutch Academy of Sciences (KNAW). Adult zebrafish (Danio rerio) were
maintained at 28 °C and subjected to the 14-h light/10-h dark cycle. Embryos were
produced by natural mating and kept in a humidified incubator at 28 °C63. All
CrispR/Cas9 injections were performed in the wild-type strain Tübingen longfin.

CRISPR/Cas9 design and embryo injections. A target site within the abcc9
open-reading frame was chosen using CHOPCHOP (http://chopchop.cbu.uib.no/).
sgRNA template was purchased at Integrated DNA Technologies (IDT) as standard
desalted same-day oligos and synthesis was carried out using the Ambion
MEGAscript T7 or SP6 kits (Ambion). Purification of the in vitro synthesized
mRNA was achieved with the RNeasy Mini Kit (Qiagen)64. gRNA and Cas9-
encoding mRNA were co-injected into one-cell stage zebrafish embryos. Each
embryo was injected with 2 nl of solution containing ~12.5 ng μl−1 of sgRNA and
~300 ng μl−1 of Cas9 mRNA. Injected embryos were grown to adulthood to gen-
erate “founder” fish (F0), and screened for germline transmission of CRISPR-
induced indel mutations using an adapted method for detecting simple sequence-
length polymorphisms (SSLPs). Each putative founder adult fish was crossed with a
wild-type adult fish (F1). Sequencing analysis confirmed successful introduction of
13n deletion and segregation in a Mendelian fashion. Homozygous fish (F2) were
generated by inbreeding heterozygous mutant carriers.

Quantitative RT-PCR. Zebrafish larvae at 5 dpf were pooled in groups of 60 (three
different groups for WT and four groups for homozygous mutants) and homo-
genized. RNA was purified using Trizol following standard procedures and cDNA
synthesized using High-Capacity cDNA Reverse Transcription Kit. qPCR was
performed using a StepOne Real Time PCR System (Applied Bioscience) and
PrimeTime qPCR primer/probe assays, as detailed in the Supplementary Methods
(Integrated DNA Technologies). Relative gene expression (2-ΔΔCt) was calculated
by normalizing abcc9 expression to the mean expression observed in WT pools
using Gapdh as a reference gene and the Pfaffl Method65.

Isolation of adult zebrafish ventricular myocytes. For isolation of cardiomyo-
cytes, ~1-year-old animals were anaesthetized by transfer into ice water before they
were decapitated. After removal of the skin and opening of the pericardial sac, the
hearts were harvested and both bulbous arteriosus and atrium were removed.
Ventricles from three to four fish were pooled together and placed in an epi
containing perfusion buffer: (mM) 10 HEPES, 30 Taurine, 5.5 Glucose, 10 BDM in
PBS. Ventricular myocytes were obtained by enzymatic dissociation (perfusion
buffer supplemented with 12.5 μM CaCl2, 5 mg/ml collagenase II and IV) at 32 °C,
and 800 rpm for 40 min. Dissociation was ended by transfer to stopping buffer
(perfusion buffer supplemented with 10% (vol/vol) FBS, 12.5 μM CaCl2, 5 mg/ml
BSA). Cells were dispersed by gentle trituration using a Pasteur pipette.
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Electrophysiological recordings of isolated myocytes. Pipettes were made from
soda lime glass microhematocrit tubes (Kimble) and had a resistance of 1–2MΩ
when filled with pipette solution. All recordings were made in symmetrical KINT
solution ((mM) 140 KCl, 10 HEPES, 0.5 EGTA (pH 7.4 with KOH)). ATP (Sigma)
was applied as indicated. Free Mg2+ was maintained at 0.5 mM by supplementing
ATP-containing solutions with MgCl2 where necessary. Currents were recorded at
−50 mV, sampled at 3 kHz, and filtered at 1 kHz using an Axopatch 1D and
Digidata 1322 A (Molecular Devices). KATP current was calculated as the difference
between the current in the absence of nucleotides and in the presence of a fully
inhibiting concentration of 5 mM ATP. The data were analyzed using Clampfit
(Molecular Devices) and Excel (Microsoft), and are presented as individual repli-
cates in scatter plots, alongside mean ± SEM.

Larval locomotor assay. The Viewpoint Zebrabox system (Viewpoint Behaviour
Technology, Lyon, France) was used to evaluate larval locomotor activity in 5 dpf
zebrafish larvae. Larvae were transferred to a 48-well plate with 500 μl of embryo
medium, placed into the Zebrabox and subjected to a 30 min acclimatization
period to the plate and Zebrabox environment. A total of 24 replicates (one embryo
placed individually in each plate well per replicate) were used per genotype.
Behavior was monitored at 28.5° using a ZebraBox system (ViewPoint Behaviour
Technology) consisting of a soundproof chamber with an infrared camera capable
of recording 60 frames per second; analyses were performed using Zebralab
locomotion tracking software (ViewPoint Behavior Technology). The integration
period was set to 30 s for the 10-min duration of the experiment. A nontransparent
background mode with a detection threshold of 20 was used and a minimum
velocity of 2 mm s−1 was defined as record threshold of inactivity in order to
remove system noise. A movement was considered “small” when individuals
moved <10 mm/s. The larval locomotor assay consisted of a 5 min baseline
recording. The total movement was recorded, then, quantified using ZebraLab
software (Viewpoint, Lyon, France) and plotted in “actinteg” units, which is the
sum of all pixel changes detected during the experimental period66. In addition,
from the data recorded, the ZebraLab software calculated several parameters such
as total swimming distance (TSD) and total swimming time (TST). The data were
compiled and mean activity, TSD or TST for every genotype during each inte-
gration period calculated. The data were pooled together from three independent
experiments at the same conditions. All experiments were performed comparing
SUR2-STOP and its WT siblings. All embryos analyzed originated from group
matings of adult zebrafish.

In vivo high-speed imaging. Image acquisition was conducted using a Hama-
matsu C9300-221 high-speed CCD camera (Hamamatsu Photonics) at 150 fps
mounted on a Leica DM IRBE inverted microscope (Leica Microsystems) using
Hokawo 2.1 imaging software (Hamamatsu Photonics). Image analysis was sub-
sequently carried out with ImageJ (http://rsbweb.nih.gov/ij/, last accessed
November 2017). For analysis of cardiac function, adult zebrafish heterozygous for
abcc9 KO were interbred, and genotype identified by sanger sequencing post
imaging. High-speed brightfield image sequences of the embryonic zebrafish heart
were acquired for zebrafish at age of 5 days post fertilization (dpf). To inhibit
pigmentation, 0.003 %(v/v) 1-phenyl-2-thiourea was added to the embryo medium
at the Prim-5 stage (about 24 h post fertilization (hpf)). After being anaesthetized
in 16 mg/ml tricaine (MilliporeSigma) in E3 medium zebrafish embryos were
mounted in dorsal position in small microscopic chambers filled with 0.25% (w/v)
agarose (Invitrogen) prepared in the same concentration of anesthetic. Zebrafish
hearts were imaged for 10 s (~30 cardiac cycles) at 28 °C ± 0.2 °C.

Cardiac dimensions and function in SUR2-STOP zebrafish. The time interval
between three heart beats was measured, and the heart rate (bpm) was calculated in
triplicates. Sequential still frames from high-speed movies were used to outline the
perimeter of the ventricle. Measurement analysis was carried out by “fit-to-ellipse”
algorithm, which calculates the center of mass and subsequently the best fitting
ellipse. The long axis length (a) and short axis length (b) at diastole and systole
were determined and used to calculate ventricular end-systolic (ESV) and diastolic
volumes (EDV) in triplicates applying the formula: V= 4/3πab2. The stroke
volume was calculated as the difference between three ventricular EDVs and ESVs.
Cardiac output was obtained by multiplying the heart rate with stroke volume. The
percent shortening fraction (SF) was calculated using the formula: SF= (length at
diastole− length at systole)/(length at diastole) × 100. Fractional area change
(FAC) was calculated as follows: FAC= (area at diastole− area at systole)/(area at
diastole) × 100. Measurements were performed blindly.

Cardinal vein blood flow velocity. Zebrafish larvae were mounted in lateral
position at 5 dpf and the cardinal vein region behind the cloaca was imaged for 5 s
at 28 ± 0.3 °C. Vein blood flow velocity was calculated by assessing frame-by-frame
motion of three single erythrocytes per fish determined from high-speed images to
assess mean erythrocyte cell velocity (mm/second) using ImageJ. Cardinal blood
flow velocity was measured over ten frames at a video frame rate of 150 fps as non-
pulsatory venous flow allows frame-by-frame analysis67.

Heart extraction and hematoxylin and eosin (H&E) staining. Adult zebrafish
hearts were dissected and fixed in 4% paraformaldehyde (in phosphate buffer with
4% sucrose) at 4 °C overnight and subjected to paraffin embedding and sectioning
at 10 μm intervals. Heart sections were stained with H&E following standard
procedures. Six fishes were used for each genotype. Image acquisition was con-
ducted using a Leica DM4000 B LED upright automated microscope.

TUNEL assay. TUNEL apoptosis staining was performed on 10 µm cryosections
and detected using the in situ cell death detection kit from Roche (Mannheim,
Germany) according to the manufacturer’s instructions. Nuclei are shown by DAPI
(4′,6-diamidino-2-phenylindole) staining. Confocal images were acquired using a
Leica Sp8 confocal microscope.

Statistical analysis. Rubidium flux, patch clamp electrophysiology and echo-
cardiography data were analyzed using two-tailed t test or Mann–Whitney U test as
described. For the inverted screen test of mice, data were analyzed using a repeated
measures (rm) ANOVA model that contained one between-subjects variable
(genotype) and two within-subjects variables (trials and sessions), followed by
pairwise comparison by two-tailed t test with Bonferroni correction. Behavioral
tests in mice were analyzed using a repeated measures (rm) ANOVA model that
contained two between-subjects variable (genotype and sex) and one within-
subjects variable (trial block). The data are presented as mean ± SEM.

For zebrafish studies sample size was not predetermined by statistical analysis.
In all experiments involving zebrafish embryos, selection was random for scoring.
Exact numbers of analyzed embryos are reported at relevant locations in the main
text or figure legends. Statistical analysis was carried out with Prism (GraphPad).
Distribution of the data sets was tested by D’Agostino–Pearson omnibus normality
test. Depending on the outcome of this test, comparison of two conditions with each
other was carried out using a Student’s two-tailed t test or Mann–Whitney two-
tailed U test throughout the manuscript. All values are expressed as mean ± SEM.

Web resources. For CHOPCHOP, see http://chopchop.cbu.uib.no/; for Ensembl,
see http://www.ensembl.org/; for ExAC Browser, see http://exac.broadinstitute.org/;
for gnomAD, see https://gnomad.broadinstitute.org/; for OMIM, see https://www.
omim.org/; for UCSC, see https://genome.ucsc.edu/.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available within
the paper and its Supplementary Information. Source data for Figs. 3, 4, 5, 6, and 7, and
Supplementary Figs. 5, 6, 7, and 9 are provided with the paper. The variant described in
this study was entered in the Leiden Open Variation Database (LOVD) under ABCC9
(variant #0000579068). The consent does not cover the deposition of the WGS data in a
public database, however, this data set is available for academic researchers on request
(g.vanhaaften@umcutrecht.nl).
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