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Abstract 

The lumpfish (Cyclopterus lumpus Linnaeus, 1758) has for many years been an attractive target 

for the roe fisheries in Norway and has more recently become an important cleanerfish in the 

salmonid farming industry for the control of salmon lice (Copepoda: Caligidae). Despite this, 

there is a lack of knowledge about several life aspects of the species and studies on its genetic 

structure have been inconsistent. It is therefore uncertain how scenarios involving, for instance, 

overfishing or escaping of lumpfish from the fish farms might affect the natural stocks 

genetically and biologically. To initiate the investigations of how human activities might affect 

lumpfish in nature, this project aimed to clarify the genetic structure and reveal potential 

signatures of local adaptation in juvenile lumpfish in Norway. Whole genome sequencing was 

performed for 30 individuals from three different locations and a set of 607,663 SNPs were 

selected for downstream genetic structure analyses. Significant genetic differentiation was 

detected between the northern and southern parts of Norway, with further discrimination of two 

populations within one location in the north. Lumpfish separated by long geographical 

distances showed greater differentiation than those collected at locations more proximate to 

each other, but no significant correlation was detected. Loci putatively under selection were 

identified and revealed population structure at smaller geographical scales. These findings 

suggest that multiple driving forces may have contributed to population structuring in lumpfish. 

The study presents evidence for genetic structuring of Norwegian juvenile lumpfish and 

discriminate at least three populations, and further studies should therefore contribute to 

establishing sustainable management practices for the species. 

 

 

  



 

Page 2 of 47 

Introduction 

Cyclopterus lumpus (Linnaeus, 1758), commonly known as lumpfish or lumpsucker, is a fish 

species naturally found along the Norwegian coast that is much appreciated both by the fishery 

and fish farming industries (Eriksen et al., 2014; Holst, 1993). Lumpfish roe is consumed as a 

cheaper alternative to caviar (Johannesson, 2006), hence lumpfish fisheries have been going on 

since the 1940s (Kennedy et al., 2018). Since the Marine Stewardship Council (MSC) 

certification was obtained in 2017 (MSC, 2017), the demand and prices for Norwegian lumpfish 

roe have been rising (Norwegian Directorate of Fisheries, 2020a), and in 2020, a total of 219 

tonnes of roe were landed by Norwegian fisheries (Durif, 2020). As the species has proven to 

graze on sea lice (Imsland et al., 2018), Caligidae, it has recently become an important resource 

as a cleanerfish in the production of farmed salmonids as well. Sea lice, used here as a collective 

term for the two species Lepeophtheirus salmonis and Caligus elongatus, are ectoparasitic 

copepods that make one of the greatest challenges to the salmonoid farming industry (Costello, 

2009). The lice cause skin damage to the fish, making them susceptible to other secondary 

infections which in worst case may be lethal and result in high production losses (Costello, 

1993). Moreover, sea lice transferred from the farmed fish are a serious threat to wild salmonids 

(Norwegian Scientific Advisory Committee for Atlantic Salmon, 2020; Thorstad et al., 2015), 

and this is one of the main factors impeding the continued growth of the industry (Norwegian 

Ministry of Trade, 2015). Different chemical treatments have traditionally been applied to fight 

the problem, but it remains a challenge that the sea lice develop resistance against them 

(Overton et al., 2019). Other treatments and methods for removal have consequently been 

adopted (Overton et al., 2019), among others the use of cleanerfish as a control agent against 

infestations. The main species applied for the purpose are different wrasses and lumpfish, of 

which the lumpfish is the most widely used (Norwegian Directorate of Fisheries, 2020b). 

Compared to wrasses, lumpfish have a shorter production cycle (Brooker et al., 2018) and a 

better performance at low temperatures (Geitung et al., 2020; Nytrø et al., 2014; Yuen et al., 

2019), and is therefore a favourable choice particularly in Northern Norway and during the 

winter (L. Barrett et al., 2020). The use of lumpfish in the farming industry has thereof strongly 

increased in the last decade, and in 2019 nearly 43 million farmed individuals were sold to a 

total profit of more than 900 million NOK (Norwegian Directorate of Fisheries, 2020b).  

The utilization of lumpfish as cleanerfish is however not without problems. The species have 

shown to be prone to a wide range of diseases (Erkinharju et al., 2021), and a large number die 

in the fish net pens (Stien et al., 2020). From the first large survey on cleanerfish mortality in 
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the Norwegian fish farming industry it was reported that 46% of the lumpfish die during the 

production, mainly due to disease, the application of other lice-removal methods, and natural 

conditions (Stien et al., 2020). As the survival at the end of the production cycle often is not 

reported, it is suggested that the mortality might be even higher in reality. It is also suspected 

that some fish escape from the net pens (Herrmann et al., 2021), which has been reported to 

happen with wrasses (Faust et al., 2018) and is a familiar problem with farmed salmonids 

(Grefsrud et al., 2019). At present, the lumpfish used in aquaculture are juveniles farmed from 

wild broodstock (Powell et al., 2018), which may be collected from locations other than the 

farming areas. If the lumpfish escape, this possesses a risk for interference and interbreeding 

with local lumpfish populations that might be genetically different and which may be affected 

negatively by such interference. However, despite the active roe fisheries and high numbers of 

lumpfish that are being produced in aquaculture, the knowledge about their genetic composition 

is limited (Powell et al., 2018). To maintain sustainable fisheries and to be able to assess the 

consequences related to cleanerfish escapees, more studies on their genetics and biology in 

general are needed. Therefore, in this thesis, I will investigate the genetic composition of 

lumpfish in Norway, in order to get a better understanding of the existence of potential patterns 

in its population structure. 

The lumpfish biology 

Lumpfish belong to the family Cyclopteridae, of which members are characterized by their 

round body shape, a ventral suction disk and spiny tubercles covering the body (Mecklenburg 

& Sheiko, 2003). The lumpfish is the only species of the family that is being exploited 

commercially (Mecklenburg & Sheiko, 2003). The species is recognized by a tall spiny crest 

and three tubercle rows along each side of the body (Figure 1). The males grow to about 30 cm, 

whereas the females reach a length of around 50 cm (Albert et al., 2002; Davenport, 1985). The 

colour varies from green and green-yellow when they are in oceanic waters, to darker grey 

when entering coastal waters (Davenport & Thorsteinsson, 1989). The males do also for a 

shorter period attain a red colour, associated with their courtship (Goulet et al., 1986). 
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Figure 1: Illustration of adult lumpfish. By Jan Fekjan (https://artsdatabanken.no/Pages/F37435). CC BY-SA 4.0. 

The lumpfish is distributed along the coasts of the North Atlantic, from Massachusetts (US) 

and Portugal in the south, to Svalbard in the north (Davenport, 1985) (Figure 2). Adult fish are 

pelagic, usually found far out from the shores in the upper 60 m of the water column (Blacker, 

1983; Holst, 1993), where they feed on various large planktonic organisms (Davenport, 1985). 

In the spring, mature fish migrate long distances from their offshore feeding areas into 

shallower water to spawn (Kennedy et al., 2015; Schopka, 1974; Sigsgaard et al., 2017). The 

males mature presumably at the age of two to three, whereas the females mature one year older 

(Albert et al., 2002). The males arrive at the coasts first to establish their territories and build 

their nests, and the females follow subsequently to lay their eggs in the nests (Goulet et al., 

1986). In experimental trials, it has been demonstrated that the females release two egg batches 

during one season (Kennedy, 2018), and it is suggested that these two batches are dispersed at 

separate spawning grounds in nature (Kennedy et al., 2015). Each male’s territory may 

moreover contain eggs from different females, as they arrive at different times during the 

spawning period (Goulet et al., 1986). While the spent females disappear instantly afterwards, 

the males remain to take care of the eggs until hatching takes place after 1-2 months (Goulet et 

al., 1986). The juveniles remain close to the shores, among seaweed and other substrates they 

can attach to with their suction disc (Daborn & Gregory, 1983; Moring & Moring, 1991) until 

they adopt a pelagic lifestyle around the age of one (Bagge, 1964; Moring, 2001). There is 

lacking knowledge about the movements of the fish from when they migrate offshore to when 

they return to coastal waters again to spawn. 
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Figure 2: Map of the distribution of lumpfish. By K. E. Gjertsen, P. A. Horneland, E. M. Skulstad / The Institute of 

Marine Research, 2016. Used with permission. 

The number of spawning seasons per individual seems to be one or two. Lumpfish spawning 

two subsequent seasons have been observed both in nature (Kennedy & Ólafsson, 2019) and in 

experimental trials in tanks (Imsland et al., 2019). Yet, the mortality appears to be considerably 

high after the first spawning period (Kasper et al., 2014), and the somatic production peaks at 

maturation in both sexes, suggesting that lumpfish are mostly semelparous (Hedeholm et al., 

2014). It seems likely that the somatic production and extensive migrations prior to spawning 

is such a great exhaustion that most of the fish endure only one spawning in nature (Bagge, 

1967; Hedeholm et al., 2014). For those fish that do spawn more than once however, it is not 

clear whether they spawn at the same location each time, and if this would be at the same 

location where they hatched. In several tagging studies, lumpfish were recaptured close to 

where they were tagged after one year at liberty, suggesting a homing behaviour (Bagge, 1967; 

Kennedy et al., 2015; Schopka, 1974). The fish showed furthermore extensive migration routes 

between feeding- and spawning areas (Kennedy et al., 2015; Schopka, 1974). Instead of moving 



 

Page 6 of 47 

into the nearest spawning grounds, the fish travelled long distances along the coast to grounds 

farther away. The proportion of tagged fish recaptured after one year was indeed only 0.6-1.4%, 

although it should be considered that some fish got recaptured in the fisheries already the same 

year as they were tagged. The low numbers of returns could yet support a theory that the fish 

mainly spawn once, and that those that manage to restore and mature again home into the same 

spawning grounds the year after. 

Lumpfish is listed as a least-concern species in the Norwegian red list (Norwegian Biodiversity 

Information Centre, 2015), meaning that it is an abundant and non-threatened species 

(International Union for Conservation of Nature, 2001). The Norwegian Directorate of 

Fisheries is setting fishing quotas each year based on stock estimations from the Institute of 

Marine Research (IMR), and the stock in the Norwegian Sea was estimated to be historically 

high in 2020, although with some uncertainty (Durif, 2020). In the Barents Sea on the contrary, 

the stock has been decreasing since 2013 (Durif, 2020). This has not put constrains for an 

increase of the fishing quotas the last years, which increased from 3 tonnes unprocessed roe per 

fishing boat in 2013 to 5 tonnes in 2021 (Norwegian Directorate of Fisheries, 2020a). A 

presumption for the quotas recommended by IMR is that the lumpfish along the Norwegian 

coast belong to the same genetically distinct group. This could in worst case put a threat to the 

species’ diversity, if smaller genetically distinct populations exist. Knowledge about the genetic 

structure of lumpfish along the Norwegian coast is therefore highly valuable by putting caution 

to stocks that could be vulnerable to over-exploitation. 

The population genetics of lumpfish 

In the first large genetic study on lumpfish that was performed, Pampoulie et al. (2014) 

suggested that there are three large, genetically distinct populations of lumpfish in the North 

Atlantic: (1) Maine–Canada–Greenland, (2) Iceland–Norway and (3) Baltic Sea. They reported 

one genetically homogeneous population along the Norwegian coast and Iceland accordingly, 

without further differentiation at a smaller geographic scale. However, a more recent study by 

Whittaker, Consuegra and de Leaniz (2018) showed that lumpfish from Averøy in Norway are 

genetically distinct from the fish from two other Norwegian locations, which were moreover 

different from the fish around Iceland. Another study published the same year found in contrast 

no differentiation between five Norwegian locations, including Averøy (Jónsdóttir et al., 2018). 

There is accordingly not full agreement between the studies done so far about the genetic 

structure of lumpfish in Norway, and more research is therefore demanded. As all the 
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beforementioned studies have applied the same genetic marker type in their studies, namely 

microsatellites, it is further of interest to investigate what results other more powerful methods 

might reveal. The application of other genetic markers will make it possible to obtain different 

kinds of genetic data, which could possibly shed more light on population genetic studies of 

this species to a resolution that have been difficult to obtain in the previous studies. 

Single nucleotide polymorphisms (SNPs) as a tool to study genetic 
structure 

Microsatellites, the markers applied in the earlier genetic studies on lumpfish, are genomic 

regions with short tandemly repeated sequences made up of 1-6 base pairs (Chistiakov et al., 

2006). Such sequence motifs have a high mutability and therefore a high degree of 

polymorphism (Chistiakov et al., 2006). This makes them useful as markers for studying 

genetic composition and divergence between individuals and populations, and the application 

has successfully detected genetic structure in numerous of species (Abdul-Muneer, 2014). More 

recently, the study of single nucleotide polymorphisms (SNPs) has become a common 

alternative approach in molecular studies. SNPs are variations of single base pairs and are 

widespread throughout the genome. When variation at a set of SNPs is compared among 

multiple individuals or populations, they can reveal significant patterns of genetic relationships 

or insight into patterns of adaptation to the local environmental conditions (Chen et al., 2018). 

While the study of microsatellites usually only covers a few and non-coding regions of the 

genome (Abdul-Muneer, 2014), the mapping of SNPs can reveal genome-wide patterns of 

variation. SNPs can thereby in many cases resolve genetic signatures that are not detected by 

microsatellites (Gärke et al., 2012; Lemopoulos et al., 2019; Sunde et al., 2020). One of the 

downsides with the studies of SNPs have been the high costs of sequencing, making it 

considerably more expensive than microsatellite studies, which do not require sequencing. The 

recent reduction on sequencing costs (Wetterstrand, 2020) and the development of more cost-

effective methods and downstream bioinformatic analyses (Davey et al., 2011) have however 

made SNP studies a more accessible alternative to many researchers and has allowed to deepen 

into genomic studies on non-model species (Chen et al., 2018). 

Population genomics and the driving forces of population structure 

The studies of genetic structure involve in simplest terms the characterization and detection of 

differences in the genome between individuals or populations. While all individuals exhibit 

genetic variation that defines them as individuals, genetically distinct populations (or 
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subpopulations) are characterized by genomic patterns that are shared between individuals 

within the population, but not with individuals from other populations (Hartl & Clark, 2007). 

In the studies of SNPs, this will imply that the individuals within the population have one or 

several specific variants of SNPs that are not expected to find in other groups of individuals. 

When allele frequencies become different between populations, we call it genetic 

differentiation (Hartl & Clark, 2007). To understand how different evolutionary processes have 

contributed to this variation, population genomics has emerged as a field (Luikart et al., 2003).  

One fundamental law in population genetics in general is the Hardy-Weinberg principle. This 

says that allele frequencies remain constant from generation to generation in large populations 

when mating is random and there is no mutation, migration, or selection (Edwards, 2008). In 

such a situation, the genotype frequencies are said to be in Hardy-Weinberg equilibrium 

(HWE). However, the prerequisites for HWE do usually not hold in reality. The most basic 

mechanism behind genetic variation is mutation, which both microsatellites and SNPs arise 

from. Non-deleterious mutations might further by the effects of non-random mating, migration, 

and selection settle in groups of individuals and form genetically distinct populations. Driven 

by genetic drift, which is the genome-wide random distribution of alleles from generation to 

generation, the allele frequencies of neutral mutations may increase in isolated populations 

where the mating is limited, until alleles eventually become fixed (Hartl & Clark, 2007). In the 

same way may geographical distances between individuals limit the extent of random mating, 

and lead to isolation by distance (IBD; Wright, 1943). Mutations that confer an advantage to 

the individuals that possess them have a stronger and more rapid effect on population structure, 

by natural selection (Hartl & Clark, 2007). This occurs typically when individuals with a certain 

genotype have a better fitness than others in a given environment, and the individuals with 

alternative genotypes are outcompeted. Natural selection can either lead to reduced variation 

within a population by directional selection or maintain variation at levels higher than expected 

under neutrality by balancing selection (Nielsen, 2005). In practice, this means that either 

homozygotes or heterozygotes for the selected allele are favoured, respectively. The 

identification of allele frequencies that vary greatly from what can be expected to come from 

neutral variation alone can consequently contribute to discover genes that are important for 

local adaptation to specific environmental conditions (Luikart et al., 2003). We call SNPs that 

exhibit such properties outlier loci. 

As non-random mating, mutation, migration, and selection are inevitable in nature, HWE rarely 

occurs. The reason for its esteem as a fundamental principle for population genetics is that it 
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provides a baseline for where no other evolutionary forces than reproduction alone is acting 

(Hartl & Clark, 2007). Allele frequencies that deviate from HWE can thereby be used to detect 

the influence of other evolutionary forces, as the ones that have been mentioned. To measure 

population differentiation in a useful way, reliable bioinformatic tools that can handle large data 

sets containing thousands of markers have become invaluable. Yet, despite the rapid 

development within bioinformatics, the detection of which factors that are contributing to 

population structure is most often an intricate job (Oleksiak & Rajora, 2020). Population 

structure is normally a result of both physical elements and biological behaviour (Oleksiak, 

2019), and knowledge about these factors are therefore essential to comprehend the whole. 

Indeed, at the same time as knowledge about the biology of a species helps to understand its 

genetic structure, do the elucidation of the genetic structure help to understand the biology 

(Oleksiak & Rajora, 2020). Population genomics has therefore become an important field 

serving both researchers, conservation governments and industries with much-needed 

knowledge.  

Research objective 

The main objective of this study was to resolve patterns of genetic structure and potential 

signatures of local adaptation in juvenile lumpfish in Norway. In particular, a genome-wide set 

of SNP markers was studied in order to clarify the existing incongruency among earlier genetic 

studies on lumpfish using microsatellite markers. Two hypotheses were put forward: 1) A 

genome-wide set of SNPs will reveal genetic structure among lumpfish along the Norwegian 

coast not found previously. 2) Patterns of genetic structure among lumpfish populations in 

Norway are related to geographical distance between locations, possibly due to IBD and/or 

local adaptation. The outcome of the study may provide useful knowledge for the general 

understanding of the species’ biology and provide important insight both towards the 

sustainable exploitation by the fisheries and use of lumpfish as cleanerfish in the aquaculture 

industry. 
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Material and Methods 

Sampling and DNA extraction 

Lumpfish juveniles were collected among seaweeds between 5 m deep and the water surface, 

from three different locations in Norway (Figure 3): Bergen (BER), Tromsø (TRO) and Lyngen 

(LYN), in summer 2020. At each sampling location, ten juveniles were collected and preserved 

in 96% ethanol at -18 ˚C for later DNA extraction at UiT. For the extraction, a small tissue 

sample was cut from the tail or posterior part of the body of each individual. Total genomic 

DNA extraction was performed in spin columns following the DNeasy® Blood & Tissue Kit 

protocol from Quiagen (Hilden, Germany). The extracts were analysed by electrophoresis on a 

1% agarose gel (UltraPureTM Agarose, Invitrogen, Thermo Fisher Scientific, Carlsbad, CA, 

USA) to examine contamination and DNA degradation. Concentrations of double-stranded 

DNA were assessed with the Quant-iT™ PicoGreen™ dsDNA Assay Kit (Invitrogen, Thermo 

Fisher Scientific, Oregon, US). For the sequencing, a minimum of 0.2 µg DNA from each 

individual was required. All extracts were kept at -18˚C until sequencing. 

 

       Figure 3: Sampling locations. 
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Whole genome sequencing (WGS) 

DNA purification, next generation sequencing library preparation and sequencing were 

performed by Novogene Co., Ltd. (Hongkong, China). Briefly, the genomic DNA from each 

sample was fragmented to the size of approximately 350 base pairs and a DNA library was 

constructed according to Illumina paired-end protocols. Library quality was assessed by Agilent 

2100 Bioanalyzer (Agilent Technologies, CA, US) for size distribution and qPCR was used to 

quantify DNA fragments with sequencing adapters. Using the Illumina NovoSeq 6000 

sequencing platform (Illumina, Inc., CA, US), paired end reads of 150 base pairs were 

generated, with a minimum coverage of 10× and mean coverage of 30× of 99% of the genome. 

SNP detection and filtering 

Quality control and sequence alignment of the sequencing data was performed before SNP 

detection was carried out. The reads were mapped with the BWA software (v 0.7.8-r455; Li & 

Durbin, 2009) to the available lumpfish reference genome (RefSeq Accession 

GCA_009769545.1), using the maximal exact matches algorithm with a minimum seed length 

of 32 (parameters ‘mem -k 32’). Picard (v 1.111; http://broadinstitute.github.io/picard/) and 

SAMtools (v 1.3.1; Li et al., 2009) were used for subsequent processing and removal of PCR 

duplicates. SNPs were called with SAMtools, with indel candidates requiring a minimum of two 

gapped reads, and the minimum fraction of gapped reads set to 0.002 (‘mpileup -m 2 -F 0.002’). 

The detected SNPs were filtered with SAMtools to obtain a minimum mapping quality of 20 

and a minimum read depth of 4. The ANNOVAR software (v 2015Dec14; Wang et al., 2010) 

was applied to annotate the SNPs. The SNPs were then filtered by VCFtools (v 0.1.15; Danecek 

et al., 2011) for a minimum allele count of six (‘--mac 6’), no missing genotypes (‘--max-

missing 1’), and no indels (‘--remove-indels’). Only biallelic SNPs in the data set were kept (‘-

-min-alleles 2’ and ‘--max-alleles 2’). The SNPs were further filtered for significant deviation 

from HWE (cut-off p-value: 0.001) using a Perl script 

(https://github.com/jpuritz/dDocent/blob/master/scripts/filter_hwe_by_pop.pl). Lastly, the 

SNPs were filtered for linkage disequilibrium with bcftools (v 1.10.2; Li, 2011) with the 

minimum squared correlation coefficient set to 0.8 and a window size of 100,000 (‘+prune -l 

0.8 -w 10000’). This yielded the final data set for the downstream analyses, henceforth referred 

to as the ‘full data set’. 

 

http://broadinstitute.github.io/picard/
https://github.com/jpuritz/dDocent/blob/master/scripts/filter_hwe_by_pop.pl
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Calculation of basic population statistics 

Basic population genetic statistics were calculated in R version 4.0.4 (R Core Team, 2021). 

Observed heterozygosity (HO) and expected heterozygosity (HE) for each population were 

calculated with the adegenet package (v 2.1.3; Jombart, 2008). The inbreeding coefficient (FIS) 

for each population was calculated with the hierfstat package (v 0.5-7; Goudet & Jombart, 

2020). The Barlett’s test integrated in R was further performed to assess whether differences 

between HE and HO were statistically significant. To test for deviations from HWE, the Monte 

Carlo procedure by Guo and Thompson (1992) implemented in the pegas package (v 0.14; 

Paradis, 2010) was applied with 1000 replicates. The significance level was set to 0.05. 

Initial analyses of population structure 

To initially assess the extent of population structure, pairwise global FST coefficients between 

the sampling locations were calculated. The FST coefficients measure the proportion of genetic 

difference that can be explained by variation between populations (Wright, 1965), providing 

measures of genetic distance between the sampling locations. The estimations were performed 

using the StAMPP package (v 1.6.1; Pembleton et al., 2013) in R, which applies the F-statistics 

by Weir and Cockerham (Weir & Cockerham, 1984). Estimations were performed first with 

the full data set, and subsequently with an outlier data set and neutral data set (please refer to 

the next section for explanation). As the sampling was performed in a large geographical region, 

it was further examined whether the observed genetic distances were associated with the 

geographical distances between the sampling locations. IBD analysis was performed using the 

function mantel.randtest in the ade4 R package (v 1.7-16; Dray & Dufour, 2007). The Mantel 

test assesses whether there is a correlation between two equally dimensioned distance matrices 

(Mantel, 1967), in this case containing the pairwise FST estimates for the full data set and 

geographical distances between sampling locations, respectively. The shortest distances by sea 

between the approximate coordinates for the sampling locations (Table 1) were measured using 

Gule Sider (https://kart.gulesider.no/). The test was performed with 100,000 repetitions. 

Table 1: Approximate coordinates for the sampling locations (obtained from Gule Sider). 

Location code Location Latitude Longitude 
BER Bergen N60.54401 E04.92102 

TRO Tromsø N69.70951 E18.95528 
LYN Lyngen N69.78061 E20.52057 

https://kart.gulesider.no/
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Outlier loci detection 

In order to find SNPs that potentially could be under selection and thereby related to local 

adaptation, different outlier loci detection methods were tested. A common property of most of 

the methods is that they involve locus-wise estimation of FST coefficients. This may reveal 

SNPs with allele frequencies differing significantly between populations and is therefore used 

to pinpoint SNPs putatively under selection. To prepare the input files for the various analyses, 

PGDSpider (v 2.1.1.5; Lischer & Excoffier, 2012) and the vcf2bayescan Perl script 

(https://github.com/santiagosnchez/vcf2bayescan) were used. Four different outlier detection 

tools were applied: 1) BayeScan (v 2.0; Foll & Gaggiotti, 2008), a Bayesian program using 

estimated posterior probabilities of one selection model and one neutral model to assess whether 

a SNP is under selection. The program was run with the prior odds set to 100,000, meaning that 

the neutral model was assumed to be 100,000 times more likely to explain the variation than 

the selection model. The results were interpreted in R and SNPs with a false discovery rate 

(FDR) < 0.05 were considered as outlier loci. 2) Arlequin (v 3.5.2.2; Excoffier & Lischer, 2010) 

with the ‘Detect loci under selection’ function was applied using a non-hierarchical finite island 

model. Arlequin performs coalescent simulations to obtain a FST null distribution which is used 

to detect outlier FST values. The analysis was performed with 20,000 simulations and 5 demes. 

The FDR of the p-values was estimated using the p.adjust function in R, and loci were 

considered as outliers if the FDR was < 0.05. 3) The OutFLANK R package (v 0.2; Whitlock & 

Lotterhos, 2015), in which the approach is to identify SNPs under selection by distinguishing 

all other genetic variation from the selective variation, by inferring a FST null distribution. This 

null distribution is achieved by trimming the tails of a fitting chi-squared distribution. The left 

and right trim fractions were set to 0.05, and a minimum heterozygosity of 0.01 and q-threshold 

of 0.05 were applied. 4) The pcadapt R package (v 4.3.3; Privé et al., 2020). Outlier detection 

with pcadapt is based on principal component analysis (PCA) and does not make use of FST 

coefficients to detect outlier loci, but Mahalanobis distances. The PCA decomposes first the 

allele frequency differences into K principal components explaining the variation in the data 

set. The Mahalanobis distances calculated for each SNPs are subsequently used to identify 

SNPs that contribute excessively to variation and which are then considered as outlier loci. The 

first four principal components (K = 4) were chosen for the analysis, as these were shown to 

contribute the most to the variation (Appendix 1). As with Arlequin, the p.adjust function in R 

was used to estimate the FDR of the p-values, and SNPs with a FDR < 0.05 were considered as 

outliers. 

https://github.com/santiagosnchez/vcf2bayescan
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As the outlier detection methods vary in terms of statistic approaches, they may have different 

outcomes and accuracy in detecting true outliers (Ahrens et al., 2018). As a measure to 

eliminate potential false positives, outlier loci detected with a minimum of two of the four 

approaches tested were here considered as “true outliers”. These loci were combined in an 

outlier data set, henceforth referred to as the ‘outlier data set’. The remaining loci were 

considered as neutral markers, constituting the ‘neutral data set’. 

Clustering-based population structure analyses 

To examine the patterns of population structure in more detail, PCA was performed as a 

distance-based approach, and the software ADMIXTURE (v 1.3.0; Alexander et al., 2009) was 

used as a model-based approach. PCA was performed with the pcadapt package (v 4.3.3; Privé 

et al., 2020) in R, following the same procedures as for the outlier loci detection. The analysis 

was first performed with the full data set, then further with the outlier data set and neutral data 

set to assess what effect the potentially selected SNPs had on the population structure. PCA 

plots obtained with the adegenet package (v 2.1.3; Jombart, 2008) and neighbour joining trees 

obtained with the ape package (v 5.4-1; Paradis & Schliep, 2019) in R were used to identify the 

individuals and label the pcadapt plots accordingly (Appendix 2). 

ADMIXTURE, being a model-based approach, follows population genetic assumptions using a 

statistical model (Alexander et al., 2009). The software infers the number of genetically distinct 

clusters, K, of individuals independently of the sampling locations. Based on the multiloci 

genotypes of all the individuals, it estimates population allele frequencies and ancestry 

proportions using a maximum likelihood approach. For each individual, the fraction of which 

each K ancestral population contributes to its genome is estimated. By testing for different 

values of K, the pattern of structure can be explored at different levels and the value of K that 

best explains the population structure can be inferred (Pritchard et al., 2000). To convert the 

data to the binary ped format required for the analysis, PLINK (v 1.07; Purcell et al., 2007) was 

utilized. ADMIXTURE was then run for K ranging from 1 to 6, following the procedures of 

Evanno, Regnaut, and Goudet (2005), which tested for K up to three more than the true number 

of populations. Based on the number of sampling locations, it was assumed that there were 

three true populations. For each K, 10 runs were performed with different random seeds. 

CLUMPAK (Kopelman et al., 2015) was subsequently used to collate all the runs from 

ADMIXTURE and to infer the best K. For the latter, CLUMPAK calculates the delta K (∆K) as 

proposed by Evanno et al. (2005). Based on all runs for each K, ∆K is given by the mean of the 
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second order rate of change of the loglikelihood output by ADMIXTURE, divided by the 

standard deviation. With simulated data sets, Evanno et al. (2005) showed that the maximum 

∆K is obtained for the true K, and it can thereby be used as an indicator of the best fitting K for 

the given data set. As input for the assessment, the loglikelihoods calculated for each K from 

all runs were used (except K = 1, for which ∆K cannot be calculated). All the procedures were 

first performed for the full data set, then for the outlier data set and neutral data set separately 

to investigate how the patterns in genetic structure may be affected by the presence of outlier 

loci, as with the PCA. 
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Results 

Sequencing and genotyping 

A total of 1,754,515,036 raw reads were obtained from the WGS, corresponding to a mean of 

47,419,325 (SD ± 18,883,544) raw reads per individual. The proportion of reads mapped 

successfully to the genome of each individual ranged from 95.28% to 98.13%. The average 

mapping depth per individual was 11.59× (SD ± 0.77), and a minimum depth of 4× was 

achieved for 93.95 % of the genome on average (SD ± 1.07). SNP calling and filtering for 

minimum mapping quality of 20 and a minimum read depth of 4 yielded a SNP data set 

consisting of 2,508,556 loci. After all filtering steps, the final ‘full data set’ contained a total of 

607,663 loci.  

Basic population parameters 

HO was significantly greater than HE for all locations (p < 0.01), ranging from 0.35 to 0.37 

(Table 2). All locations had negative and almost equal FIS values in the range -0.036 to -0.035. 

For each location, 1.41% to 1.57% of the SNPs deviated significantly from HWE (p <0.05). 

Table 2: Average observed heterozygosity (HO), expected heterozygosity (HE), and inbreeding coefficient (FIS) 
across loci for each sampling location. The percentage of loci deviating from Hardy-Weinberg Equilibrium (HWE) 

at a 0.05 significance level is given for each location. 

  HO HE FIS HWE deviation (p < 0.05) 

BER  0.348 * 0.320 - 0.035 1.57 % 
TRO  0.366 * 0.336 - 0.036 1.45 % 
LYN  0.365 * 0.335 - 0.036 1.41 % 

* HO significantly different from HE (p < 0.01) 

Initial indications of population structure 

For the full data set, the estimated pairwise FST indicated significant differentiation between all 

pairwise locations (p < 0.01). The highest genetic divergence was observed between BER and 

the two northern locations, with FST > 0.04 (Table 3). A FST of 0.002 between TRO and LYN 

suggests minor genetic differences between the two northern locations. The FST estimates were 

considerably higher for the outlier data set. Between BER and the northern locations, both FST 

estimates were > 0.6 (p < 0.05). Between TRO and LYN, the FST was 0.06 (p < 0.05). The FST 

coefficients estimated for the neutral data set were similar to those for the full data set. 
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Table 3: Pairwise FST estimations. Values above the diagonal are for the full data set. The analysis of the neutral 
data set yielded similar results (not shown). Values below the diagonal are for the outlier data set. All values were 
significant with p < 0.05. 

 BER TRO LYN 
BER - 0.042 0.044 
TRO 0.632 - 0.002 
LYN 0.640 0.063 - 

When considering the FST estimates in relation to the geographical distances between the 

sampling locations, the FST was greater between the locations separated by longer geographical 

distances (BER vs. TRO, and BER vs. LYN). The Mantel test showed however that there was 

a non-significant correlation (r = 0.999, p = 0.17) between the pairwise FST estimates and the 

geographical distances, indicating that IBD is not contributing to population structuring. 

Detected outlier loci 

BayeScan detected 6 outlier loci with FDR < 0.05 when prior odds of 100,000 were chosen. 

With Arlequin, 1,543 outlier loci with FDR < 0.05 were identified, whereas pcadapt detected a 

total of 16,157 outliers with the same prerequisites. OutFLANK on the other side did not detect 

any outlier loci. Thus, 17,706 SNPs in total were suggested to be under selection by the different 

approaches. Of these, 40 SNPs were appointed as outlier loci by both Arlequin and pcadapt, 

and one SNP was detected by both pcadapt and BayeScan. No common outlier loci were found 

between Arlequin and BayeScan. The outlier data set consisting of outlier loci detected by a 

minimum of two approaches consisted thereby of 41 SNPs. All were putatively under 

directional selection, with FST values calculated in Arlequin ranging from 0.418 to 0.828. The 

remaining 607,622 SNPs were considered as neutral markers. 

Population structure inferred from the cluster-based analyses 

In the PCA performed with the full data set, the first principal component (PC1) separated BER 

from the two northern populations, TRO and LYN (Figure 4). PC1 explained 26.88% of the 

total variation in the data set. The second principal component (PC2) suggested further division 

within BER and LYN, with particularly two individuals from each location exhibiting high 

variation compared to the other individuals. From BER, these were BER01 and BER17. BER20 

and BER25 were also partly separated from the main clustering of BER individuals by PC2. In 

the same way were LYN13 and LYN18 separated from the rest of the LYN and TRO 

individuals. A total of 20.88% of the variation was explained by PC2. 
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Figure 4: Principal component analysis (PCA) of the full data set performed with the pcadapt package in R. The 
plot displays the variation between samples explained by the first and second principal components (PC1 and PC2, 
respectively). Each sample are represented by a dot. The samples that differ the most from the rest are labelled.  

The admixture analysis in ADMIXTURE revealed patterns that can be comparable to the PCA, 

with a clear division between BER and TRO/LYN for all values of K (Appendix 3). The optimal 

K by Evanno at al. (2005) was 3 (Figure 5 & Appendix 4). For K = 3, two LYN individuals 

made up their own cluster, which were the same two separated from the TRO/LYN cluster in 

the PCA (LYN13 and LYN18).  

 

Figure 5: Bar plot obtained with CLUMPAK showing inferred population structures for K = 3 from ADMIXTURE, 
using the full data set. Each sample are represented by one bar (please refer to Appendix 3 for a list of sample 
names) and the colours represent different ancestries. Appointed samples are those that differ considerably from 
their respective location group.  

When only the outlier loci were used as input for PCA, there was still a clear separation between 

BER and TRO/LYN by PC1 (Figure 6a). This component explained 98.77% of the total 

variation in the outlier data set. PC2 created a gradient along which the TRO and LYN 

individuals differentiated, with the TRO individuals mainly in the one end corresponding to the 
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most variation, and the LYN individuals more towards the end with the least variation. The 

BER individuals were also spread out by PC2. 25.67% of the variance was explained by PC2. 

PCA performed with the neutral markers showed a similar pattern as the full data set (Figure 

6b). There was a very slight decrease in the amount of variance explained by PC1 (26.86 %) 

when compared to the full data set, whereas PC2 explained a similar amount of difference 

(20.88 %). 

 

Figure 6: Principal component analysis (PCA) with a) the outlier data set and b) neutral data set, performed with 
the pcadapt R package. The variation between samples explained by the first and second principal components 
(PC1 and PC2, respectively) is plotted. The dots represent each sample and those that differ the most from the 
rest are labelled.  

The outlier data set showed some differences in genetic structure compared to the full data set 

in the admixture analysis (Figure 7a). The optimal K by Evanno et al. (2005) was yet 3 

(Appendix 4), for which there was still a clear separation between BER and the two northern 

locations. What was different from the full data set, was that four TRO individuals (TRO04, 

TRO05, TRO09, TRO12) made up their own cluster. These corresponded to the individuals 

observed in the upper end of the PC2 gradient in the PCA (Figure 6a). The remaining six TRO 

individuals and LYN made up the third cluster, but some individuals shared smaller proportions 

of ancestry with the four TRO individuals. The two LYN individuals that were discriminated 

from the TRO/LYN cluster by the full data set (Figure 4 & 5), did not stand out in the outlier 

loci analyses. 

With the neutral data set, the structure appeared more like the full data set (Figure 7b). However, 

the optimal K by Evanno et al. (2005) was 5 for this data set (Appendix 4). When K = 5, the 

two BER individuals most separated from the BER cluster in the PCA (BER01 & BER17; 

Figure 6b) made up their own cluster, in addition to the two LYN individuals (LYN13 & 
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LYN18). The TRO and LYN individuals had further some proportions of ancestry that did not 

make up an own cluster. 

 

Figure 7: Population structures inferred with ADMIXTURE for a) the outlier data set and b) the neutral data set. 
The best K (as proposed by Evanno et al., 2005) was 3 for the outlier data set and 5 for the neutral data set. Each 
bar represents one sample (please refer to Appendix 3 for a list of sample names) and each colour represents 
different ancestries. The samples that differ the most from their respective location groups are pointed out with their 
numbers. Bar plots were obtained with CLUMPAK. 

Overall, the different set of loci showed the same patterns, in that all results showed that there 

were large genetic differences between lumpfish from the south and the north of Norway. Some 

of the analyses revealed further differentiation within LYN, and the study of SNPs putatively 

under selection indicated in addition a differentiation between the two northern sampling 

locations. 
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Discussion 

The aim of this study was to get a better understanding of the genetic structuring of lumpfish 

in Norway, and to investigate whether factors like IBD and/or local adaptation contributed to 

this structuring. WGS was applied to obtain a comprehensive set of SNPs, which was examined 

by various population structure analyses and subjected to outlier detection. The results did 

unambiguously show differentiation between lumpfish from one sampling location in southern 

Norway (BER), and two sampling locations in northern Norway (TRO and LYN). The results 

also showed genetic structuring at smaller geographical scales in all sample locations. It was 

not found a significant association between the genetic distances and geographical distances 

between sampling locations, and IBD could therefore not be confirmed as a driving factor of 

the population structuring. Studies of SNPs putatively under selection revealed a somewhat 

different population structure compared to the one detected by the full data set and the neutral 

data set. These findings open up for several theories about how the genetic structure of lumpfish 

in Norway might have been developed.  

The large-scale population structure of Norwegian lumpfish 

The genome-wide set of 607,633 SNPs implied that all locations had higher heterozygosities 

than expected and allele frequencies that deviated from HWE. The slightly negative FIS values 

(-0.036 to -0.035) indicate that there is no relatedness between the individuals at any of the 

sampling locations. Taken together, this could indicate that factors like inbreeding or genetic 

drift are not the main drivers to the observed population structure, and that mating occur quite 

randomly within rather large groups of individuals. For a marine fish with migratory behaviour 

and few obvious barriers to gene flow this is not uncommon, and it has earlier been pointed out 

that the lumpfish has a great potential for active dispersal (Garcia-Mayoral et al., 2016). 

However, based on the observed population structure patterns, it seems possible that several 

populations are sampled at each location, and this would contradict these theories. The presence 

of several populations at the sampling locations would yet be able to explain the obtained 

population statistics. The observed subpopulation structures will be discussed more in detail in 

next section, after we first have looked at the population structure at the larger scale. 

A clear differentiation between lumpfish from the south and the north of Norway was confirmed 

by several approaches. The estimated pairwise FST coefficients indicated a significant 

difference between BER and each of the two northern sampling locations, TRO (FST = 0.042, 
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p < 0.05) and LYN (FST = 0.044, p < 0.05). PCA and admixture analyses showed congruent 

patterns of differentiation (Figure 4-7). These findings are not in accordance with the study by 

Jónsdóttir et al. (2018), which did not detect any genetic structure in adult fish from five fishing 

grounds spread along the Norwegian coast from the north to the south. Our findings support 

however the previous findings by Whittaker et al. (2018), which were the first to suggest genetic 

differentiation in adult lumpfish within Norway. Whittaker et al. (2018) found fish from Averøy 

to be genetically different from fish from Rogaland and Namsen, which are south and north of 

Averøy, respectively. Potentially, it might be possible that the approach we have applied here 

could detect genetic differentiation between Rogaland and Namsen as well. Whittaker et al. 

(2018) applied 10 microsatellites which cover a maximum of 2,219 base pairs of the genome 

(Skirnisdottir et al., 2013). With the 607k SNPs applied here, more of the variation that the 

genome holds have been covered, and it seems reasonable to assume that this has allowed for 

detection of patterns of genetic structure that could not be detected by microsatellites. This has 

for instance also been demonstrated for the Atlantic herring, Clupea harengus (Lamichhaney 

et al., 2012). A more exhaustive sampling design should help to refine these geographical 

patterns of genetic population structure of lumpfish in Norway. 

The pattern of genetic differentiation observed in the present study is expected in terms of the 

environmental heterogeneity along the Norwegian coastline and reported swimming distances 

for lumpfish (Kennedy et al., 2015). Lumpfish are poor swimmers (Hvas et al., 2018) and 

considering that females lay their eggs into nests guarded by males, dispersal during early life 

stages appears limited. Hence, unless ocean drifts greatly affect the individuals in the later life 

stages, high rates of gene flow between the southern and northern lumpfish populations seems 

unlikely. It was therefore hypothesised that genetic differentiation would increase with 

geographical distances between the sampling locations. The estimated pairwise FST coefficients 

support this theory, but there was not found a significant relationship between the geographical 

distances and the pairwise FST values (Mantel test, p = 0.16), rejecting the hypothesis of patterns 

of IBD. This does not implicitly mean that IBD does not contribute to the observed population 

structure in lumpfish. The lack of significance could likely be due to the low number of 

sampling locations (Jenkins et al., 2010) or an uneven geographical distribution of sampling 

sites. In a study of the genetic structure of lumpfish from six locations along the West Greenland 

coast, it was indicated significant IBD using microsatellite markers (Garcia-Mayoral et al., 

2016). In the study by Whittaker et al. (2018), which sampled at 15 sites in the North Atlantic, 
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it was also detected a weak, but significant IBD. There is accordingly reason to believe that a 

more exhaustive sampling design along the Norwegian coast may reveal a pattern of IBD. 

Genetic structuring at smaller geographical scales 

The applied methods allowed also for detection of genetic differentiation within some of the 

sampling locations. The individuals from TRO and LYN appeared to be quite genetically 

similar overall, but two individuals from LYN stood out from the main group. There is the 

possibility that these individuals have been driven by coastal currents from another place at the 

larval stage. Another reason could be that the sampling has taken place at the border between 

two populations, and that these individuals represent one of the populations. What seems even 

more plausible, is that the location has been under-sampled and that these two individuals 

represent a diversity that is present to a larger extent than what has been shown here. In general, 

this applies to all the three sampling locations. The negative FIS values for all locations may 

indicate that the spawning stocks are relatively large in these areas, and ten individuals are then 

too few to represent the whole stocks. This, again, suggests that more studies with more samples 

should be performed in order to cover more variation and better understand the population 

structures seen at the smaller geographical scale.  

From BER, four individuals in groups of two distinguished from the other six individuals. One 

factor that hypothetically could explain this variation is the different sea currents affecting the 

Norwegian coast. Diverging from the Atlantic current, the Norwegian current is a strong 

directional current moving towards the Polar areas, that potentially may affect pelagic fish in 

the north more than the fish in the south. As BER is somewhat in between where the Norwegian 

Current move towards the north and where some of it bends of towards the North Sea, it might 

be slightly random in terms of where the lumpfish end of spawning in this area. The northern 

part of Norway is more strongly affected by the Norwegian current, and it could therefore be 

less incidental where the fish move in to spawn. Considerable influence could potentially also 

be attributed the Norwegian Coastal Current, which can reach great velocities particularly 

outside the southern coast of Norway (Sætre & Ljøen, 1972). Spreading of eggs and larvae of 

fish species like Atlantic cod (Gadus morhua) and capelin (Mallotus villosus) are well-known 

to occur (André et al., 2016; Gjøsæter, 1998), but it is generally more uncertain how the currents 

may affect the migration patterns of adult fish (Lennox et al., 2019). To be able to assess this 

more comprehensively for the lumpfish, more samples and sampling locations are needed. 
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More tracking experiments could also undoubtedly help to better understand the migratory 

behaviour of the lumpfish. 

Potential signs of local adaptation 

Due to the long coastline, lumpfish in Norway are exposed to great variability in environmental 

conditions. Particularly the water temperature varies greatly between the north and the south 

(IMR, 2019), and this is a factor that potentially may affect the survival of lumpfish particularly 

at the early, crucial life stages. In one study, it was shown that juvenile lumpfish from different 

parts of Norway in the size range 154–426 g do not have different temperature preferences 

when reared in aquaculture facilities (Mortensen et al., 2020). We do however not know if the 

same applies to the fish in nature and how the temperature may affect the individuals before 

they reach this size. Latitudinal gradients in temperature should therefore not be ruled out as a 

potential driver of selection, contributing to locally adapted populations. The fish are 

furthermore exposed to different salinities, which increase with increasing latitude along the 

coastline (Sætre & Ljøen, 1972) and which is another environmental variable commonly 

associated with local adaptation in marine fish (Kijewska et al., 2016; Lamichhaney et al., 

2012). Therefore, it was of interest to discover SNPs that could be subjected to selection in 

lumpfish. The four methods that were applied detected outlier loci in a range from zero to 

several thousand SNPs. With the great variation in statistical approaches constituting the 

different programs this was to be expected. The ability to detect true outlier loci is amongst 

others affected by the demographic history of the species, and particularly IBD might lead to 

high false positive rates (Lotterhos & Whitlock, 2014). BayeScan and OutFLANK has been 

reported to have the greatest power in detecting outlier loci under an IBD model (Whitlock & 

Lotterhos, 2015), and since no significant IBD was shown in the present study, this could 

explain why these programs detected the lowest numbers of outlier loci here (six and zero 

respectively). In the same study it was also stated that OutFLANK performs best when the 

numbers of samples and locations are not too low, which could be another possible explanation 

to why OutFLANK did not detect any outlier loci herein. For BayeScan, the low numbers of 

detected outliers might also be due to the presence of admixed individuals, which has shown to 

reduce its detection power (Luu et al., 2017). Another possibility could be that the prior odds 

were set too strict. The outlier detection procedure in Arlequin is based on a non-hierarchical 

finite island model, and more than one thousand loci potentially under selection were detected 

with this method. This method has, however, been shown to have very high false positive rates 
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if the species possess a hierarchical population structure (Excoffier et al., 2009). As a 

hierarchical model seems more likely than an island model for lumpfish, there is thus a chance 

that some of the discovered outlier loci are false positives. The fourth approach, pcadapt, has 

the advantage of not being dependent on any prior group assignment to detect outlier loci and 

is supposed to have the greatest detection power for hierarchically structured populations (Luu 

et al., 2017). pcadapt showed undoubtedly the highest power in this study, with more than 16k 

outlier loci detected. Indeed, the relatively high significance level that was applied allows yet 

for a high number of false discoveries (5%), considering the large number of SNPs (607k) that 

were subjected to outlier detection. 

Because it is impossible to validate which detected outlier loci that are true discoveries only 

using bioinformatic tools, only loci that were detected with a minimum of two of the methods 

were selected for the further analyses, to gain some confidence. A total of 41 SNPs were then 

considered as “true outlier loci”. If there was only selection for these SNPs and no other factors 

creating the observed population structure, we would have expected the remaining putatively 

neutral markers to show a lack of population structure. This was not the case, instead the neutral 

data set showed the same structure as the full data set. However, the most likely number of 

clusters estimated by the method of Evanno et al. (2005) was five with the neutral data set, in 

difference to three for the full data set. This is possibly because the SNPs with the highest 

variation between locations are eliminated, so that SNPs that contribute less to variation have 

more effect on the genetic structure. For K = 5, some individuals from TRO and LYN had small 

proportions of ancestry that was not fully explained by the structure. This may again be due to 

under-sampling and that the source population therefore is not present in these samples. Or it 

could be that this is variation that among hundreds of individuals would be negligible but 

become prominent here due to the low sample number. It is important to keep in mind that the 

value of K regarded as the optimal one in the admixture analyses unlikely represent the true 

number of populations present, but may be considered as the number of different ancestries that 

best explains the most protruding variation in the given data (Lawson et al., 2018). Irrespective 

of this, what appears evident from the observed patterns of the outlier data set and neutral data 

set, is that the 41 chosen SNPs are not responsible for the population structuring alone. This 

does however not implicitly mean that lumpfish do not experience selection. From a total of 

17,706 outlier loci detected by the different applied methods, the 41 SNPs were chosen as “true 

outliers” only on the basis of being detected by more than one method. It is fully possible that 

some of the excluded outlier loci, which then were regarded as neutral, are actually SNPs under 
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selection. It is also possible that the neutral markers reflect patterns of local adaptation, despite 

not being under selection, as has been suggested for Atlantic salmon, Salmo salar (Moore et 

al., 2014). This may occur when selection lead to reproductive isolation and thereby limits the 

gene flow, which further may lead to ecological speciation (Thibert-Plante & Hendry, 2010). 

Such divergent selection seems indeed not very likely for lumpfish if we consider the 41 outlier 

loci as true subjects of selection. If that was the case, the neutral data set should have possessed 

a pattern more similar to the outlier data set. What was observed, was that the outlier data set 

exhibited more variation between individuals than the neutral data set (Figures 6 & 7). If the 

high differentiation of neutral loci were to be associated with the selection of the given outlier 

loci, the two data set should have showed more congruent patterns. More specifically, the 

outlier data set should not have exhibited more variation than the neutral data set, as the outlier 

loci would be the actual subjects of selection. What we at least can conclude from this, is that 

a larger number of SNPs than those that constitute the outlier data set are needed to provide the 

genetic resolution and power to detect this. If a rather large set of SNPs spread along the genome 

is needed to explain the large-scale genetic structure, it will further be reasonable to assume 

that the population structure of lumpfish has developed over a relatively long evolutionary time 

span and not due to selection of a limited number of loci. 

Considering the outlier data set in isolation, there was still a strong differentiation between the 

southern sampling location and the two northern sampling locations (FST > 0.6, p < 0.05). 

Beside this, the analyses indicated that there were significant differences between TRO and 

LYN (FST = 0.063, p < 0.05), and some individuals from TRO showed be particularly 

differentiated from the rest (Figures 6 & 7). This suggests that selection might be contributing 

to population structure at local scales in lumpfish. To investigate this further, population 

structure analyses and outlier loci detection could have been performed between the two latter 

locations only. As the locations are geographically close, it is possible that the effects of 

classical neutral divergence scenarios (e.g. IBD) are relatively small and that selection therefore 

is easier to elucidate (Lotterhos & Whitlock, 2015). It should indeed be considered that other 

factors like for instance homing and reproductive timing also are alternative drivers of the 

observed divergence. A next step could yet be to investigate more specifically which SNPs 

contribute to the differentiation and if these somehow might relate to local adaptation.  
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Future perspectives 

The presented results evidenced strong patterns of genetic population structure among 

Norwegian lumpfish populations, yet it emphasizes the need for further studies with better 

sampling coverage. As already mentioned, one of the limiting factors in this study has been the 

relatively small number of samples per sampling location and few sampling locations. The 

number of individuals sampled here (ten per location) are most likely not representative for all 

fish at the sampling locations, which for instance was demonstrated by the two genetically 

distinct individuals from LYN. Alternative methods, like for instance RADseq (restriction site-

associated DNA sequencing; Etter et al., 2011), could have allowed for studying more 

individuals in this study. However, by using WGS, the full information about the genome is 

obtained, which in general provides more insight into how evolutionary processes may have 

contributed to genetic differentiation. Information that might become relevant in the future 

genetic studies on lumpfish is in that way already provided here. The WGS approach has indeed 

allowed for a non-random, consistent detection of population structure, despite the few numbers 

of individuals. More individuals will, however, better represent the variation that exists within 

the populations and thereby more precisely render the existing population structure (Fumagalli, 

2013). 

A next step could also, as mentioned, be to look at what genes are associated with the detected 

outlier loci and potential phenotypic effects of the variation. Approaches to detect outlier loci 

in relation to specific environmental variables, so-called environmental association analyses 

(Rellstab et al., 2015), are also available and should be considered. Such methods have shown 

to have more power than the common outlier methods, although at the cost of higher false 

positive rates (De Mita et al., 2013). This is however also just one way of detecting loci 

putatively under selection. In the end, no theory about local adaptation can be confirmed before 

the functional effects of the variation is studied in experimental trials (R. Barrett & Hoekstra, 

2011).  

One important thing to keep in mind when interpreting the presented results is that only juvenile 

lumpfish have been the object of this study. It is assumed that these are the result of spawning 

and hatching in the sampling areas and thereby provide an indication of the respective gene 

pools. Juveniles may also provide an indication of which individuals that survive the early life 

stages associated with high mortalities in the specific areas, and thereby potentially undergo 

selection. However, there is great uncertainty about how for instance coastal currents affect the 
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juveniles, and it cannot be known for certain that they have not drifted by the currents from 

other spawning grounds. To understand the temporal stability of the population structure, it will 

be necessary to elucidate the genetic structure of lumpfish using adult individuals caught at the 

spawning grounds as well. The results presented here should therefore be interpreted with 

caution and not as a final answer. 

The establishment of a baseline population genetic structure for Norwegian lumpfish would 

allow for evaluating the effects of exploitation by the fisheries and use of the species as a 

cleanerfish. The detection of genetic structure in the present study suggests that it might become 

necessary to regulate these activities differently in the future. For fisheries management, it 

appears that the lumpfish possibly should be treated as several management units demanding 

specific measures for sustainable exploitation. Regarding the use as a cleanerfish, it seems now 

possible that escaping might result in inference with local, genetically distinct populations if 

the broodstock is caught far from the farming locations. However, before these issues can be 

addressed more comprehensively, a solid genetic baseline is needed, which this study is not 

enough do provide alone. Hopefully, the presented findings could encourage both industries to 

evaluate anew the consequences of using lumpfish and to put more resources into the further 

elucidation of the population structure of lumpfish. 

Conclusions 

In this study, it was demonstrated that juvenile lumpfish from locations along the Norwegian 

coast exhibit genetic structure. The application of genome-wide SNPs allowed to reveal patterns 

of population structuring that has not been detected in the previous genetic studies on lumpfish, 

and it appears thus to be a better tool than microsatellite markers for this aim. A clear genetic 

differentiation was observed between the south and north of Norway, and it was further signs 

of differentiation at smaller geographical scales, which confirms the first hypothesis of the 

study. As also hypothesised, the genetic differentiation was greatest between sampling 

locations separated by longer distances, but IBD was not shown to be an explaining factor. The 

small-scale genetic differentiation could putatively be related to local adaptation. However, to 

better comprehend the extent of population structuring and the driving forces, there is a need 

for studies including more samples and sampling locations, and adult lumpfish collected at the 

spawning grounds. 
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Appendices 

Appendix 1 

Scree plot showing that the four first principal components in PCA of the full data set explain 

most of the genetic variation. 

 
Figure A1.1: Scree plot obtained from pcadapt showing the proportions of variance explained by the 20 first 
principal components (PCs) in a principal component analysis (PCA) of the full data set. PC 1-4 explains most of 
the variation. 
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Appendix 2 

Figures used to infer the identity of the samples in the pcadapt PCA plots. 

 

Figure A2.1: Principal component analysis (PCA) of full data set, performed with the adegenet package in R. PCA 
of the neutral data set showed similar results (not included). 

 

 

Figure A2.2: Neighbour joining tree of full data set, obtained with the ape package in R.  The neutral data set 
showed similar patterns (not included). 
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Figure A2.3: Principal component analysis (PCA) of outlier data set, performed with the adegenet package in R. 

 

 

Figure A2.4: Neighbour joining tree of outlier data set, obtained with the ape package in R. 
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Appendix 3 

Complete results from ADMIXTURE/CLUMPAK. 

Table A3.1: Sample names rendered from left to right for ADMIXTURE/CLUMPAK bar plots. Each bar represents 
one sample. Please note that in the succeeding bar plots, KRK corresponds to TRO. 

BER (Bergen) TRO (Tromsø) LYN (Lyngen) 

BER01 TRO1 LYN11 

BER02 TRO10 LYN12 

BER03 TRO12 LYN13 

BER04 TRO13 LYN14 

BER10 TRO4 LYN15 

BER11 TRO5 LYN16 

BER15 TRO6 LYN17 

BER17 TRO7 LYN18 

BER20 TRO8 LYN19 

BER25 TRO9 LYN21 

 

 

All bar plots obtained with CLUMPAK (main pipeline) for the full data set 

 

Major modes for the uploaded data: 

 

K=1 

 
K=2 

 
K=3 

 
K=4 
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K=5 

 
K=6 

 
 

Minor modes for the uploaded data (for values of K with several minor modes, only the first 

one is included): 

 

K=2 Minor Cluster 1 

 
K=3 Minor Cluster 1 

 
K=4 Minor Cluster 1 

 
K=6 Minor Cluster 1 
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Division of runs by mode: 

K=1 10/10 

K=2 7/10, 3/10 

K=3 7/10, 3/10 

K=4 6/10, 4/10 

K=5 10/10 

K=6 4/10, 2/10, 1/10, 1/10, 1/10, 1/10 

 

 

All bar plots obtained with CLUMPAK (main pipeline) for outlier data set 

 

Major modes for the uploaded data: 

 

K=1  

 
K=2 

 
K=3 
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K=4 

 
K=5 

 
K=6 

 
 

Minor modes for the uploaded data (for values of K with several minor modes, only the first 

one is included): 

 

K=3 Minor Cluster 1 

 
K=5 Minor Cluster 1 
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K=6 Minor Cluster 1 

 
Division of runs by mode: 

K=1 10/10 

K=2 10/10 

K=3 5/10, 3/10, 2/10 

K=4 10/10 

K=5 6/10, 2/10, 2/10 

K=6 7/10, 2/10, 1/10 

 

 

All bar plots obtained with CLUMPAK (main pipeline) for neutral data set 

 

Major modes for the uploaded data: 

 

K=1 

 
K=2 

 
K=3 
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K=4 

 
K=5 

 
K=6 

 
 

Minor modes for the uploaded data (for values of K with several minor modes, only the first 

one is included): 

 

K=2 Minor Cluster 1 

 
K=3 Minor Cluster 1 

 
K=4 MinorCluster1 
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K=5 MinorCluster1 

 
K=6 MinorCluster1 

 
Division of runs by mode: 

K=1 10/10 

K=2 6/10, 4/10 

K=3 6/10, 4/10 

K=4 8/10, 2/10 

K=5 6/10, 3/10, 1/10 

K=6 6/10, 3/10, 1/10 
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Appendix 4 

Graphs obtained from CLUMPAK, inferring the optimal K (maximum ∆K) from the 

ADMIXTURE results as proposed by Evanno et al. (2005). 

 

Figure A4.1: Graph showing the optimal K (maximum ∆K) as proposed by Evanno et al. (2005) for the full data 
set, inferred from ADMIXTURE results (calculations performed using CLUMPAK). Maximum ∆K = 3.  

 

 

Figure A4.2: Graph showing the optimal K (maximum ∆K) as proposed by Evanno et al. (2005) for the outlier data 

set, inferred from ADMIXTURE results (calculations performed using CLUMPAK). Maximum ∆K = 3. 
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Figure A4.3: Graph showing the optimal K (maximum ∆K) as proposed by Evanno et al. (2005) for the neutral 
data set, inferred from ADMIXTURE results (calculations performed using CLUMPAK). Maximum ∆K = 5. 



 

 

 


