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2 Abstract

Berries are abundant in bioactive compounds. Bilberry or European blueberry (Vaccinium myrtillus L.)
is in particular gaining worldwide attention being one of the best natural sources of antioxidant rich
phenolics that accumulate in both skin and flesh during fruit ripening. Alongside, the ubiquitous
presence of anthocyanins and related flavonoids, it also contains other compounds such as carotenoids,
stilbenes, terpenoids, vitamins and sugars. Especially flavonoids and sugars have major effect of fruit
quality. Beside the genetic adaptation by the latitude-based cultivars and ecotypes, altering
environmental conditions play a major role in determining the bioavailability of these compounds.
Especially, the light quality impacts several secondary metabolic processes, thus by interacting with the
number of known positive regulators and repressors of light signaling.

The thesis is focused on understanding the biosynthesis and regulatory mechanisms of the key quality
compounds, flavonoids and sugars, in bilberry in response to different light qualities from the
photosynthetically active radiation (PAR) spectrum. The light quality experiments were carried out in
controlled conditions by mimicking single wavelength light spectra of red, blue and far-red using LED-
light systems.

The promising results showed that indeed supplemental light wavelengths have a positive effect on
anthocyanin and sugar biosynthesis in bilberries. Especially, delphinidins were found to be the most
reactive class of anthocyanins in response to red light treatments, which increased the concentration
several fold in fully ripe berries. The transcriptomic data revealed that the abscisic acid (ABA)
biosynthesis and signaling was found to regulate the anthocyanin accumulation, where even the ABA
degrading enzyme, ABA-8'-hydroxylase, acted as positive signaling factor. However, the results showed
a differential effect or opposite response pattern towards red and blue light in berries which are ripening
independently of mother plant to that of naturally attached ripening berries. Interestingly, the blue light
influenced the anthocyanin biosynthesis in detached berries to the most, and resulted in highest
anthocyanin levels quantified in fully ripe bilberries. The study also showed the effect of light quality
on sugar metabolism from the differentially expressed genes (DEGS) data, where both red and blue light
influenced the starch and sucrose metabolism. Supplemental red light also increased the amount of
sugars in ripe bilberry.

The findings of this study will drive-forward the plant research communities towards better
understanding on the effect of light on fruit ripening and improving quality. The results can also be
further utilized in future commercial breeding programs or cultivation practices of wild Vaccinium
berries with improved value-added properties.

Keywords: Vaccinium myrtillus L., bilberry, anthocyanins, flavonoids, sugar, transcriptome, light
quality, LED lights, spectrum, abscisic acid
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5 Introduction

The demand for ‘super-foods’ in human diet rich in bioactive compounds is increasing among consumer
markets, including fresh fruits. Berries in general are widely regarded as one of the best sources of
health-beneficial compounds. They are consumed as either fresh during the season or in processed form
and desired by health-conscious consumers worldwide. Among the small berries, a US market study
shows that the blueberries (Vaccinium spp.) are the second-most popular in consumption after
strawberries (Fragaria spp.), followed by blackberries and raspberries (Rubus spp.) in minor demand
(Sobekova et al., 2013). These small berries are abundant in anti-oxidant rich phenolic compounds such
as anthocyanins, a wide range of organic acids, vitamins (ascorbic acid), and taste enhancing compounds
such as volatiles and sugars (Skrovankova et al., 2015; Zorzi et al., 2020). The berry phenolic
compounds are majorly attributed to many human health benefits such as protection against
degenerative and cardiovascular diseases (Paredes-Lopez et al., 2010). Several studies have shown that
abiotic factors, specifically light conditions play a major role in the determination of concentration and
composition of phenolics (Teixeira et al., 2013; Bian et al., 2015; Sharma et al., 2019) Hence, the
knowledge and understanding on regulatory mechanisms against specific spectral light qualities is

important in improving the bioavailability of berry phytochemicals.

5.1 Vaccinium berries

The family of Ericaceae consists of around 120 genus and over 4000 species of flowering plants (Stevens
etal., 2004). They are distributed from the subarctic tundra to the temperate, tropical regions and usually
thrive on open barren lands as shrubs or small trees, and many are characterized as cultivated species
(Fang et al., 2007). The fused petals in the shape of an urn are a very common feature of Ericaceae
family flowers (Glimn-Lacy et al., 2006). The Vaccinium genus of this family consists of more than 400
species of wild and cultivated species that produce small to medium-sized fleshy berries (Hancock et
al., 2003). The important commercial species are coming from the sections Cyanococcus (blueberries)
and Oxycoccus (cranberries). Other important species include lingonberries (V. vitis-idaea), lowbush
blueberries (V. angustifolium), highbush blueberries (V. corymbosum), rabbiteye blueberry (V.
virgatum) and bilberries (V. myrtillus) (Song & Hancok, 2011; Debnath & Goyali, 2020). All the berries
from this genus are edible and easily palatable. The skin color ranges from pink to blue and even the
flesh is deeply colored in some species. The taste of berries begins to develop in late ripening stages and
differs slightly between sweet to tart flavor (Milivojevic et al., 2012). The ploidy levels vary from
diploid to hexaploid across these species, and new genome datasets have been made publicly available

recently (Genome database for Vaccinium, https://www.vaccinium.org/). All the cultivars of above

mentioned Vaccinium species differ widely in the amount and composition of phenolic compounds


https://www.vaccinium.org/

(Moyer et al., 2012; Li et al., 2017). These berries are utilized mostly in the human diet but the

commercial aspect also depends of interest on nutraceutical and cosmetic industries.

5.2 Wild bilberry (Vaccinium myrtillus L.)

Bilberries are regarded as one of the best natural sources of anthocyanins. The perennial deciduous,
dwarf shrub is native to Northern Eurasian regions and typically grows in spruce, birch and mountainous
forests of arctic alpine region. The plant thrives to grow up to 30 cm (=1 foot) high mostly in acidic
moist soil and prefers semi-shade under tree covers (Chu et al., 2011; Nestby et al., 2011). A peculiar
feature in bilberries among Ericaceae family is that it possesses green stems and branches, and it
continues the photosynthetic process even when leaves fall off in autumn (Fig.1a). The flowers start to
bloom from April-June and the fruits develop during July-September depending of the growth location.
The pollination is naturally facilitated for example by the bumble bees. The ripe berries are small (5-9
mm) and have a distinct deep blue/purple coloration due to higher amounts of anthocyanin compounds
that accumulate during ripening. The berries are also protected by a waxy layer coat that avoids
dehydration of fruits.

Fig. 1 A fully-grown bilberry plant yielding fruits (a), major developmental stages of bilberry fruit from

small green to fully matured blue-colored ripe berries (b).

The berry ripening can be classified into four major developmental stages after the flower maturation;
small green berries to reddish medium-sized and fully ripe blue/purple-colored berries (Fig. 1b). The
duration between each developmental stage also often varies based on temperature and local weather
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conditions, but usually the fruit set from the flower falls anywhere between 25-40 days. Bilberries are
one of the most commonly found wild plants in Norway and found throughout the country even at
altitudes as high as 1500 masl. They have a high commercial value in the market, despite of which tons
of berries are left unpicked in Nordic forests every year. Berry picking is a traditional leisure activity
among the Nordic public during late summer. The growing interest on bilberries in non-native markets

could potentially lead to better cultivation or sustained farming practices in future (Nestby et al 2011).

5.3 Bioactive compounds in bilberries

Bilberries contain high levels of antioxidant compounds (phenolics, flavonoids, tannins), color pigments
such as anthocyanins and carotenoids, vitamins (ascorbic acid) and sugars (Michalska & Lysiak, 2015;
Pires et al., 2020). Flavonoids, which represent the larger part of bilberry bioactive compounds, in
general are a group of polyphenolic-class secondary metabolites that represent over 4,000 low molecular
weight compounds. Flavonoids can be further divided into six subclasses such as flavonols, flavones,
isoflavones, anthocyanins, catechins and flavonones (Fang et al., 2013; Panche et al., 2016). These
flavonoids are conjugated to sugar molecules and occur naturally in plant tissues, such as fruits, nuts,

seeds and other storage tissues.

The nutritional components in fully ripe Vaccinium berries can be categorized into carbohydrates
(15.3%), protein (0.7%), dietary fibers (1.5%), lipids (0.5%) and with water content of 85% (Hancock
et al.,, 2003; Rowland et al., 2011). The predominantly found sugars in bilberries are fructose and
glucose, whereas sucrose and galactose are found in low amounts. A fully matured blueberry contains
3.5% cellulose and 0.7% pectin which are sugar constituents of the cell wall (Aksi¢ et al., 2019). In
addition to these essential nutrients, these berries contain a wide range of organic acids, non-nutritive
phytosterols such as sitosterol and stigmasterol (Koponen et al., 2001). Anthocyanins alone constitute
more than 60% of the total polyphenolics of Vaccinium berries. They are water soluble pigments that
give deep red or purple coloration to the fruits or flowers (Krga, & Milenkovic, 2019). Apart from being
colorants to the berry skin and flesh, anthocyanins are possessing excellent antioxidant properties that
could scavenge free radicals and chelate metal ions in biological system (Kalt et al., 2003; Kalt et al.,
2020). Numerous studies have been demonstrated on several model organisms, however, solid evidence
in human studies is still lacking. But in general, it is understood that consumption of bilberries on a
regular basis have numerous health benefits such as prevention of cardio-vascular diseases, cancer
obesity, aging, improving vision, immunity and used as performance booster supplement in sports.
Bilberries have been also traditionally been used in folklore medicines since ancient times (Erlund et
al., 2008; Qin et al., 2009; Gaspar et al., 2021).



5.3.1 Anthocyanins

There are more than 700 anthocyanins found in nature from all the glycosylated, hydroxylated or amino
acid group attached derivatives from 27 anthocyanidin classes. However, only six major anthocyanidins;
cyanidin (Cy), delphinidin (Dp), pelargonidin (Pg), peonidin (Pe), malvidin (Mv) and petunidin (Pt) are
commonly found in plants (Andersen & Jordheim 2013; Fang, 2014). They are aglycone end products
from the flavonoid pathway and are glycosylated by glucose, galactose, rhamnose or arabinose at the
end of the biosynthetic pathway. Sugars are attached to anthocyanidins mainly at the C3-position of the
C-ring or the C5, C7-position of the A-ring (Bueno et al., 2012).

Phenylalanine

l PAL
Cinnamic acid
C4H/4CL
Coumaroyl-CoA
CHS
Chalcones Naringenin chalcone
i CHI
Flavanones Naringenin
l F3H
Dihydroflavonols Dihydrokaempferol
1 F3'5'H
F3H / \
Dihydroquercetin Dihydromyricetin E_,,cmHmo7 OH
C‘\SH‘I'IOS OH DFR DFR l E" & o
A OH . l o L ' HO [N e
o O.\/(/ i Leucocyanidins Leucodelphinidins } \Qi/L )
RS s G N . ' # “oH
\j)\/\oﬂ ' l ANS Anthocyanidins ~ ANS Jr oH
OH i Cyanidins Delphinidins -
| : UFGT UReT L CiHis0, ¢
: Anth i Delphinidin ad
Cyanidin nthocyanins HO o A CHy
OCH : . i - HO A0S N
- o ' ' ~ 7 oH
HO._~_0O : MT i MT MT L,
SN on ' Peonidin Malvidin
HO glycosides glycosides

Fig. 2 Schematic representation of the anthocyanin biosynthesis highlighting the major anthocyanin
compounds and structures commonly found in Vaccinium species. PAL, Phenylalanine ammonia lyase;
4CL, 4-coumarate: CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3
hydroxyase; F3’H, flavanone 3’ hydroxyase; F3'5'H, flavanone 3' 5 hydroxyase; FLS, flavonol
synthase; DFR, dihydroflavonol reductase; ANS, anthocyanidin synthase; MT, 3-O-methyl transferase;
UFGT, UDP glucose-flavonoid 3-O- glucosyl transferase.

The anthocyanin biosynthesis initiates from the well-studied phenylpropanoid pathway, with

phenylalanine as a starting point, which comes from the shikimate pathway (Fig. 2). It is converted to
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cinnamic acid and further to 4-coumaroyl- CoA by phenylalanine ammonia lyase (PAL) and 4-
coumaroyl- CoA ligase (4CL). Chalcone synthase (CHS) condenses one molecule of 4-coumaroyl-CoA
into naringenin chalcone. These chalcones are isomerized to flavanones, such as naringenin by chalcone
flavanone isomerase (CHI). Then the pathway cleaves into different branches yielding types of
dihydroflavnols, each resulting in a different class of flavonoids. Flavanone 3-hydroxylase (F3H)
catalyzes naringenin to dihydroflavonols such as dihydrokaempferol, dihydroquercetin and
dihydromyricetin. For the biosynthesis of anthocyanins, dihydroflavonol reductase (DFR) catalyzes the
reduction of dihydroquercetin and dihydromyricetin to leucocyanidins and leucodelphinidins, which are
converted further to anthocyanidins by anthocyanidin synthase (ANS) and glycosylated by UDP glucose-
flavonoid 3-O-glucosyl transferase (UFGT) (Jaakola et al., 2002; Jaakola et al., 2013) (Fig. 2).

The direct regulation of flavonoid biosynthesis is well understood and characterized from various plant
species. (Zoratti et al., 2014). The coordinated expression of genes in this pathway is regulated by a
complex consists of R2R3-MYB, bHLH transcription factors and WD-40 repeat proteins, which form
so called MBW complex and determines the spatio-temporal patterns and downstream accumulation of
anthocyanins (Xie et al., 2020; Yan et al., 2021).

5.3.2 Flavonols and flavan-3-ols

Flavonols are another important class of flavonoids also known for their potent antioxidant activities.
They are usually colorless or appear in pale color. Flavonol synthase (FLS) is the key enzyme in flavonol
biosynthesis that converts all the dihydroflavonols produced from the flavonoid biosynthesis such as
dihydroquercetin and dihydromyricetin to quercetin and myricetin. Glycosyl-groups are further added
by 3-O-glucosyl transferases (3GT). Myricetin is methylated at 3' site to form laricitrin and further
methylated at 5' into syringetin by the 3'-O-methyltransferase and 5'-O-methyltransferase, respectively
(Davies et al., 2003) (Fig 3).

Studies in grape have shown that flavonols such as myricetin and kaempferol were found in high levels
at veraison stage, whereas quercetin was detected highest during the early fruit development (Fang et
al., 2013). Anthocyanidins can be diverted into proanthocyanidins via anthocyanidin reductase (ANR),
to produce catechin-type or epicatechin-type flavan-3-ols which are produced from leucocyanidins by
leucoanthocyanidin reductase (LAR) (Maéatta-Riihinen et al., 2005).
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Fig. 3 Schematic representation of the flavonols biosynthesis highlighting the major flavonol
compounds (quercetin, myricetin, laricitrin, syringetin) and its structures commonly found in Vaccinium
species. F3H, flavanone 3 hydroxyase; F3'H, flavanone 3' hydroxyase; F3'5'H, flavanone 3' 5’
hydroxyase; FLS, flavonol synthase; OMT, 3-O-methyl transferase, 5-O-methyl transferase; 3GT,
flavonol 3-O glucosyl transferase; LAR, leucoanthocyanidin reductase; ANR, anthocyanidin reductase.

5.3.3 Sugars

Sugars are biosynthesized in photosynthetic source tissues such as leaves, and transported to the sink
tissues such as roots and fleshy fruits by sucrose transporters and through sieve elements of phloem in
most plant species (Lemoine et al., 2013). Vaccinium berries accumulate different kinds of soluble
sugars, mainly sucrose, glucose and fructose during fruit development and ripening, the latter two being
the two predominantly found sugars (Forney et al., 2012). The starch metabolism is a complex process

and differs across species.
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Fig. 4 Schematic representation of sucrose synthesis and transport from source tissues to sink tissues
highlighting the major enzymes involved in plant sugar metabolism. SPS/SPP, sucrose phosphate
synthase, sucrose phosphate phosphatase; SS, sucrose synthase: NINV, neutral invertase; CWINV, cell
wall invertase; VINV, vacuolar invertase; HK, hexokinase; FK, fructokinase.

Generally, starch synthesis and degradation occur in amyloplasts, a type of storage plastids. Starch
represents an important intermediate in the general sugar metabolism in the fruit development by serving
as reserve energy source in plastids that can be utilized to produce glucose and fructose when needed
(Lloyd & Kaotting, 2016). The utilization of sucrose for metabolism in sink tissues starts with the
cleavage of sucrose into its hexose monosaccharides, glucose and fructose, by acid and neutral
invertases. Sucrose cleavage is carried out either by neutral invertase (NINV) in the cytoplasm, acid
invertases in vacuoles (VINV) or by cell wall invertases (CWINV) to yield glucose and fructose, or by
sucrose synthase (SS) to yield UDP-Glucose and fructose (Salerno & Curatti, 2003). The free hexoses
(glucose and fructose) are phosphorylated by hexokinases (HK) or fructokinases (FK) that produces
glucose-6-phosphate or fructose-6-phosphate, which are key precursors for energy yielding processes
such as glycolysis (Stein & Granot, 2018) (Fig 4).
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5.4 Light spectral quality: perception and its significance

Light being the main energy source for plants is an important environmental factor that affects several
physiological processes including fruit development (Yavari et al., 2021). Photosynthetically active
radiation (PAR) stretches from 400-700 nm ranging from blue to far-red light (Wu et al., 2019). The
visible PAR light spectrum varies across different latitudes and changes daily along with the radiation
doses that reaches the surface (Chiang et al., 2019). Along with chlorophylls that perceive solar light for
photosynthesis, specific classes of plant photoreceptors, such as phytochromes and cryptochromes,
perceive light wavelengths to enable plants to sense and respond to high or low light environments.
Phytochrome (PHY) photoreceptors sense red and far-red light, cryptochromes (CRY) perceive blue
light and UVR8 photoreceptor respond to UV light (Moglich et al., 2010).
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Fig. 5 Schematic representation of light perception mediated by COP1 and its response towards

4—94—

anthocyanin biosynthesis and hormone signaling during fruit development. COP1, constitutive
photomorphogenic 1; HY5, elongated hypocotyl 5; PHY, phytochrome; CRY, cryptochrome
photoreceptors; MBW complex, MYB, bHLH, WD-40; bHLH, basic helix-loop-helix; WD-40 repeat
domains; ABA, abscisic acid; PYR/PYL, pyrabactin resistance/like ABA receptors; PIF, phytochrome
interacting factor; IAA, indole acetic acid; EBF, ethylene binding factor; EIN, ethylene insensitive,
ABI5, ABA-insensitive.



The light signal perception induces either photomorphogenesis or skotomorphogenesis, changes in
circadian rhythm flux and importantly affects the biosynthesis of secondary metabolites. The central
light signal processing is mediated by the constitutive photomorphogenic 1 (COP1) regulator.
Photoreceptor activation by light suppresses the activity of COP1 which is an E3 ubiquitin ligase that
ubiquitinates a number of positive transcriptional regulators, thus repressing photomorphogenesis.
COP1 is active in dark growth conditions accumulating in the nucleus, while light induces its export out
of the nucleus and move to the cytosol, leading to the accumulation of transcription factors, and thus
promoting photomorphogenesis (Wang et al., 2019) (Fig 5). Light-induced activation of photoreceptors
initiates downstream signal elements like elongated hypocotyl 5 (HY5) resulting in light-induced
physiological responses including anthocyanin accumulation. HY5 also tends to positively react with
MBW complex which consists of MYB, bHLH and WD-40 repeat proteins transcription factors. (Zhao
et al., 2010) (Fig 5). Although bHLH and WD-40 might not be directly involved in response to light
quality and intensity and play only a secondary role from the complex, MY Bs are more directly involved
in light-mediated regulation of flavonoid biosynthesis (Matus et al., 2009).

COP1 being the central repressor of photomorphogenesis, recent studies have shown that it is also likely
to be involved in different plant hormone signalling pathways. In auxin signalling, COP1/SPA complex
can regulate phytochrome interacting factor (PIF5) stability under red light (Pacin et al., 2016). It has
also been reported that COP1 may promote ethylene insensitive gene (EIN3) stability through
ubiquitination of ethylene binding factors (EBF1/2) (Shi et al., 2016), although the mechanism
controlling the ubiquitination of EBF1/2 by COPL1, in ethylene signaling is not clear. In abscisic acid
(ABA) signalling, COP1 appears to participate in two ABA-regulated processes, seed germination and
ABA-induced stomatal closure (Khanna et al., 2014). In dark conditions, skotomorphogenesis is
mediated by COP1/HY5 with signalling from gibberellic acid (GA) with the suppression of DELLA
proteins (Mazzella et al., 2014). All likely interaction of COP1 with different hormone signaling factors
is depicted in Fig 5. Plant hormones respond to environmental signals such as light and COP1 could be

the connecting link between light and hormone signaling pathways (Liang et al., 2012).

5.5 Role of light qualities in flavonoid biosynthesis and sugar
metabolism

Light conditions perceived by the plants are categorized into duration (photoperiod), intensity and
quality. Among them, light quality is the most important factor that affects both plant primary and
secondary metabolism. In the past, photo-selective nets and bagging methods have been commonly used
to selectively increase the sensitivity of fruits to solar light intensities towards anthocyanin accumulation
as shown in fruit crops such as apple, litchi and tomato (Liu et al., 2013; Tinvane et al., 2013; Zhang et

al., 2016). In order to study the effect of light quality by selectively inducing, it is now possible to
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flexibly simulate specific wavelengths using light emitting diodes (LEDs), which are already widely
used in indoor horticulture in the commercial production of vegetables (Bian et al., 2015; Nassarawa et
al., 2021). From the wide range of PAR spectra, mostly blue (460 nm) and red (660 nm) light
wavelengths have the maximal effect on the biosynthesis of secondary metabolites. Several studies have
shown that blue light actively promotes anthocyanin biosynthesis in fruit crops such as pear, strawberries
and bayberries (Shi et al., 2014; Xu et al., 2014; Nadalini et al., 2017; Tao et al., 2018). Some studies
have also highlighted the possible role of red light in increasing the anthocyanin content in fruits (Zhou
& Singh, 2002; Miao et al., 2016). The light qualities interact via the photoreceptors and signalling
pathways with the specific regulatory and structural genes. For example, in cherries, blue light promoted
anthocyanin accumulation by increasing the expression of PAL activity (Kokalj et al., 2019). Likewise,
in sugar metabolism, the composition and accumulation can also be affected by the light conditions as
reported in tomato (Beckles, 2012). Both red and blue light could be involved in photo-regulation of
sugar metabolism and sucrose transport (Girault et al., 2010). In bilberries, it was shown earlier that the
plants that are growing exposed to high PAR range had increased phenolic compounds and sugar content
(Zoratti et al., 2014; Mikulic-Petkovsek et al., 2015). Further understanding of the mechanisms behind
the effect of individual light wavelengths on the accumulation of both anthocyanins and sugars in berries

still needs to be addressed.
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6 Aim of the study

The main objective of the study was to investigate the effect of spectral light qualities on biosynthesis
and accumulation of major bioactive compounds in bilberry such as anthocyanins, flavonols and sugars,
and shed light on the mechanisms controlling the light quality mediated related signalling. Therefore,
the study was further widened up to see if the light quality perception and its effect on anthocyanin
profile is different or not in independently ripening berries without involvement of plant signals,

compared to that of naturally ripening berries.
The research work was carried out:

1. To study the effect of light quality, specifically the red and blue light on anthocyanin
biosynthesis through high throughput RNA-seq transcriptomics and metabolite analyses (Paper
1;

2. To study if the light quality responses (red, blue and far-red) are different across naturally
ripening berries and in detached conditions on flavonoid biosynthesis through gene expression
and metabolite analyses (Paper I1);

3. To study the sugar-metabolism in bilberry during fruit development and under supplemental
light through related gene expression, enzyme activity analyses and quantification of sugar

content (Paper I11).
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7 Summary of Papers

7.1 Paper |

Red and blue light treatments of ripening bilberry fruits reveal differences in signaling

through ABA regulated anthocyanin biosynthesis

Amos Samkumar*, Dan Jones?, Katja Karppinen?, Andrew P. Dare?, Nina Sipari®, Richard V.
Espley?, Inger Martinussen®, Laura Jaakola*

Published in Plant, Cell & Environment, 44(10), 3227-3245. https://doi.org/10.1111/pce.14158

The response to supplemental red and blue light irradiation between mid to late ripening stages of
bilberry was investigated in this study. We found out that anthocyanin content was increased by both
red and blue light treatments when compared to control natural light conditions. The highest elevation
of anthocyanins was found under red light with a 12-fold increase. Further, transcriptome libraries were
constructed from the 6-day old supplemental light-irradiated ripening berries using RNA-sequencing.
Both red and blue light treated berries had similar up-regulation of all the key early and late anthocyanin
biosynthetic genes, but the major difference was found in light signaling and perception, in addition to
ABA metabolism and catabolism. The highest accumulation of delphinidin glycosides under red light
was well correlated with increased expression of F3'5'H and UFGT genes. We also showed that the
ABA biosynthesis was positively linked to increased anthocyanin accumulation under red light. Hence,
alongside common ABA receptors, PYR/PYL, ABF, ABI5, the catabolic enzyme, ABA-8'-hydroxylase
was highly up-regulated under red light alone, suggesting that all these ABA-linked genes act as positive
signaling factors of anthocyanin biosynthesis in bilberry. Also, the regulatory genes alongside MYBAL,
MYBPAL.1 were found to be upregulated under red light. In addition, we showed an alternative model
of vesicle-mediated trafficking and transport of anthocyanins by SNARE domain transporters towards
vacuolar storage, which could likely explain the sequestration in stress-induced anthocyanin

accumulation in berry tissues and needs further investigation.
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7.2 Paper Il

Flavonoid biosynthesis is differentially altered in detached and naturally ripening

attached bilberries in response to spectral light quality

Amos Samkumar*, Katja Karppinen, Tony K. McGhie, Richard V. Espley, Inger Martinussen, Laura
Jaakola

Prepared for submission to Journal of Photochemistry and Photobiology B:Biology

In this manuscript, we further extended our previous study to see how the light perception and signalling
is different in independently ripening bilberries on detached conditions. The early harvest at premature
stage is unusual in this non-climacteric berry species by theory at least, where it lacks independent
ethylene-burst mechanisms and the fruit quality tends to deteriorate over time. We have documented
interesting findings, where the bilberries continued to ripe over two weeks in detached conditions
accumulating high yield of anthocyanins. Above all, the highest elevated anthocyanin content was
detected in detached conditions, but unlike the red light which had positive influence on natural bushes,
the detached berries interestingly responded to blue light instead. The metabolite quantification was
supported by gene expression studies of biosynthetic and regulatory genes over the course of
time, where in particular, the key regulatory gene MYBAL1 was found to be regulating the
biosynthesis in response to blue light in detached conditions. On the other hand, red light
increased accumulation of both the anthocyanin and flavonols in naturally ripening berries on
the bushes. We also analyzed the key photomorphogenesis regulators COP1 and HY5
expression trends to support our findings. Our results indicate that there could be independent
hormone signalling network in the developing berries, and possibly fruit-localized
photoreceptors behind the independent light-mediated regulatory mechanisms. This finding
could open up new avenues to non-climacteric berry ripening, hormone signaling and related

light regulation.
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7.3 Paper lll

Insights into sugar metabolism during bilberry (Vaccinium myrtillus L.) fruit

development

Amos Samkumar*, Katja Karppinen, Binita Dhakal, Inger Martinussen, Laura Jaakola

Prepared for submission to Physiologia Plantarum (Special issue: Plant sugar metabolism, transport
and signaling in a challenging environment)

Alongside anthocyanins and other phenolic compounds contributing for human health-beneficial
properties, sugars are also attributed toward the berry fruit quality by enhancing the taste or flavour.
Sugar metabolism in bilberries is not explored earlier in detail. In this study, we have identified 25 genes
categorized into acid and neutral invertases, sucrose phosphatases, sucrose synthases, and
interconverting hexokinases and fructokinases. Most of the isoforms were differentially expressed
across berry developmental stages suggesting they all might have different functions. The enzyme
activity analyses strongly suggested that sucrose is converted and resynthesized mostly at the beginning
of ripening. A similar trend was also seen in vacuolar acid invertases. Starch degrading-amylases were
not detected in early stages and were found only in minor levels in late ripening stages. We have also
estimated the sugar content across the developmental stages and the highest content was found in ripe
berries with fructose and glucose dominating the sugar composition. Sucrose was detected only in low
levels in all berry developmental stages. We have also further mined the bilberry light-treated
transcriptome dataset to see if the spectral light quality has a positive influence on sugar metabolism.
We observed a very similarly differentially expressed gene pattern on kinases but the sucrose coding-
genes were down-regulated under blue light. The most interesting response was found in starch
degradation by amylases being highly up-regulated by both light treatments. Considering the earlier
result, that the amylase activity was found on very low levels in all stages, it seems that the degradation
of starch into hexoses is triggered by light quality. This is the first study of on bilberry sugar metabolism
and could open up new insights on sugar signaling, transport and its regulation towards other bioactive

compounds.
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8 General discussion from main findings

8.1 Supplemental light irradiation promotes anthocyanin
biosynthesis in bilberry

Light is one of the most important external factors which drastically affects the fruit ripening process.
Some of the key changes impacted by light during fruit ripening include changes in texture, firmness,
accumulation of phytochemicals, and most importantly the pigmentation (Feng et al., 2013; Henwood
et al., 2018). The development of colored compounds such as anthocyanins is an important parameter
in evaluating fruit quality. The changes in the composition of anthocyanins determine the fruit color in
both skin and flesh, as well as their bioavailability upon consumption (Routray & Orsat, 2011; Fang,
2014). Several studies over the past decades have shown that abiotic stress signals largely influence the
biosynthesis of anthocyanins during fruit development and ripening (Zhou & Singh., 2004; Zoratti et
al., 2014; de Rosas et al., 2017). The results from the paper | showed that the bilberry anthocyanin
composition is strongly regulated by the light spectral qualities such as red and blue wavelengths. The
study quantified 15 anthocyanin compounds from five major aglycone classes detected in light-treated
and control samples. These were mostly glucoside, galactoside and arabinoside derivatives of cyanidin,
delphinidin, petunidin, peonidin or malvidin class of anthocyanins, which were found in agreement with
previous studies in bilberry (Lé&tti et al., 2008; Zoratti et al., 2014). The effect of light to anthocyanin
pigmentation has been investigated in several studies in many commercial fruit crops (Dussi & Sugar,
1995; Zhou & Singh., 2004; Kokalj et al., 2019). For example, shading and bagging experiments in such
crops showed that exposure to solar light intensities could stimulate up-regulation of both early and late
anthocyanin biosynthesis-related genes by interacting upon with regulatory elements (Fukuoka et al.,
2014). Short-term bagging treatment technique has been used widely in crops such as apple, litchi and
pear, in which the exposure to light at certain ripening stages leads to accumulation of anthocyanins in
fruit pericarp. (Ju, 1998; Zhang et al., 2016; Liu et al., 2019). Also, it has to be noted that the mechanisms
are not similar across cultivars as shown in grapes, where the light exclusion treatment differentially
regulated the anthocyanin accumulation in skin of berries (Zheng et al., 2013). Hence, in general, it is
clearly understood that light from perceivable solar spectra of whole range (UV to far-red light)
enhances anthocyanins, and dark/shadiness affects in an opposite manner. Nevertheless, plants with
their specialized specific photoreceptors are able to perceive and segregate wavelengths from the visible
spectral range (400-700 nm) and are able to respond to individual light qualities. Thus, enhancing the
radiation of such specific range of light wavelengths could lead to responses in accumulation of certain

classes of phytochemicals (Holopainen et al., 2018).
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In paper I, delphinidin glycosides, which dramatically increased under red light and showed significant
correlation with all the major flavonoid biosynthetic genes, were considered to be the most light-induced
class of anthocyanins in bilberries. Likewise, cyanidin and petunidin glycosides also showed a
significant increase under both red and blue light, respectively. However, levels of peonidin and
malvidin glycosides were not affected by supplemental light treatments in the same manner like other
anthocyanin classes. Therefore, these results indicate that the specific light qualities can change the
composition and concentration of specific anthocyanins in berries by interacting with light-inducible
biosynthetic and regulatory genes (Ma et al., 2019). Specifically, delphinidins being one of the most
abundant class of anthocyanins found in northern clones and responsible for the distinct blue color
appearance in ripe bilberries (Létti et al., 2008; Uleberg et al., 2012), also happened to be the most light-
reactive class of anthocyanins accumulated in our simulated and controlled light-quality experiments
(paper | & paper II).

The anthocyanin biosynthetic process in bilberries is quite similar to the well-studied flavonoid
metabolic pathways from other blue-colored fruits. The pathway involves a series of enzymatic reactions
ultimately resulting in different classes and glycoside derivatives of anthocyanins. Light qualities target
specifically upon certain key genes of this pathway by the inducible-transcription factors such as MY Bs
interacting with their promoters. Earlier studies have shown that PAL and DFR, some of the early
structural genes of the flavonoid pathway, are highly responsive to light (Plunkett et al., 2018; Zhu et
al., 2018). Similarly, the results of the present study revealed that the expression levels of most structural
genes were up-regulated under both red and blue light, which also positively correlated with the
concentrations of delphinidin-3-O-galactosides and arabinosides (paper ). A previous study by Zhang
et al., (2017) showed that over-expression of CHS, the key enzyme gene in the flavonoid pathway,
enhanced high-light resistance by accumulating more anthocyanins in leaves of Arabidopsis thaliana.
In the present study, the expression of CHS was positively correlated with the concentration of
delphinidins. Other important genes leading to the branching of leucoanthocyanidins, F3'H, F3'5'H and
the last glycosylating gene of anthocyanin pathway, UFGT, were highly up-regulated under red light
and also showed strong positive correlation with the concentration of delphinidin glycosides (paper I).
From the current study, we consolidate that the late biosynthetic genes F3'5'H, branching point towards
delphinidins biosynthesis, and UFGT were considered to positively regulate the synthesis of light-
inducible anthocyanins, specifically correlating with the increased concentration of delphinidins under

red light (paper 1).

Several key members of the MYB transcription factor family particularly, MYBA1, MYB5, MYBC2,
MYBPA1.1, MYBPA2 and MYBPA3 were involved in regulating red light-induced accumulation of
anthocyanins in bilberries (paper I). Some of these MY Bs have earlier been shown to regulate expression

of structural genes of the anthocyanin biosynthesis such as DFR and UFGT by interacting with their
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promoters (Cavallini et al., 2014). For instance, MYB10, the homolog of MYBA, has been shown to be
one of the most responsive MYB genes to light, and the main regulator of anthocyanin biosynthesis in
cultivable fruit crops such as strawberry and apple (Feng et al., 2013; Lin-Wang et al., 2014). In blue-
colored Vaccinium berries, MYBA-type and MYBPA-type gene family members are identified to be
the major regulators of anthocyanin biosynthesis (Plunkett et al., 2018; Karppinen et al., 2021). In this
study, supplemental light-inducible anthocyanin synthesis was positively correlated with MYBAL, but
also with MYBPAL.1, suggesting the co-regulation of the biosynthesis of delphinidin-type anthocyanins
in bilberries as suggested by Karppinen et al. (2021). In an earlier study with wine grape, both MYBPA1
and MYBPA2 were identified as positive modulators of both anthocyanin and abscisic acid (ABA) levels
in berry skin (Azuma et al., 2012). The current findings will strengthen our understanding in anthocyanin
regulatory mechanisms, specifically showing that both MYBA1/MYBPAL.1, as key regulatory genes
identified in bilberry, have a major role in mediating the expression of structural genes such as CHS,
DFR, F3'5'H and UFGT towards delphinidin biosynthesis also as response to red and blue light
treatments (paper ).

8.2 Red light induces biosynthesis of delphinidin branch
anthocyanins mediated by abscisic acid metabolism

Plant hormones have synergistic effects on anthocyanin biosynthesis during fruit development (Ferrero
et al., 2018). The accumulation of secondary metabolites in plants has been shown to be influenced by
endogenous hormones and signaling (Belhadj et al., 2008). The hormonal responses are also altered by
biotic and abiotic signals, and the responses of both synergistic and antagonistic effects in the plants are
well documented. Some hormones that are involved in response to light environmental stimuli include
ethylene, jasmonic acid, salicylic acid, indoleacetic acid and ABA (Zhu, 2016). Our findings indicated
that anthocyanin accumulation was mediated through ABA by enhancing the expression of both ABA
signaling and metabolism-related genes in light irradiated ripening bilberries (paper ). The past studies
haven’t ruled out the possible role of ABA signaling and metabolism in flavonoid biosynthesis under
enhanced light environments. For instance, in strawberries the flavonoid regulatory gene, MYB10 was
affected in response to light as well as to exogenous ABA and showed additive effects when both were
combined (Kadomura-Ishikawa et al., 2014). Earlier, ABA has been reported to be central driving factor
of ripening in bilberries because of its rise in endogenous concentration at the onset of berry ripening
(Karppinen et al., 2016). Exogenous application of ABA in unripe bilberries also promoted anthocyanin
biosynthesis (Karppinen et al., 2018). The similar effect of ABA regulatory mechanisms has been shown

towards anthocyanins accumulation in grape berries (Wheeler et al., 2009; Sandhu et al., 2011). Thus,
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the present results have shown further evidence on the link between the ABA metabolism and

anthocyanin biosynthesis in fruits, especially under specific light wavelengths (paper 1).

From the findings of current study, red light up-regulated the expression of key ABA biosynthetic and
catabolic pathway genes (NCED & ABA-8' hydroxylase), in addition to the genes involved in ABA
signal transduction mechanisms. A similar regulatory model was shown under drought stress in a recent
study in tomato (Gonzalez-Villagra et al., 2017). To determine whether red light promoted anthocyanin
accumulation through ABA signaling, we analyzed the expression of ABA binding receptors and
downstream signal transducers including the MADS-box transcription factors. Firstly, the expression of
NCED, the rate-limiting key ABA biosynthetic gene, was increased in light-treated berries, further
triggering the downstream signaling cascade (paper 1) (Zhang et al., 2015). Later on, ABA transported
from the apocarotenoid pathway binds to pyrabactin/like resistance (PYR/L) receptors. The bound ABA-
PYR complex is essential for inducing downstream regulators such as TDR, and other SQUAMOSA-type
MADS-box transcription factor family genes affecting further towards associated regulatory elements
from the MBW complex (Chung et al., 2019). At least five MADS-box transcription factor family of
genes including AGAMOUS-type and TDR have earlier identified to be directly involved in bilberry
fruit ripening (Jaakola et al., 2010; Nguyen et al., 2018). Under supplemental red light, all the above-
mentioned ABA binding receptors and regulatory elements were up-regulated (paper I). Contrastingly,
blue light down-regulated PYL expression, further resulting in lowered expression levels of most
downstream positive regulators, such as AGAMOUS and other MADS-box transcription factors,

leading to the significant decrease in total anthocyanin content (paper I).

The expression level of ABA-biosynthetic NCED gene was increased under both red and blue light
treatments. However, the ABA-catabolizing gene, ABA-8'-hydroxylase was found increased under red
and down-regulated under blue light (paper I). ABA-8'-hydroxylase activity is usually involved in
degradation of ABA to maintain its endogenous levels in tissues. These findings are in accordance with
a previous study in grapes by Kondo et al. (2014) where it was demonstrated that this catabolizing gene
could be involved in anthocyanin biosynthesis under red LED-light treatment. Hence, the maintenance
of increased endogenous ABA levels as a response to red light have contributed more towards
anthocyanin biosynthesis in bilberries than an irregular ABA homeostasis promoted by blue light. It has
been shown earlier in grapes, that higher available cellular concentrations of ABA in stress-induced

berry skins are vital in triggering fruit developmental and physiological responses (Ferrero et al., 2018).
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8.3 Supplemental light wavelengths trigger anthocyanin
transport in bilberries by vesicle-mediated trafficking

Generally, in plant vegetative tissues and in storage organs, anthocyanins are suggested to be transported
to vacuolar depositions via two proposed models. The first model illustrates the involvement of
membrane bound transporters such as ATP-binding cassette (ABCs), glutathione-S-transferases (GSTs)
and multidrug and toxic compound extrusion (MATE) transporters, whereas the second model is
through vesicle-mediated trafficking via endosomes (Grotewold & Davies, 2008). Earlier studies
proposed that anthocyanins and proanthocyanidins could be also possibly transported from cytosol to
vacuoles through vesicular trafficking (Pourcel et al., 2010; Zhao et al., 2010). Another study in
Arabidopsis characterized and evidenced the involvement of SNARE protein complex in the transport
of secondary metabolites to cellular organelles via endosomes (Kwon et al., 2008). Simultaneously,
membrane transporters can be involved and assist the vesicle-trafficking process during sequestration
before depositing as anthocyanic vacuolar inclusions (AVIs) (Kaur et al., 2021). In our study, we have
shown that a group of SNARE (Syntaxin/SNAP type) domain proteins are highly up-regulated under
red light and likely sequestered via endosomes. In addition, GST and MATE membrane transporters
were also found likely to be associated with the vesicle-trafficking process in bilberry fruit (paper I).
Our results led to possible speculations, on why and how the SNARE assisted vesicle-mediated
trafficking was triggered in bilberries under enhanced-light environments instead of usual membrane
bound transport by MATEs, ABCs and GST transporters. Our findings were backed up by some recent
literatures, suggesting that the enhanced red light (an external abiotic stimuli) or high levels of inter-
cellular cargo (anthocyanins) in the organelles could trigger such phagosome-mediated complex (Gu et
al., 2020; Kwon et al., 2020). However, further investigations are needed to consolidate this interesting

finding from paper 1.

8.4 Blue and red light affect flavonoid biosynthesis in an
opposite manner in detached and naturally ripening
bilberries

Naturally ripening bilberries could take up to 4 weeks for complete anthocyanin pigmentation to appear
on the skin, from green to deep-blue color in mature berries under controlled conditions. Whereas in
detached conditions, anthocyanin accumulation in bilberry skins occurs at a slow rate in the beginning
(S2-S3 stage up to 4 days), followed by a rapid increase (S3-S4 stage within 8 days), and finally a

stabilization (S4-S5 stage up to 14 days) (paper I1), before a decline at the end of ripening stages, similar
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to a pattern observed in grape berries (Gholami, 2004). In the current study, both naturally-ripening
attached berries and detached berries, which were allowed to ripe until coloration appears, were tested
for their differential responses to spectral light qualities such as red, far-red and blue light. Both detached
berries and berries in bushes started developing pigmentation in skins between 5-7 days of enhanced
irradiation. Metabolite analysis of fully-ripe bilberries confirmed that blue light promoted even higher
anthocyanin accumulation in detached conditions than the positive influence of red light in attached
berries (paper 1l). Based on these interesting results, we have concluded that supplemental lights
responsible for the elevated anthocyanin levels were totally contrasting and could adapt different
regulatory routes, when the berries were allowed to ripen independently (paper I1).

In a previous study in grapevine, detached berries under controlled light and temperature conditions
continued to develop color even after removal from the vine (Lurie et al., 2015). It is generally
understood that a photoperiodic signal is perceived by the leaves and transferred to shoot apexes at the
initiation of flowering and later to fruit set (Levy & Dean 1998). For instance, in brightly colored flowers
like petunia, sepals appear to have the same role as leaves when the leaves are covered or when the
flowers are illuminated independently towards anthocyanin accumulation (Moscovici et al., 1996).
However, in our experiments, detaching the bilberries, and exposing green, unripe berries to individual
light qualities without the involvement of signals from leaves, still strongly regulated the expression of
key structural and regulatory genes of the anthocyanin pathway, resulting in highest anthocyanin
accumulation under blue light (paper I1). Moscovici et al. (1996) proposed that in flowers, corolla tissues
may contain low levels of photoreceptors because the anthocyanin concentration induced by light was
much higher in the attached corollas than in detached ones. In contrast, our results showed that light-
induced anthocyanin accumulation was highest in detached berries, suggesting that the fruit-localized
photoreceptors could have been more reactive towards light quality in an independent manner and when
the berries are detached (Gonzalez et al., 2015). Likewise, high expression levels of all major flavonoid-
biosynthesis related genes showed a similar trend in attached berries between 4-6 days of irradiation
with red light. Interestingly, the MYBAZ1-driven anthocyanin accumulation in detached berries under
blue light had slightly more even distribution of different classes of anthocyanins unlike the berries in
bushes, which mostly increased the delphinidin-type anthocyanins under light treatments. These results
suggest that berry tissue itself is the sensor site for the photoreceptors and responsible for the
photocontrol of pigmentation in bilberries, not being dependent on photoperiodic signals from other

source tissues such as leaves (paper I1).

Unlike anthocyanins, the accumulation of flavonols was found to be higher in both attached and
detached conditions under red light compared to control and other light treatments (paper I1). Similarly,
the highest concentration of total flavonols was found in detached berries, compared to the quantified

amounts in attached berries. Far-red light (730 nm) also influenced on flavonol biosynthesis in both
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experimental conditions (paper I1). Far-red light, which is found outside the PAR spectra and are mostly
reflected by the plant canopy, is still an important component that can increase the photosynthetic
efficiency. Far-red is generally known to be involved in inducing taller canopy with broad leaf sizes
during plant development (Demotes-Mainard et al., 2016). Some studies have shown that wavelengths
ranging above 700 nm are likely to be involved in promotion of phenolic compounds, when combining
in proportion with red light because of its dependency on interaction with same phytochrome A/red light
photoreceptor (Dorokhov et al., 2021). In current study, far-red was found to be actively promoting
colorless flavonols, after red light in the current study (paper I1). A recent finding suggested that flavonol
profile is a reliable indicator to assess canopy architecture and exposure of vines leaning towards solar
radiation (Martinez-Luscher et al., 2019). In non-climacteric berries, quercetin-3-O-glucoside and
quercetin-3-O-glucuronide were the commonly found flavonol glycosides (Castillo-Mufioz et al., 2009).
From our results, we have quantified quercetin-3-O-glucoside as the most abundant flavonol in
bilberries and found in concordant with the previous study by Stanoeva et al (2017) (paper I1).

Earlier studies have reported that shading and exposing to light had impacted flavonol glucosides either
at harvest or during berry development (Spayd et al., 2002; Downey et al., 2004). A higher exposure to
UV-light also tends to increase flavonol levels for the photoprotection mechanisms (Downey et al.,
2003). Based on earlier studies, it is assumed that the flavonol concentration and content are dependent
on the light quality especially between the UV range and higher PAR range (above 600nm). Our results
are in agreement with these studies showing that fruit exposed to such light wavelength ranges had
higher accumulation of flavonol glucosides irrespective of ripening conditions (attached or detached).
This also indicates that flavonol biosynthesis is independent from anthocyanin accumulation during
bilberry ripening and protects the epidermal tissues of the berry from high light environments (Singh
Brar et al., 2008; Agati & Tattini, 2010).

8.5 Sugar metabolism in bilberries with emphasis on response
to red and blue light qualities

Sucrose metabolism is the backbone for sugar accumulation during fruit ripening and three major
enzyme categories such as invertases, sucrose phosphatases and sucrose synthases are actively involved
(Lingle & Dunlap, 1987; Nguyen-Quoc & Foyer 2001;). The sucrose futile cycles in sink tissues can be
also influenced by altering environmental conditions including light and thus the resulting sugar
composition in mature fruits could be affected (Lattanzi et al., 2012). The import of sucrose, which is
responsible for the carbon source in berry ripening and development, is generally driven from source

tissues to sink organs (Ward et al., 1998; Koch, 2004). It has been documented that the light quality not
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only affects the flavonoid biosynthesis but also a wide array of secondary metabolic pathways including
sugar metabolism (Li et al., 2017). Soluble sugars such as sucrose, glucose and fructose are the major
sugars found in fruits. They are also the main source for energy yielding by-products and substrates for
primary metabolism, which are the backbone for plant growth and development (Lastdrager et al., 2014).
We have characterized all the major genes involved in sugar metabolism in bilberries, including the
invertases, hexokinases, fructokinases, sucrose synthases and phosphatases (paper I11). We also showed
that red and blue light can influence almost all the different sugar metabolic pathways such as glucose,
fructose, galactose metabolic routes, as well as starch biosynthesis and degradation occurring in storage
plastids (paper II1). In bilberries, it has been shown mainly that both red and blue wavelengths could
influence the starch metabolism by up-regulating the amylases, where the starch will be converted to
primary hexose sugars. Previous studies have shown that the soluble sugar contents in crops such as
tomato, lettuce and celery increased significantly when treated with combination of red and blue light
ratios (Liu et al. 2010; Gao et al. 2015; Chen et al., 2019). Invertases, which are the primary enzymes
involved in the conversion of sucrose in different cellular spaces and organelles, maintain the sugar
homeostasis but also respond mainly to abiotic signals (Zhang et al. 2017). In the present results, the
vacuolar invertases were up-regulated and contributed to the increase in total sugar content under red
and blue light, whereas, cell wall acid invertases reacted opposite way and were down-regulated by both
wavelengths. These dynamic characteristics of invertases are related with some previous studies. For
instance, the abundance of invertases was found to be lower after combination of red and blue light
treatment in tomato fruit, which indicated that light quality could affect starch and sucrose metabolism
and increase the soluble sugar content in fruit (Dong et al., 2019). The current study also found opposite
regulation of some hexose interconverting genes such as phosphoglucomutase (PGM) and a-

galactosidase from the galactose metabolism between red and blue light treatments (paper Il1).

Likewise, previous studies have shown that the fructo- and hexokinases are other key genes involved in
metabolism of sugars and contribute toward the soluble sugar accumulation in ripe fruit (Yu et al. 2016).
The up-regulation of PFK, FK and HK genes under red and blue light in our study resulted in higher
amount of soluble hexoses. These hexose end products can be also further utilized in energy yielding
processes such as glycolysis (Yao & Wu, 2016). The related gene expression from some isoforms and
enzyme activities was found consistent with the quantification of soluble sugars in fully ripe bilberries.
Whereas, the up-regulation of vacuolar invertases, amylases and hexose-kinases were responsible for

the increase in sugar content under red light (paper I11).
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9 Conclusions and future perspectives

The current study combines transcriptomics and metabolite analyses to reveal the effect of light quality
to anthocyanin and sugar biosynthesis in ripening bilberries. The findings concluded highest
accumulation of anthocyanins under red light in naturally ripening bilberry fruit, which seems to be
mediated via ABA metabolism and signaling. A parallel study showed differences in light quality
perception between berries ripening detached and naturally attached in the plants, and concluded that
both ripening conditions are positively regulated by red and blue light, and that the regulation
mechanisms are not similar. Finally, the study was concluded with deciphering the role of light quality
on sugar accumulation from the characterized sugar metabolism-encoding genes in bilberry. The key
genes from starch and sucrose biosynthesis, which include the amylases, invertases and hexose-kinases
were found to be differentially expressed under red light, and these results were further backed up by

the increase in glucose and fructose amounts from the sugar content analysis.

The study also opened up new insights on anthocyanin transport mechanisms mediated by vesicular
transport under light quality treatment, and documented the role of SNARE proteins in trafficking the
several-fold increased anthocyanin accumulation response under red light. Therefore, the work provides
a platform for hypothesis-building for the future research into the precise functions of these SNARE
proteins during fruit development, especially with responses to the environmental signals. The
independent detached ripening of bilberries that resulted in highest anthocyanin accumulation might
further lead into studies unraveling autocatalytic hormonal signaling similar to that of climacteric fruits
during ripening. The possible interlinking role of photomorphogenesis regulatory mechanisms with
transduction pathways including ethylene and ABA signalling also needs to be investigated further in
order to understand the hormonal regulation on independently ripening bilberries under enhanced light

environments.

All these extensions of the current study will further provide deeper understanding on light-mediated
physiological regulatory mechanisms on accumulation of major phytocompounds, such as anthocyanins
and sugars in Vaccinium and other wild berries. The optimal supplemental light conditions could be also
be applied in controlled indoor commercial berry cultivation practices to achieve the maximal berry

quality with improved health beneficial and flavor properties.
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1 | INTRODUCTION

Light is among the most important envirenmental factors medifying plant

growth and develepment. Higher plants have eveclved sephisticated
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Abstract

The biosynthesis of anthocyanins has been shown to be influenced by light quality.
However, the molecular mechanisms underlying the light-mediated regulation of fruit
anthocyanin biosynthesis are not well understood. In this study, we analysed the
effects of supplemental red and blue light on the anthocyanin biosynthesis in non-
climacteric bilberry (Vaccinium myrtillus L.). After 6 days of continuous irradiation dur-
ing ripening, both red and blue light elevated concentration of anthocyanins, up to
12- and 4-folds, respectively, compared to the control. Transcriptomic analysis of rip-
ening berries showed that both light treatments up-regulated all the major anthocya-
nin structural genes, the key regulatory MYB transcription factors and abscisic acid
(ABA} biosynthetic genes. However, higher induction of specific genes of anthocya-
nin and delphinidin biosynthesis alongside ABA signal perception and metabolism
were found in red light. The difference in red and blue light signalling was found in
9-cis-epoxycarotenoid dioxygenase (NCED}, ABA receptor pyrabactin resistance-like
(PYL} and catabolic ABA-8'hydroxylase gene expression. Red light also up-regulated
expression of soluble N-ethylmaleimide-sensitive factor attachment protein receptor
(SNARE) domain transporters, which may indicate involvement of these proteins in
vesicular trafficking of anthocyanins during fruit ripening. Our results suggest differ-
ential signal transduction and transport mechanisms between red and blue light in
ABA-regulated anthocyanin and delphinidin  biosynthesis during bilberry fruit

ripening.

KEYWORDS
bilberry (Vaccinium myrtiffus L), LED light, SNARE, transcriptome

mechanisms to perceive light signals through specialized photorecep-
tors that respond to varicus light properties, such as light intensity,
light spectral quality and photoperiod (Briggs & Olney, 2001; Zoratti,
Karppinen, Luengo Escobar, Higgman, & Jaakola, 2014). Different
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visible light photoreceptors and UV-B receptors can sense light sig-
nals from a broad range of solar spectrum between 280 and 750 nm
{Méglich, Yang, Ayers, & Moffat, 2010). Most of the transducible
wavelengths absorbed by plants fall within 400-700 nm (from blue to
red), which is also commonly referred to as photosynthetically active
radiation (PAR; Chen, Chory, & Fankhauser, 2004). Within this range,
phytochrome B has a specialized function towards red light while
cryptochromes sense blue light to promote photomorphogenesis
(Li & Yang, 2007; Lu et al,, 2015).

After light perception, phytochrome and cryptochrome interact
with the E3 ubiquitin ligase constitutive photomorphogenesis protein
1 (COP1), which is the key light signalling regulator (Lau & Deng,
2012). In the dark, COP1 directly interacts and represses the action of
elongated hypecotyl 5 (HYS5) gene inhibiting light signal transmittance
and circadian clock genes, also the flowering regulators, such as CON-
STANS (CQ) via the proteasomal degradation complex (Bhatnagar,
Singh, Khurana, & Burman, 2020; Zoratti, Karppinen, et al, 2014).
Under light, COP1 activity is repressed, allowing the expressicn of
HY5 and positive transcriptional regulaters in a number of develop-
mental processes and metabolic pathways, including anthecyanin bio-
synthesis (Wu et al,, 2019).

Light quality has a significant influence on plant secondary metab-
olism (Ouzeounis, Rosenqvist, & Ottosen, 2015). For example, biosyn-
thesis of polyphenols, anthocyanins, glucesinclates, terpenes, and
carotenoids in plant tissues are responsive to light quality, and they
have important roles, for example, in photoprotection (Ballaré, 2014;
Holopainen, Kivim&enpas, & Julkunen-Tiitte, 2018). Light quality also
influences the metabelite accumulation in fruits and berries, as shown
by several pre- and postharvest light treatments in different fruit
crops (Koyama, lkeda, Poudel, & Gote-Yamameoto, 2012; Tac
et al., 2018; Kokalj et al., 2019). High light intensity has generally been
reported to increase anthocyanin accumulation in fruits, but it is alse
affected by light quality (Jaakola, 2013; Ma et al., 2019). For instance,
red light has been reported to increase anthocyanin content in strawe-
berry (Fragaria % ananassa), and blue light radiation increased antho-
cyanin levels after selective bagging treatment in pear (Pyrus
communis L) fruit (Miac et al, 2014; Tac et al, 2018). In bilberry,
Zoratti et al. (2014) showed that short-term treatment with supple-
mental monochrematic light affected the anthocyanin profile during
bilberry fruit development. However, the regulatory mechanisms
behind the effect of red and blue light wavelengths on anthocyanin
biosynthesis are not well understocd.

Anthocyanins are prominent phenclic compounds in plants that
are biosynthesized from the well-studied flavenoid pathway, which
branches from phenylpropancid biosynthesis (Tohge, de Souza, &
Fernie, 2017). The major early biosynthetic enzymes involved in flavo-
noid biosynthesis are phenylalanine ammonia lyase (PAL), chalcone
synthase (CHS) and chalcone isomerase (CHI). At the branchpoint of
flavonoid biosynthesis, flavonecid 3’ hydroxylase (F3'H) and flavenoid
35 hydroxylase (F3'5'H) direct bicsynthesis to cyanidin and del-
phinidin compounds, respectively (Jaakela et al., 2002). The six major
anthocyanin aglycone end-products, namely cyanidin, delphinidin,
pelargenidin, petunidin, malvidin and peonidin, are biosynthesized by
the late bicsynthetic enzymes, dihydroflavenol 4-reductase (DFR) and
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anthocyanin synthase (ANS), and further glycosylated by UDP-glu-
cose: flavonoid-O-glycosyltransferase (UFGT) as the last step in
anthocyanin biosynthesis (Wu, Gong, Ni, Zhou, & Gaec, 2017). Antho-
cyanins are transported to the vacuole after their biesynthesis. The
mechanisms of anthocyanin transport are not fully understood, but
common transporter proteins, such as ATP-binding cassettes (ABCs),
multidrug and toxic extrusion (MATES) and glutathione-S-transferases
(GSTs), are commonly believed to be responsible for transportation to
vacuolar membrane and lumen (Behrens, Smith, lancu, Choe, &
Dean, 2019). Ancther proposed medel has been vesicular trafficking by
phagosomes involving engulfment of anthocyanin bodies by endo-
somes before reaching the vacuole (Chanoca et al,, 2015). The vesicular
transportation is mediated by soluble N-ethylmaleimide-sensitive factor
attachment protein receptor (SNARE) protein complexes, which are
proposed to have a role in cellular transport in higher plants under
stress responses (Petenkova, Markovié, Sabol, Kulich, & Zarsky, 2017).

The biosynthesis of flavonoids is directly controlled by the tran-
scriptional regulatory MYB, bHLH,WD-40" complex (MBW) complex,
consisting of MYB and bHLH transcription factors (TFs) and WD-40
repeat proteins (Feller, MacHemer, Braun, & Grotewold, 2011; Xu,
Dubes, & Lepiniec, 2015). R2R3 MYB TFs are known as the key regu-
lators of anthocyanin biosynthesis and are respensive to shifts in light
spectral quality (Zoratti, Karppinen, et al., 2014). In grapes, two R2R3
MYB TFs, VWwMYBA1 and VwMYBAZ, controlling anthocyanin biosyn-
thesis specifically regulate UFGT (Walker et al, 2007). In apple and
peach, R2R3 MYBA-type TFs activate anthocyanin biosynthesis by
interacting with both the UFGT and DFR promoters during fruit ripen-
ing (Ravaglia et al., 2013; Takos et al., 2004).

Abscisic acid (ABA), which is synthesized by the key cleavage
enzyme 9-cis-epoxycarotencid dioxygenase (NCED) in apocarotenoid
pathway, has been shown to be a major regulater of ripening in non-
climacteric fruits, such as strawberry, grapes and bilberry (Ferrara
et al, 2015; Jia et al, 2011; Karppinen, Tegelberg, Haggman, &
Jaakola, 2018) and in climacteric fruits, such as apple (An et al., 2021).
The ABA signal transduction is known to be mediated by pyrabactin
resistance/like (PYR/PYL) receptors and ABA-responsive element-
binding factors (ABFs) through SQUAMOSA-MADS box (TDR-type)
TFs leading to regulation of the MBW complex proteins (Chung
et al,, 2019). Ancther medel has been proposed, illustrating that ABA
interacts directly with PYR by inhibiting type 2C protein phosphatases
subsequently binding with ABFs and transduces the ABA signalling
pathway (Park et al., 2009).

Bilberry (Vaccinium myrtillus L), also knewn as European blueberry,
is one of the most impoertant wild perennial berry species of Vaccinium
genus and predominantly found in Northern Europe (Chu, Cheung,
Lau, & Benzie, 2011; Karppinen, Zoratti, Nguyenguynh, Haggman, &
Jaakola, 2016; Zoratti, Klemettila, & Jaakola, 2016). The species has
gained global interest due to its abundant health-beneficial bicactive
compounds, including phenclic compeounds, carotenocids and vitamins
but especially anthocyanins, which constitutes 90% of total phenclics in
these berries and give distinct deep blue colour to both skin and flesh
(Karppinen, Zoratti, Nguyenguynh, et al, 2016). Several studies have
reported consumption of bilberries to reduce risk of metabolic syn-
drome and various microbial and degenerative diseases (Bujor, Le
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Bourvellec, Volf, Popa, & Dufour, 2016; Chu et al, 2011; Nile &
Park, 2014). In bilberry, delphinidin and cyanidin glycosides are the
major anthocyanins followed by malvidin and petunidin glycosides
(Miiller, Schantz, & Richling, 2012; Thornthwaite, Thibado, &
Thornthwaite, 2020; Zoratti et al., 2016). In particular, delphinidins,
which are abundant in northern clones alongside malvidins, have been
recently linked to many biological and health-beneficial activities
(Heysieattalab & Sadeghi, 2020; Nagaoka et al., 2019).

In the present study, we utilized the lllumina-based RNA-seq
approach to produce transcriptome libraries from ripening bilberry fruit
grown under supplemental red and blue light conditions. We specifically
focused on the differences in red and blue light signal transduction in
regulation of anthocyanin biosynthesis. The red and blue light-emitting

diodes (LEDs) used in our study give an opportunity to provide high
intensity spectral wavelengths to plants as source of light for studying
the effect of light quality to biosynthesis of phytochemicals.

2 | MATERIALS AND METHODS

2.1 | Plant material and light treatments

Wild bilberry (V. myrtillus L.) ecotype from Tromsg, Norway (69° 75'N,
19° 01'E) was used for the experiments. The bilberry bushes were col-
lected during early July after the fruit set at stage S2 when berries
were small, unripe and green (Figure 1a). The plants were collected in

(C) 140
1204
2
FIGURE 1  Spectral light <
treatments of bilberry plants. ‘g 100
(a) Developmental stages of bilberry: §
S1, small unripe fruit after flowering; £ 80
S2, small unripe green fruit; S3, large =
unripe green fruit; S4, ripening purple ﬁ 60
fruit; and S5, fully ripe blue fruit. %
(b) Supplemental blue (460 nm) and E 40 -
red (660 nm) light treatments
provided for bilberry plants by

Heliospectra LED lamps alongside
control (400-700 nm). (c) Light

= Blue (460 nm)
= Red (660 nm)
~—— Control (400-700 nm)

in the light treatments expressed in
arbitrary units (AU)
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boxes (50 x 70 cm) with their root system intact in forest soil and
watered well. The plants were kept in the phytotron conditions at
16°C for few days to acclimatize until they reached berry develop-
mental stage 53 when berries were large, unripe and green
(Figure 1a).

For light treatments, the plants were placed in chambers covered
from sides with photo reflective sheets and irradiated from top with
blue (460 nm) or red (660 nm) light wavelength provided by the
Heliospectra RX30 lamps (Helicpspectra AB, Gothenburg, Sweden;
Figure 1b). In addition to the specific spectral light wavelengths, the
plants received continuous ambient white light (400-700 nm) from
the top. The plants under the ambient white light (400-700 nm)
served as control for the experiment. All plants were kept at 16°C,
and the photon fluence rate (umol m~2 s~1) and irradiation energy flux
(W cmi—2) were measured using JAZ Spectrometer (Ocean Optics
Inc., Orlando, FL, USA) and used to calculate the relative light intensity
expressed as arbitrary units (AU; Figure 1c).

Berry samples were collected after 6 days from the beginning of
the light treatments when berries had reached stage $4 and started te
develop red colour on their skin (Figure 1a), and utilized for RNA
sequencing and real-time gRT-PCR analyses. For metabolite analyses,
light-treated S4 stage berries at 6 and 12 days and fully ripe berries
after 4 weeks from the beginning of light treatments at stage S5
(Figure 1a) were collected. Approximately 20-25 berries were col-
lected per treatment from three replicate bushes for RNA extraction
and metaholite analyses. Immediately after collection, all the berry
samples were frozen in liguid nitrogen and stored at —80°C until fur-
ther used for analyses.

2.2 | RNA extraction and sequencing

The frozen berries were ground to a fine powder under liquid nitrogen
using mertar and pestle. Total RNA was isolated from approximately
120 mg tissue powder by using Spectrum Plant Total RNA kit (Sigma-
Aldrich, St. Louis, MQ, USA) following the manufacturer's instructions.
Contaminating DNA was removed with on-column digestion using
DNase | (Sigma-Aldrich).

For constructing RNA libraries, the RNA was qualified with both
NanoDrop 2000c UV-vis spectrophotometer (NanoDrop Technolo-
gies, Wilmington, DE, USA) and Experion Bicanalyzer (Bio-Rad labora-
tories, Hercules, CA, USA). To segregate the mRNA from total RNA,
poly-A was captured using oligo (dT) Dynabeads (Invitrogen, Carlsbad,
CA, USA). Before library preparation, all the samples were qualified by
an Agilent 2100 Bicanalyzer (Agilent Technologies, Santa Clara, CA,
USA). The libraries were prepared with NEBNext Ultra [I RNA Library
Prep Kit (New England Biclabs Inc., Ipswich, MA, USA). Sequencing of
RNA libraries was performed using an lllumina Hiseq2000 platform
(llumina, San Diego, CA, USA) with paired-end sequencing strategy
(PE-150 bp) at the Nevogene sequencing services facility (Cambridge
Science Park, UK). Libraries were prepared with three biological repli-
cates for each blue, red and white (control) light treatments.
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2.3 | Transcriptome assembly

The raw reads from lllumina were initially quality assessed using
MultiQC seftware (Andrews, 2010; Ewels, Magnusson, Lundin, &
Kaller, 2016). The adapter contamination was removed using
Trimmomatic tool specifically designed for lllumina Next generatiocn
sequencing data (Bolger, Lohse, & Usadel, 2014), followed by the
removal of the residual rRNA reads by using sortMeRNA programme
(Kopylova, Noé, & Touzet, 2012). The quality checking by MultiQC
included assessment of sequence quality score {phred >30), adapter
content and position, GC content and ambiguous bases (Ns). Only
the clean filtered reads were used in our downstream analysis. A
robust transcriptome was constructed with Trinity v2.9.0 software
(Grabherr 2011)

redundant-over assembly from de novo and genome-guided assem-

pipeline et al, by developing a combined
bly using a hilberry genome sequence of the same bilberry ecotype
(Wu et al,, 2021). The draft genome was indexed and align-mapped
to the reads using STAR v2.6.1d software {Dobin et al., 2013). The
genome-guided Trinity output was concatenated with de novo trans-
criptome to form a combined assembly. EvidentialGene tocl
(Gilbert, 2019) was used to remove the redundancy arising from
assemblies. The reads were further mapped to the published high-
bush blueberry (V. corymbosum cv. Draper) v1.0 genome (Colle
et al, 2019) using HISAT2 software to improve the annotation of
assembly. The best possible coding regions were identified using
TransDecoder tool (http://transdecoder.github.io), which identifies a
minimal length of open reading frames (ORFs) within reconstructed
Trinity transcripts. To assess the completeness of the transcriptome
BUSCQO tool v3.0 (Simao,
Kriventseva, & Zdobnov, 2015) was used to validate the single copy

assemblies, Waterhouse, loannidis,
genes on an evolutionary perspective. Embryophyta orthologous
database odb_v.10 (https://busco-archive.ezlab.org/v3/) was used

to validate the assembled transcriptomes.

24 | Functional annotation of transcriptome

Functional annctation was performed by using Trinotate pipeline
v3.2.1 (http://trinotate.github.io), which utilizes the homology
search based on Swissprot, Pfam and NCBI-BLAST-nr (non-redun-
dant) databases from the Cluster database at high identity with
tolerance clustered trinity transcript IDs and TransDecoder-
derived peptide sequences. The cut-off E-value for the BLAST

search was adjusted between 1.07% and 1.071°°

, and the homol-
ogy search was performed with default parameters. Additional
tools, such as SignalP, tmHMM and RNAMMER (http://www.cbs.
dtu.dk/services/), were integrated into the Trinotate pipeline to
determine probable signal peptides, transmembrane helices and
residual rRNA transcripts, respectively, in the assembled trans-
criptome. All the majer TF families and transcriptional regulators
were determined using the PlantTFcat tool (http://plantgrn.noble.

org/PlantTFcat/).
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analysis

Differential gene expression and pathway

To quantify the gene expression levels from the transcriptomes, we
utilized Salmon tool (Patro, Duggal, Love, Irizarry, & Kingsford, 2017),
which was able to identify and guantify the known gene isoforms. Dif-
ferentially expressed genes (DEGs) between the light treatments (red
vs. control and blue vs. contrel) were identified using DESeq2 v3.10
software package (Love, Huber, & Anders, 2014) with false discovery
rate (FDR) adjusted p-value set to 0.05. Log, fold change ratic
hetween =2 and <—2 was used te obtain the list of up- and down-
regulated genes.

Gene Ontolegy (GO) terms for the transcripts were analysed
using GOseq v3.11 software (https://bioconductor.org/packages/
release/bioc/html/goseq.html) in R-package followed by enrichment
analysis using Fisher's exact test. For validation and to improve the
accuracy in GO determination, the top 500 DEGs from both the con-
trasts (red vs. control, blue vs. control) were extracted and annctated
with Blast2GO suite (Gotz et al., 2008). Kyoto Encyclopedia of Genes
and Genemes (KEGG) pathway enrichment analysis was performed in
KOBAS v3.0 tool (Wu, Mao, Cal, Luo, & Wei, 2006) followed by inter-
preting the KEGG Orthology (KO) terms in KEGG Automated Annota-
tion Server (KAAS) using Vitis vinifera as a reference organism for
obtaining the KO identifiers. The eriginal figures and pathway repre-

sentations were created with www.biorender.com.

2.6 | gRT-PCR analysis

Total RNA was isolated from the berry samples using the same
method as described earlier. First-strand cDNA was synthesized using
Superscript |V reverse transcriptase (Invitrogen) from 1-pg total RNA
according to manufacturer's instructions. MJ MiniOpticon Real-Time
PCR System (Bio-Rad) was used for gRT-PCR analysis with SsoFast™
EvaGreen Supermix (Bio-Rad) in 15-ul volume reaction. The PCR con-
ditions were as follows: initial denaturation at 25°C for 30 s followed
by 40 cycles at 95°C for 5 5, and 60°C for 10 s. Subsequent melting
curve analysis, ranging from 65°C to 95°C with an increment of 0.5°C
per cycle, was used to assure amplification of only one product. All
analyses were performed with three biclogical replicates and twe
technical replicates. The results were analysed using CFX Connect

software (Bio-Rad) using 2022

method, and the relative expression
levels were normalized with glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) or Actin. Primer sequences of the genes are listed in

Table S1.

2.7 | Analysis of anthocyanins

Bilberry (54 stage) samples collected after é days of light treatment
(equal time-point with transcriptomics samples) were ground and
freeze-dried in a lyophilizer (Virtis benchtop-K: SP Scientific, Gardiner,
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NY, USA). Approximately 43-mg dry weight (DW) of freeze-dried bil-
berry powder from each sample was used in extraction. The samples
were extracted twice with 500-ul MeOH:IPA:acetic acid (20:79:1) for
anthocyanin analysis. The extracts were evaporated to dryness and
resuspended in 100-ul MeQH. The extracts were analysed with ultra
high performance liquid chrematography coupled to photodiode array
(UPLC-PDA)-Synapt G2 Quadrupole time of flight/High-definition
mass spectrometry (Waters, Milford, MA, USA) in positive (ESI+) reso-
lution ion mode. Samples were analysed with capillary voltage at
3.0 kV. The source temperature was 120°C, and desolvation tempera-
ture was set to 360°C; cone gas flow rate was 20 L/h, and desclvation
gas flow rate was 800 L/h. The compounds were separated on an
Acquity UPLC-BEH €18 column (1.7 pm, 50 x 2.1 mm, Waters) in
40°C. The mobile phase consisted of (a) H.O and (b) acetonitrile
(Chromasclv grade, Sigma-Aldrich, Steinheim, Germany) both con-
taining 0.1% HCOOH (Sigma-Aldrich). A gradient of eluents was used
as follows: linear gradient of 95% of A to 5% in 10 min, and then back
to 95% at 10.1 min and left to equilibrate for 1 min. The injectien vol-
ume was 2 pl, and flow-rate of the mobile phase was 0.6 ml/min. Tray
temperature was set to 10°C. Mass range was set from 100 to 1,500.
Peak picking and integration of the peaks were executed with
MassLynx V4.2 (Waters), and identification was performed by com-
paring the exact mass/chemical formula, retention time, UV-spectra,
and/or previously published data of bilberry secondary metabolites.
The relative content of the anthocyanins in AU was calculated by nor-
malizing the analyte peaks area with the DW of the samples (AU/mg
DW). Total anthocyanins from $4 stage berries after 12 days from
light treatment were measured according te Karppinen et al. (2018).
To determine the anthocyanins from S5 stage fully ripe berries,
100 mg of samples were ground to a fine powder under liquid nitro-
gen using mortar and pestle and freeze-dried overnight to remove
water content. The samples were further extracted with methancl
acidified with 0.1% HCI {v/v) for 2 h at room temperature before
being centrifuged and the supernatant vacuum spin dried. The pellet
was resuspended in 500 pl 20% methanol and filtered using 0.45-uM
PVDF syringe filter (Phenomenex, Torrance, CA, USA). The samples
were diluted to 1:10 with 20% methancl before a 5-pl aliquot was
injected C18 Acclaim Polar Advantage |l
(150 x 2.1 mm id., 3-pm particle size; Dionex, Sunnyvale, CA, USA)
in an high performance liquid chromatography (HPLC) system

into a column

(Ultimate 3000; Thermo Fisher Dionex) coupled with a diode array
detector (DAD). The column oven temperature was set te 35°C, and
the flow rate was adjusted to 0.350 ml/min. The mobile phases con-
sisted of 10% formic acid (A) and a mixture of 45% methanol, 45%
acetonitrile and 10% formic acid (B). The gradient was as follows:
100% A followed by 9% B in A for 0-12 min, 35% B in A for 12-
25 min, 50% B in A for 25 min and 9% B in A for 30-35 min. The
identified anthocyanin peaks were compared with that of known
authentic standards and menitored at 254, 280, 320 and 520 nm.
The samples were quantified using a calibration curve and expressed
as cyanidin 3-O-galactoside equivalents. All analyses were per-
formed with three biclogical replicates.



SAMKUMAR g7 AL

22 | WILEY- 5 XY

2.8 | Statistical analysis

The statistical analysis of LC-MS profiling data was performed with
MetaboAnalyst 5.0 tool (Chong, Wishart, & Xia, 2019). Differences in
anthocyanin levels among the light treatments were analysed by one-
way analysis of variance (ANOVA) followed by Tukey's post-hoc test.
Statistically significant differences between the light treatments
analysed by qRT-PCR were determined by independent samples t-test
in SPSS Statistics programme v26 (IBM corporation, New York, NY,
USA). Pearson's correlation matrices were used to visualize the statis-
tical relationship from correlation coefficients between selected gene
expression levels and dominant anthocyanin concentrations (del-
phinidin 3-galactoside and delphinidin 3-arabinoside) with p-value set
to <0.05. ANOVA and Pearson's correlation analysis were performed
using OriginPro software v2020b (OriginLab Corporation, Northamp-
ton, MA, USA).

3 | RESULTS
3.1 | Elevated anthocyanin content under red and
blue supplemental light

Metabolite profiling with UPLC-HDMS was performed from light-
treated berry samples after 6 days (same time-point for transcriptome
libraries). The red, blue and control samples from the metabolite anal-
ysis were separated in the first component in the principal component
analysis (PCA), explaining 32.3% of the variation (Figure S1). The heat-
map analysis of metabolite profiling data shows large number of sig-
nificantly different metabolites (407 metabolites of total 700, ANOVA,
p < 0.05); anthocyanins localized in the middle part of the clusters
(Figure S2). The results showed consistent and significant increase in
all the anthocyanin compounds under both the red and blue light
treatments when compared with control (Figure 2a). Delphinidin
galactosides/glucosides were detected 12-fold higher in red light
when compared to other light treatments followed by significant
increase in all the cyanidin, petunidin and malvidin glycosides
(Figure 2a). In addition, the total anthocyanins quantified in ripening
berries (S4 stage) after 12 days of light treatment showed higher
amounts of anthocyanin accumulation in red light followed by blue
light treatments compared with ambient white
(Figure 2b).

Similar trend was also observed in S5 stage fully ripe berries

light control

although the difference was not as apparent (Table $2). Quantitative
analysis with HPLC confirmed that the two major delphinidin glyco-
sides, delphinidin-3-galactoside and delphinidin 3-arabinoside, were
found at significantly higher amounts in red light treatment, contribut-
ing to the increase in total anthocyanin content (4,760 mg 100 g~
DW) compared to that of blue light and the control samples. The
trend is followed by the increase in levels of cyanidin and petunidin
glycosides in red light treated berries. A very low amount of peonidin-
3-glucoside was detected in all the samples, which was not generally
influenced by different light treatments (Table $2).
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FIGURE 2 Determination of anthocyanin content.

(a) Anthocyanin content after 6 days of spectral light treatment of
bilberries determined by LC-MS. The relative content is expressed in
arbitrary units (AU) and was calculated by normalizing the analyte
peaks area with the dry weight of the samples (AU mg~* DW). Ara-
arabinoside; Cyn-cyanidins; Del-delphinidins; gal-galactoside; glu-
glucoside; Mv-malvidins; Pet-petunidins. (b) Total anthocyanins in
bilberries after 12 days of spectral light treatment expressed in

mg g * FW of cyanidin 3-glucoside equivalents. Different letters
denote significant differences among groups analysed by one-way
ANOVA followed by Tukey's post-hoc test (p-value < 0.05) [Colour
figure can be viewed at wileyonlinelibrary.com]

3.2 | Bilberry transcriptome sequencing and
functional annotation

The raw sequencing reads of the bilberry transcriptomes vyielded
approximately 56 GB of data and reached approximately 8 GB per
sample data. The read number for control samples was 70,627,656
bases, whereas it was 82,253,205 bases for the red light-treated sam-
ples and 78,192,227 bases for the blue light-treated samples
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TABLE 1  Statistics of combined Trinity transcriptome assembly (2)  Gene ontology-ptam
after concatenating de novo and genome-guided assemblies
Gene Ontology-BLASTP
Assembly Transcripts Unigenes Gene Ontology-BLASTX
Total counts 671,952 472,876 KEGG
Contig N50 (bp) 1,567 1,122 eggNOG
Contig N30 (bp) 2,431 2035 Plam
Average contig length 910.78 720.23 Swissprot-Top BLASTP hit
{bp) Swissprot-Top BLASTX hit
Median contig length (bp) 508 408 Protein IDs assigned (putative)
Total assembled bases 611,998,789 340,578,754 0 10000 20000 30000 40000 50000
Average read length 150 bp No. of Hits
Percent GC 41.71% () Control
/,,.- .

(Table $3). MultiQC analysis proved that the processed reads were of
good quality with Phred score >36 (Table 52). Read-mapping to a
recently published V. corymbosum genome (Colle et al.,, 2019)
resulted in 75-77% of total reads mapped including ~50% uniquely
mapped to the genome. Using a draft genome of bilberry (Wu
et al., 2021), representing the same bilberry ecotype as our samples,
enabled unique mapping of 83.5% of the filtered reads. A total of
671,952 transcripts and 472,876 unigenes were generated from the
combined transcriptome assembly with mean contig lengths of
911 and 720 bp, respectively (Table 1). BUSCO analysis revealed
that the combined assembly had 97.4% complete sequences when
searched within 1,375 orthologous groups of embryophyta_odb9 lin-
eage (Table S4). The scores were slightly improved compared to
genome-guided assembly, indicating that the combined trans-
criptome in our analysis is a robust assembly and was subsequently
used in this study.

In total, around 25,316 (61%) of putative protein IDs of bil-
berry transcripts showed significant hits in Swissprot and 25,280
(61%) in Pfam databases (Figure 3a). Around 60% of the sequences
had hits with eggNOG (clusters of orthologous groups) and rela-
tively high number of hits (65%) obtained from the KEGG database
(Figure 3a). BLAST hits distribution among the top-25 species
showed the highest homology in Rhododendron williamsianum
(33%) followed by Camelia sinensis var. (25%) and Actinidia
chinensis var. (16%). The top-hit species with some considerable
matches obtained from the top DEGs (0.2-2.6%) showed sequence
similarities with V. myrtillus, V. macrocarpon and V. corymbosum
(Figure S3).

There were 49,105 commonly co-expressed genes detected
among the transcriptomes of the three different light treatments
(Figure 3b). The distribution between the different light treatments is
visualized in a venn diagram showing that 1,816 and 1,686 genes
were uniquely expressed among the red and blue light treatments,
respectively (Figure 3b). The BLAST sequence similarity distribution
within the query sequences (E-value cut-off 1.0 ) showed high num-
ber of positives to that of aligned reads length in the range of 70-
90% suggesting a strong match between query and assembled known

sequences from databases (Figure 54).

52

Blue

FIGURE 3 Functional annotation of bilberry transcriptome.

(a) Summary of functional annotation from Trinotate pipeline. The
number of hits from the unigenes has been denoted in x-axis, whereas
y-axis denotes the different databases utilized for search. (b) Co-
expression of genes among red, blue and control light treatments
represented as venn diagram [Colour figure can be viewed at
wileyonlinelibrary.com)

3.3 | Differential expression analysis between light
treatments and enrichment (GO, KEGG) analysis

The gene expression levels quantified from the read counts generated
from the transcriptomes showed 14,105 DEGs. The fragments per
kilobase of transcript per million mapped reads (FPKM) counts (frag-
ments per kilobase of transcript per million mapped reads) were
aggregated from three replicates of each light treatment (Figures S5
and Sé). Hierarchical clustering analysis showed clear differences in
the expression pattems between the light treatments (Figure 4a).
In red light-treated berries, high number of DEGs corresponding to
7327 up-regulated genes and 1,545 down-regulated genes
(Figure 4b) were detected when compared with blue light treatment
yielding 3,686 up-regulated and 1,547 down-regulated genes
(Figure 4c) as visualized using volcano plots.

GO enrichment analysis classified the DEGs according to their
functions and properties into three major categories: biological pro-
(BP), (MF) and cellular
(CC) (Figure 5a). An average of 60-65% of unigenes was assigned
GO terms either through one of the homology searches from Pfam,
BLASTx and BLASTp databases. The top significantly enriched GO

cess molecular function component
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FIGURE 4 Differential gene expression analysis in the light-treated bilberries. (a) Clustered hierarchical heat-map of normalized differential
gene expression among the samples (h-cluster). The scale bars from —2 to 2 represent the log, fold change from fragments per kilobase of
transcript per million mapped reads (FPKM) values. (b) Volcano plot of red versus control comparison. (c) Volcano plot of blue versus control
comparison. Both the contrasts were FDR corrected/p-value adjusted to < 0.05 for obtaining DEGs and plotted with the log, fold changes against
the adjusted —log1o p-values obtained [Colour figure can be viewed at wileyonlinelibrary.com]

terms across these three categories from our two comparison sub-
sets showed that in CC, ‘intracellular’ and ‘cellular anatomical entity’
were the top sub-categories (Figure 5a). In the MF category ‘cata-
lytic activity’, ‘binding’ and ‘transporter’ activities were found to be
abundant (Figure 5a). Both these categories have similar number of
GO terms assigned from the sequences but with two contrasting
results. In the BP category, the sequences assigned to ‘metabolic’
and ‘cellular’ process were relatively higher in red light than blue
light treatment. The GO terms assigned to ‘localization’, ‘signalling’
and ‘response to stimulus’ sub-categories were contrasting between
the light treatments (Figure 5a). Some of the unigenes were also
classified in ‘rhythmic processes’ and ‘pigmentation’ in the BP cate-
gory. Hence, we further investigated the BP category by direct count
of sequence distribution among the top DEGs. GO terms, such as
‘oxidation-reduction process’, ‘protein phosphorylation’ and ‘regu-
lation of transcription’, were the top ones with relatively higher
number of assigned sequences found in red light-treated samples

53

than blue light treatment. Some annotated sequences related to
sugar metabolism, shikimate, chorismate, lignin, cutin and sterol bio-
synthetic process were also determined with additional GO terms
assigned to anthocyanin-containing compounds, and flavonoid bio-
synthetic process was obtained from red light treatment (Figure 5b).
The KEGG pathways significantly enriched by adjusting FDR
corrected/p-value to <.05 using the Benjamini-Hochberg method
showed that a high number of gene ratio fell in both light treatments
on metabolic pathways and secondary metabolite biosynthesis,
followed by phenylpropanoid biosynthesis, and few primary meta-
bolic pathways, such as amino acid biosynthesis, carbon metabolism
and ribosome (blue vs. control) with considerable number of gene
counts (Figure 5c,d). In addition, the red light treatment also posi-
tively enriched the fatty acid, galactose, starch and sucrose metabo-
related pathways (Tables S$5-S8). All the DEGs and
corresponding unigene IDs analysed throughout this study are pro-
vided in Table S9.

lism
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FIGURE 5 Enrichment analysis of Gene Ontology (GO) terms and KEGG pathways. (a) The number of significantly enriched GO terms
obtained against the top 500 DEG sequences. The treatment contrasts are represented with similar colours. The GO terms are categorized into
biological process (BP), molecular function (MF) and cellular component (CC). (b) Number of enriched GO terms obtained from direct count of
sequences in BP category. The KEGG metabolic pathways significantly enriched in red versus control (c) and blue versus control (d). Circle sizes
represent the counts of sequences with p-value <.01 [Colour figure can be viewed at wileyonlinelibrary.com]
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3.4 | Identification of TF families

Blast2GO suite identified GO terms and protein domain signatures
from top 500 DEGs utilizing InterproScan (IPS) database. The analysis
indicated that the top category was a protein kinase domain followed
by MYB/SANT domain, AP2/ERF, NB-ARC and bHLH domains
(Figure S7). A total of 976 unigenes were identified as putative TFs
and regulators from the transcriptome categorized into 72 TF families,
which are likely to have a role in red and blue light-mediated tran-
scriptional regulation in various metabolic pathways. Among them,
C2H2 was the most prominent TF family category with 117 unigenes
followed by CCHC(Zn) (99 unigenes), RR-A type (42 unigenes), MYB-
HB like (62 unigenes), bHLH (44 unigenes) and WD-40 like TFs
(40 unigenes) (Figure S8). Some of the earlier identified TFs known to
be involved in bilberry ripening (Nguyen et al., 2018), such as NAM
(NAC family TFs) with 13 unigenes, WRKY TFs with 17 unigenes and
MADS-like TFs with 13 unigenes, were identified as differentially
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expressed in response towards red and blue light treatment. Another
class of TFs called AP2-EREBP (APETALAZ2/EF), belonging to ethylene
hormone responsive TF family, was also significantly expressed among
the DEGs (38 unigenes).

3.5 | DEGs involved in red and blue light signalling

The unigenes corresponding to phytochrome B (PHYB) were found to
be highly up-regulated in red light treatment, whereas cryptochrome
(CRY2) transcripts were found in high levels under blue light
(Figure 6). COP1 expression level was found to be higher in red
light treatment with blue light down-regulating its expression. The
light treatments also showed similar trends on HY5 expression, with
red light increasing the expression and blue light having the opposite
effect. CK2a and PRR5, which are key regulators in plant circadian
rhythms, did not vary markedly in their expression levels between the

Blue light

Antenna proteins
/ Light harvesting
complex

Cell

elongation

Blue light
photoreceptors

ELF3 <—@cop1 <— SPA1

(u FKF1 28
19
Flowering
CDF1 — CO FT 1
Photomorphogenesis 0
PAP1/
MYB
09
-
-1,9

FIGURE 6 DEGs from light signalling and circadian rhythm. Schematic representation of red and blue light signal perception by higher plants,
which are likely to be involved in light-regulated anthocyanin biosynthesis. The associated DEGs from red and blue light versus control contrasts
are presented in colour code boxes based on log; fold changes. Red light treatment is shown on left and blue light treatment on the right-hand
side of the box. Gene abbreviations: Cab, chlorophyll a/b binding protein; CDF1, cycling DOF factor 1; CK2aq, casein kinase Il subunit alpha; Co,
constans; COP1, constitutive photomorphogenic; CRY1/2, cryptochrome; EIf3, early flowering 3; Exp, expansin; FKF1, flavin-binding kelch
domain F box protein; FT, flowering locus T; HY5, elongated hypocotyl 5; PHYA/B, phytochrome; PRR5, pseudo response regulator 5; SPA,

suppressor of PhyA [Colour figure can be viewed at wileyonlinelibrary.com]
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red and blue light treatments. Flowering locus gene-T (FT) involved in
photoperiodism was highly up-regulated (2,8 log, FC) upon blue light
treatment (Figure 6).

3.6 | DEGs from anthocyanin biosynthesis and its
associated regulatory complex

All the major identified unigenes involved in the phenylpropanoid path-
way, such as PAL, cinnamate 4-hydroxylase (C4H) and 4-coumarate
CoA ligase (4CL), were up-regulated upon both red and blue light treat-
ments (Figure 7). Caffeoyl CoA O-methyltransferase (cCoAoMT)

expression was found to be at a relatively high level in blue light com-
pared to red light treatment also with similar expression levels identi-
fied in peroxidases and cationic peroxidases (Prx, cPrx) genes leading to
lignin biosynthesis via the p-coumaryl alcohol branch pathways
(Figure 7).

All the anthocyanin biosynthetic pathway structural genes were
up-regulated both in red and blue light (Figure 7). The key biosyn-
thetic enzyme gene CHS was found with a log, fold increase of 3.3
and 3 between red and blue treatment, respectively. Expression of
CHI and F3H was found to be at a higher level in red light treatment
when compared with the blue light treatment. The changes in expres-
sion levels of F3'H, DFR and ANS genes were found to be slightly
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FIGURE 7 DEGs from anthocyanin, carotenoid and ABA biosynthesis. Schematic representation of anthocyanin biosynthetic pathway
branching from phenylpropanoid biosynthesis (top) and representation of carotenoid biosynthetic pathway leading to abscisic acid (ABA)
biosynthesis and catabolism. DEGs from flavonoid, carotenoid and ABA pathway genes and selected TFs visualized as heatmap based on log; fold
changes obtained from light treatments against the control samples. Enzyme abbreviations: 4CL, 4-coumarate:CoA ligase; ABA 8’ hyd, abscisic acid
8 hydroxylase, PYR/PYL, pyrabactin-resistance like; ANS, anthocyanidin synthase; BCH, beta-carotene hydroxylase; C4H, cinnamate
4-hydroxylase; CCoOAOMT, caffeoyl-CoA O-methyltransferase; CHI, chalcone isomerase; CHS, chalcone synthase; CYP 450-BCH, carotenoid
p-ring hydroxylase of cytochrome P450 family; DFR, dihydroflavonol 4-reductase; F3'5'H, flavonoid 3'5' hydroxylase; F3'H, flavonoid 3’
hydroxylase; F3H, flavanone 3-hydroxylase; LUT1, lutein deficient 1; NCED, 9-cis-epoxycarotenoid dioxygenase; PAL, phenylalanine ammonia-
lyase; Prx, cPrx-peroxidases, cationic peroxidases; PSY, phytoene synthase; UFGT, UDP-glucose flavonoid 3-O-glucosyltransferase; ZDS, zeta-
carotene desaturase [Colour figure can be viewed at wileyonlinelibrary.com]
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higher in blue light treatment. The key gene involved in the del-
phinidin branch pathway, F3'5'H, and the specific gene for anthacya-
nin biosynthesis, UFGT, were found to be highly up-regulated in the
response towards red light (Figure 7).

R2R3 MYBs (eight unigenes) and bHLHs (six unigenes) were found
among the top 500 DEGs. All the identified TFs of MBW complex
from top DEGs and corresponding gene ID with IPS domains are pro-
vided in Table 59. SQUAMOSA-MADS hox (TDR-type) TFs, such as
AGAMOUS (AGL 15, 21, 61, 62, 80) and MADS (3,4,8), were signifi-
cantly up-regulated in red light treatment and down-regulated under
blue light treatment (Figure 7). In contrast, blue light up-regulated
DEF2 and PHE2 type MADS box TFs and red light down-regulated
SPL4 type TFs (Figure 7), which are all linked to regulating circadian
rhythm and flowering. The expression level of MYBA1, the key regula-
tory gene of anthocyanin biosynthesis, was up-regulated by both red
and blue light treatments, whereas MYBPA1.1 was found compara-
tively higher level in red light treatment. Among the eight R2R3 MYB
genes categorized as DEGs, three genes were up-regulated in similar
levels under both the light treatments (Figure 7). Instead, MYBPA1.1,
MYBPA3, MYBC24, MYB5a and MYBPA23 were found to be
expressed in higher levels in red light treatment compared to blue

Apical Plasma membrane

light treatment (Figure 7). All the bHLH TFs categorized under DEGs
(bHLH6 [MYC2], bHLH130, bHLH137, bHLH147, bHLH68 and bHLH79)
were found up-regulated in both light treatments and expressed in

similar levels.

3.7 | DEGs from carotenoid and ABA metabolism

The carotenoid pathway genes, such as phytoene synthase (PSY),
f-carotene hydroxylase (BCH) and carotenoid g-ring hydroxylase of
cytochrome P450 family (CYP450-BCH), were up-regulated in both
red and blue light treatments with the exception of ¢-carotene desa-
turase (ZDS) and lutein deficient 1-like (Lut1) with lower expression
levels in blue light treatment (Figure 7). In addition, the important
carotenoid cleavage gene NCED, the key cleavage gene in ABA bio-
synthesis, was up-regulated in both the light treatments but higher in
red light treatment (Figure 7). On the other hand, ABA-8' hydroxylase,
which is the first step in the ABA catabolism route, was highly up-
regulated only under red light treatment but down-regulated
(to —1.88-fold change) in blue light treatment. There were three
unigenes identified as ABA-receptors pyrabactin resistance-like gene
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FIGURE 8 DEGs from SNARE mediated vesicular trafficking. Schematic representation of vesicular transport of anthocyanins mediated by
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(PYL-4,5,8) of which two of them (PYL 5,8) were down-regulated to
two- to three-folds lower in response to blue light (Figure 7). ABA
insensitive (ABI5) TF was found in similar levels in both the light
treatments.

The relative gene expression for all the key anthocyanin and ABA
biosynthetic genes discussed earlier (CHS, F3'H, F3'5'H, DFR, ANS,
UFGT, MYBA1, and NCED) obtained from qRT-PCR analyses
(Figure S9a) and identified unigenes from RNA-seq dataset were cor-
related, showing the higher correlation R? values of 0.9 with red ver-

sus control and 0.8 with blue versus control contrasts (Figure S9b).

3.8 | DEGs involved in vesicular trafficking

DEGs identified and annotated as group of genes related to SNARE-
domain family of transporter proteins, such as Stx 5,6,7 (syntaxin), Sec
20,22 and Ykté, were highly up-regulated in response towards the red
light treatment (Figure 8). The syntaxin genes (Stx1-4), usually found
in apical plasma membrane, were up-regulated in red light and down-
regulated in blue light treatment. We alse identified two unigenes
from DEGs annotated as ABC family of transporter proteins (ATP-
binding cassette sub-family B), which showed the same expression
trend to syntaxin genes suggesting the involvement of ABCs in vesic-
ular transport, possibly together with SNAREs (Figure 8). G5Ts F12
and T1-like transporter genes were up-regulated by both the light
treatments, whereas a single unigene out of three annotated among
the top DEGs corresponding to MATE efflux transporter protein fam-
ily was found up-regulated by both treatments (Figure 8).

3.9 | Gene-metabolite interaction

Pearson's correlation matrices between the deminantly found antho-
cyanins quantified using HPLC (delphinidin 3-galactoside and del-
phinidin  3-arabinoside) and the transcript levels related to the
flavonoid, carotenoid and ABA pathway genes, and ABA-receptors
from both light treatments indicated strong links between ABA and
anthocyanin biesynthesis, especially under red light (Figure 9). We
also found statistically significant positive correlations among gene-

metabolite interactions for red light compared to blue light treatment.

4 | DISCUSSION

It has been shown in many fruits that specific light spectral wave-
lengths from PAR spectrum can influence the biosynthesis of antho-
cyanins and other polyphenolic compounds (Jeong, Goto-Yamamoto,
Kobayashi, & Esaka, 2004; Koyama et al, 2012; Tao et al, 2018;
Kokalj et al., 2019). Beyond the PAR range spectral wavelengths, UV
light can also positively regulate anthocyanin biosynthesis. Recent
studies have shown that UV-B irradiation in pre-harvest and UV-A
irradiation in post-harvest conditions promoted anthocyanin biosyn-
thesis in blueberries (Li, Yamane, & Tac, 2021; Yang et al, 2018).

However, the molecular mechanisms underlying the light quality-
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regulated fruit anthocyanin biosynthesis are not well understood. In
this study, we used a comparative transcriptomics appreach to ana-
lyse the effect of light quality on anthecyanin biosynthesis in ripening
fruit of bilberry producing anthocyanins from beth cyanidin and del-
phinidin branches. The light treatments were given to unripe green
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FIGURE 9 Metabolite-gene expression correlation analysis
associated with anthecyanin, carotenoid and ABA metabelism.
Pearson's coefficient-based correlation matrices from selected gene
expression levels with two major identified delphinidin glycosides for
control versus red (a) and control versus blue (b) contrasts. The sizes
and colours of dots represent the strength of correlation from positive
(blue) to negative (red) correlations arranged in an upper triangular
matrix [Colour figure can be viewed at wileyonlinelibrary.com]
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(S3 stage) bilberry fruits, as this stage has been shown earlier to be
reactive towards changes in spectral light wavelengths affecting
anthocyanin biosynthesis (Zoratti et al., 2014). Here, we showed that
the anthocyanin concentration and prefile in ripening berries was
affected especially by red light but also blue light treatment, and our
results indicate differences in light signalling pathways between red

and blue light in regulation of anthocyanin biosynthesis.

4.1 | Light quality modulates light signal
perception and transduction

In natural conditions, plants encounter varying light spectral condi-
tions. For example, in the latitudes close to Arctic circle, the radia-
tion flux from a distinct sclar spectrum (UV-A/B ratic, blue and
red/far-red wavelengths) changes compared to southern latitudes,
and this has been shown to faveur higher accumulation of flavo-
neids in northern vegetation, including wild bilberries (Jaakola &
Hohtola, 2010; Zeratti, Karppinen, et al., 2014). Delphinidins are the
major class of constituting anthecyanins found abundant in northern
clones compared with higher cyanidin preportions found in south-
ern clones (Zoratti et al., 2016). In addition, in forests, the top can-
opy absorbs most of the essential red and blue wavelengths, and
only the green and far-red wavelengths are reflected by foliage te
lower parts of the plant (Holopainen et al., 2018). In bilberry,
pepulations grown wunder direct sunlight have demonstrated
increased bicactive compeunds and bicavailability compared with
plants grewing under forest canopy (Eckerter, Buse, Férschler, &
Pufal, 2019). However, the even distribution through the foliage can
be achieved by modern energy efficient LEDs, because the irradia-
tion maxima from these supplemental lightings are often higher than
plant's absorption peaks. Qur study showed that during the red light
LED treatment, PHYB expression was up-regulated together with
COP1 and HY5, the key genes invelved in phetemorphogenesis,
alongside photoperiodism-related early flowering (ELF3) and CK2a
genes (Figure 6). On the other hand, the blue light up-regulated
cryptochrome (CRY2) but down-regulated COP1 and HY5 in tandem
as its photoreactive mechanism, which might reveal that an early
photomorphogenesis occurred upon light treatment as a spontane-
ous response but was found in low levels of expression at the time
of our ebservation. It is also to be noted that bHLHé (MYC2), which
is a negative regulater of blue light induced photomorphogenesis
(Yadav, Mallappa, Gangappa, Bhatia, & Chattopadhyay, 2005) and
was positively expressed in our study, might have played a crucial
role in blue light signalling mechanism.

4.2 | Supplemental red and blue light irradiation
positively affects anthocyanin biosynthesis and
accumulation

Red and blue wavelengths have optimal chlorophyll absorption and
photosynthetic efficiency (Massa, Kim, Wheeler, & Mitchell, 2008),
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and both appear to be effective in promoting anthocyanin bicsyn-
thesis in various horticultural crops (Bian, Yang, & Liu, 2014; Zhang
et al,, 2018). Our results showed that both the light treatments up-
regulated all the anthocyanin biosynthetic genes in bilberry fruit,
including all the bottleneck flavoncid biosynthetic genes CHS, F3H
and ANS described inVaccinium fruits (Glinther et al., 2020; Primetta,
Karppinen, Riihinen, & Jaakela, 2015; Zorenc et al., 2017). This led to
the higher accumulation of anthocyanins under both red and blue
light treatments compared to control fruits. Furthermore, the expres-
sion level of UFGT, the last gene in the anthocyanin pathway, and
F3'5'H, the gene directing dihydroflavonel precursers to delphinidin
hiosynthesis, was found to be highly up-regulated under the red light
treatment. Generally, blue light has been shown as a strong positive
influencer of anthocyanin accumulation in many fruit crops, for
example, in sweet cherries (Kokalj et al, 2019) and pear (Tao
et al., 2018). However, red light can also promote in similar ways. A
recent study in strawherry showed that both red and blue light were
able to increase gene expression levels of flavenoid biesynthetic
pathway with red light found to be slightly more effective in induc-
ing anthocyanin accumulation (Zhang et al., 2018). For instance, also
in a previous study in apple, red light has been shown to promote
anthocyanin  biosynthesis (Lekkham, Srilaong, Pongprasert, &
Kondo, 2016), and red-shaded nets improved phytechemical con-
tents in few vegetables (Ili¢ & Fallik, 2017). Our results suggest that
UFGT and F3'5'H are separately regulated and highly responsive to
red light in ripening bilberry fruit. This changed the anthecyanin pro-
file towards delphinidin glycosides in fully ripe berries under red
light.

Anthocyanin biosynthesis is directly regulated by the MBW
complex and R2ZR3 MYB expression and to some extent bHLH
expression. A high number of DEGs representing MYB and bHLH
genes was found from our RNA-seq libraries, indicating that their
regulation is strongly influenced by the light spectral quality.
MYBA-type TFs have been identified as the key regulators activat-
ing anthecyanin biesynthesis in fruits including Vaccinium berries
(Die, Jones, QOgde, Ehlenfeldt, & Rowland, 2020; Plunkett
et al, 2018). In addition, MYBPA1 has been suggested to have a
regulatory role in anthocyanin biosynthesis based on our previous
studies (Primetta et al, 2015; Gunther et al, 2020; Karppinen
et al, 2021). In this study, both MYBA1 and MYBPA1.1 were up-
regulated by red and blue light. Especially, MYBPA1.1 was induced
by red light, which has been recently suggested as one of the key
genes in regulating delphinidin branch during bilberry ripening
(Karppinen et al., 2021). Other bilberry MYB sequences homolo-
gous to related MYBPAZ, MYB5 and MYBC2 genes were also found
among top 500 DEGs, which are likely to be involved in regulatory
mechanisms during ripening and flavonoid hiosynthesis. Some of
the bHLH sequences, which were up-regulated in both red and blue
light treatments, such as bHLH79, have been previously reported in
grapes towards light-induced anthocyanin biosynthesis (Ma
et al., 2019). In addition, bHLH& (MYC2) TF is reported to be com-
monly involved in light and ABA signalling pathways (Yadav
et al., 2005).
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4.3 | Differences in carotenoid biosynthesis and
ABA metabolism suggest red light regulation
through ABA

A significant increase in the expression of the carctenoid early biosyn-
thetic genes and late cleavage gene, including NCED, has earlier been
found in bilberry fruit ripening under red light (Karppinen et al., 2016).
Our results are in agreement with this study but also showed that not
only the red light but also blue light treatment up-regulated expres-
sion levels of many of the carotenoid bicsynthetic genes. However,
the expression of ZDS and CYP450-BCH genes branching towards
a-carotene and further to Iutein biosynthesis (LUT1) varied between
the red and blue light treatments (Figure 7). It has alsc been shown in
the previous study that the up-regulated expression levels of caroten-
oid biosynthetic genes in red light conditions led to low levels of
carotenoids indicating elevated carotencid reactions
(Karppinen, Zoratti, Sarala, et al, 2016} that lead to production of
plant hormone ABA.

The increase in ABA levels and the carotenoid cleavage reaction

cleavage

through action of the key enzyme NCED was found increased at the
onset of bilberry ripening (Karppinen et al,, 2013). Many studies have
demonstrated the exogencus application of ABA increasing the
anthocyanin levels of fruits when applied at the time of fruit ripening
(Ferrero et al, 2018; Wheeler, Loveys, Ford, & Davies, 2009). The
effect of exogenous application of ABA on inducing bilberry fruit
anthocyanin biesynthesis has been demonstrated earlier (Karppinen
et al,, 2018). In Fragaria x ananassa, the positive effect of ABA as well
as light has been reported to act independently through the activation
of F¥MYB10, the key gene in strawberry anthocyanin biosynthesis
(Kadomura-Ishikawa, Miyawaki, Takahashi, Masuda, & Noji, 2015). In
our study, the red light treatment induced higher expression of NCED
compared to centrol and blue light treatment. In additicn, we showed
that expression levels of ABA-8 hydroxylase gene, responsible for deg-
radation of ABA, increased two-fold higher in red light treatment and
were down-regulated in blue light treatment. It has been shown that
the endogenous levels of ABA in plant cells are maintained only by
the inhibition of this enzyme (Kondo et al., 2012). A similar trend of
increase in expression of NCED and ABA-8 hydroxylase genes along-
side higher anthocyanin accumulation in response to red light irradia-
tion was observed earlier in grapevine (Kondo et al., 2014). Rodycung
et al. (2014) have shown that in grapes, the expression of beth of
these genes was higher at veraison in response to red and blue light
irradiation. In many fruits, the ABA catabelism might not directly coin-
cide with anthocyanin biosynthesis but the upstream ABA biosynthe-
sis and endogenous levels of ABA may be directly involved in
interaction with the flavoncid pathway. Here, we show that in ripen-
ing bilberry fruit, the red light activates both the biosynthetic and cat-
abolic ABA pathways and correlates with anthocyanin accumulation.
Furthermere, the changes in delphinidin levels showing a strong corre-
lation with anthocyanin biosynthesis and direct regulatory genes, ABA
signalling and metabolism genes (Figure 9) suggest a well-orchestrated
regulatory network of ABA-regulated anthecyanin bicsynthesis occur-

ring under supplemental red light.
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The signal transduction from ABA to the regulation of anthocya-
nin biosynthesis has been reported earlier in other fruit species, such
as Lycium fruits, where ABA was found to interact directly with the
MBW complex and other key flavencid genes (Li et al., 2019). In cur
study, we showed that light treatments during ripening process acti-
vated signal transduction cascade via ABA signalling leading to antho-
cyanin accumulation. It has been shown in one of the recent studies
that red light increased the expression level of AGAMOUS-like (AGL)
regulators in tomato (Selanum lycopersicum L) during fruit ripening
(Zhang et al., 2020). These AGL-like MADS box TFs are alsc orthologs
to VmTDR4 in bilberry, a key player in bilberry anthocyanin accumula-
tien Jaakola et al., 2010). This prevides us with an understanding that
red light might mediate ABA-regulated anthocyanin biosynthesis
through SQUAMOSA-MADS hox type TFs, ABA binding receptors
such as pyrabactin resistance like (PYR/PYL), ABA insensitive (ABI5)
gene, which all act as upstream regulators towards activating the
MBW complex. A similar ABA signal transduction mechanism occurs
via MADS box TFs was previously demonstrated in blueberry antho-
cyanin biosynthesis (Chung et al., 2019). It should alse be noted that
the SPL type TFs (SQUAMOQOSA promoter binding like) that were up-
regulated in response to blue light in our study can be associated with
the increase in expression of Flowering Locus-T (FT) gene involved in
flowering and circadian clock-related mechanisms as the TF acts

downstream to FT expression (Wang, Czech, & Weigel, 2009).

44 | Supplemental light triggers vesicular
trafficking in ripening berry accumulating
anthocyanins

The transportation of anthocyanins into vacuoles is usually trafficked
intra-cellularly by different classes of transporter proteins, such as
MATEs, ABCs and GSTs (Petrussa et al., 2013). The transporters
involved in fruit anthocyanin transport in relation to light quality
respense have not been studied. However, our results demonstrated
that a set of genes, including Stx, Bos1, Gosl, Ykté, Sec20, Sec 22 and
Syp7, were highly up-regulated in response to red light treatment.
These genes belonged to the SNARE-domain protein family, which
includes the common syntaxin-like (Stx, Syp) genes. Interestingly, the
unigenes annotated as Stx-like (1,4) type along with an ABC trans-
porter were up-regulated in response to red light treatment and
reacted in the oppesite manner to that of blue light treatment. Hence,
SNARE demain transporters are candidates te be involved in vesicular
trafficking of anthocyanins or trans-membrane transport from endo-
plasmic reticulum (ER) to gelgi and endosomes. It also indicates the
potential rcle of syntaxin genes differentially responding to light-
induced anthocyanin transport mechanisms. These different types of
SNARES, barring the ER-localized Syp and Sec, are usually localized in
endosomes and in trans-golgi network (Kim & Brandizzi, 2012). Our
results may indicate a new route for anthecyanin sequestration and
transportation in fruit tissues. The proposed vesicular trafficking
model of anthocyanins in fruits might be also co-regulated by other
GSTs, MATE efflux transporters and ABC transporters, in addition to
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the SNARE-demain type proteins before depositing as anthocyanic
vacuolar inclusions (AVI1) in the vacuole (Zhao, 2015). This mechanism
could also relate to the plant tissues that accumulate higher anthocya-
nin levels under high intensity light and needs to be investigated
further.

5 | CONCLUSION

Our RNA-seq analyses from the time of fruit ripening show that both
red and blue wavelengths are capahble of inducing a high number of
up-regulated genes and metabolic pathways, including flavoneid,
phenylpropancid, carctencid biosynthetic pathways and sugar metab-
olism. Blue and especially red light were effective in inducing anthocy-
anin and delphinidin accumulation but through different signal
transduction routes. The blue light triggered early photomerphogene-
sis via CRY2/COP1 interaction that potentially combined with positive
regulators, such as MYBA and HY35, to induce the expression of antho-
cyanin biosynthetic genes during onset of ripening. Red light treat-
ment instead positively up-regulated PHYB and all the major flavenoid
genes, including the anthocyanin (UFGT) and delphinidin (F3'5'H)
routes, key ABA biosynthetic gene (NCED) and ABA degrading ABA-
8'hydroxylase genes. Our results provide an insight into the role of
endogencus ABA accumulation and degradation as positive signalling
factors leading to increased levels of anthocyanin accumulation via
the ABA-signal transducticn mechanism during the ripening process
under red light. We also found the expression of SNARE complex-
related vesicle trafficking genes to be highly expressed in red light
treated berries, which might provide clues into the possible sequestra-
tion and transport mechanisms via endosomes in tissues with higher
anthocyanin accumulation, but need further investigation. Our high-
quality transcriptome dataset will be a useful genomics resource in

future bilberry research and Vaccinium breeding programmes.
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Abstract

Light spectral quality is known to affect flavonoid biosynthesis during fruit ripening. However, it is
unknown how non-climacteric fruits, which ripen autonomously and independent of the parent plant,
respond to different spectral light. In this study, we have analyzed the effect of light quality from LED
lights on detached and naturally ripening non-climacteric wild bilberry fruits (Vaccinium myrtillus L.)
accumulating high amounts of anthocyanins and flavonols. Our results indicate differential opposing
responses towards red and blue light treatments on phenolic compound accumulation in detached and
naturally ripening berries. For detached berries, blue light resulted in the highest accumulation of total
anthocyanins (>4400 mg 100g™* DW) compared with attached berries which had higher accumulation
of anthocyanins under red light treatment (3500 mg 100g* DW). Overall, both red and blue light
treatments increased the expression levels of all the major regulatory and biosynthetic genes of the
flavonoid pathway, between four to seven days of continuous exposure to mid-ripening stage berries, in
both detached and non-detached conditions. The expression levels of VmMMYBAL, one of the key
regulatory genes of anthocyanin biosynthesis, was found to be 5-fold higher in response to blue light in
detached berries compared to other treatments. The blue light-mediated increase in anthocyanin
concentration in detached berries was due to similar increases in delphinidin, cyanidin, petunidin and
malvidin classes of compounds. In addition, the differential response of light treatment was found in
accumulation of flavonols, especially with myricetin, syringetin and laricitin glycoside derivatives. The
elevated concentration of anthocyanins detected in detached berries under supplemental light opens up
new insights in understanding the light-mediated and plant-independent regulatory mechanisms in non-

climacteric fruit ripening.

Keywords: anthocyanins, LED light quality, bilberry (Vaccinium myrtillus L.), flavonoids, polyphenols

Highlights

Detached ripening when the fruits are picked before maturity is atypical in non-climacteric

species and could heavily reduce fruit quality and phytochemical accumulation.

- Bilberry fruits, a non-climacteric species accumulated the highest anthocyanin levels under

blue-light and in detached conditions when picked at green, unripe stage.

- Incontrast, red-light promoted flavonoid compounds accumulation including anthocyanins and

flavonols in naturally ripening attached berries.

- Flavonoid biosynthesis is differentially regulated through the key photomorphogenesis
regulator COP1 and regulatory factors such as MYBAL and HY5.
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1. Introduction

Fruit ripening is a complex process associated with determining various quality attributes, such as
firmness, color, flavor and aroma development. Anthocyanins are a class of phenolic compounds that
accumulate in high levels as pigments during ripening, providing distinct red or blue coloration to some
fruits (Oh et al., 2018; Zifkin et al., 2012). Although anthocyanins majorly contribute to the phenolic
composition, flavonols represent >30% in edible berries, in which quercetin and myricetin glycosides
were the dominant compounds among flavonols (Wang et al., 2014; Hékkinen et al.,1999). These
compounds are synthesized via the flavonoid pathway branching from the well characterized
phenylpropanoid biosynthetic pathway and through a series of enzymatic reactions. This leads to the
production of different anthocyanidin classes such as delphinidins, cyanidins, malvidins, petunidins and
peonidins as end products of this metabolic pathway (Petroni et al., 2011). The key early enzymes
involved in flavonoid biosynthesis are chalcone synthase (CHS) and flavonoid hydroxylases, F3'H and
F3'5'H, that cleave the pathway into cyanidin and delphinidin branch, respectively. Flavonols, such as
quercetin and myricetin derivatives, are synthesized from diverging enzymatic reaction from
dihydroflavonols by flavonol synthase (FLS). The late anthocyanin biosynthetic enzymes, such as
dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS), are involved in production of
cyanidins and delphinidins. UDP-glucose flavonoid 3-O-glucosyltrasnferase (UFGT) performs the last
glycosylation steps to the 3-hydroxyl group of anthocyanidins (Zhai et al., 2014). Anthocyanin
biosynthesis is also regulated by the R2R3-MYB transcription factors which have been shown to directly
interact with promoters of key flavonoid biosynthetic genes such as DFR, ANS and UFGT (Plunkett et
al., 2018; Die et al., 2020). MYBA1 and MYBPA1.1 were recently reported in Vaccinium berries and it
has been shown that they actively promote anthocyanin biosynthesis in skin and flesh during ripening
(Karppinen et al. 2021).

Light is known to be one of the major environmental factors controlling fruit ripening (Abeysinghe et
al., 2019). Certain wavelengths from the photosynthetically active radiation range (PAR spectrum) are
known to positively influence and alter plant secondary metabolism (Ouzounis et al., 2015). Light
qualities and intensities can affect flavonoid biosynthesis and anthocyanin accumulation as reported in
many plant species (Liu et al., 2018; Ma et al., 2019). The spectral wavelengths from the solar radiation
are perceived by specific plant photoreceptors that interact upon constitutive photomorphogenic 1
(COP1) gene, which is one of the key photomorphogenesis controllers (Wu et al., 2019). It interacts
with light-inducible genes such as SPAL (suppressor of phytochrome-A) and forms a complex, leading
to a tightly regulated signal cascade mechanism resulting in changes in expression of both regulatory
and structural genes of the flavonoid biosynthetic pathway (Miao et al., 2016). The COP1 repressor

specifically acts in degradation of positive regulators of anthocyanin biosynthesis, such as elongated
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hypocotyl 5 (HY5) and R2R3-MYB transcription factors under altering light and dark conditions (Ma et
al., 2021).

Supplemental light emitting diodes (LEDs) are widely used in pre- and postharvest fruits to improve the
composition ofbioactive compounds (Kokalj et al., 2019; Panjai et al., 2019). Such high intensity light
treatments can result in dramatic variation in accumulation of specific flavonoid end products such as
flavonols, proanthocyanidins and anthocyanins. These low-heat dissipating lights can be also used to
study the effect of single-wavelength spectral light qualities on plant primary and secondary metabolism.
For example, blue and red light at different ratios has been shown to improve the biomass,
photosynthesis and anthocyanin production in a medicinal plant (Silva et al., 2020). These two major
light wavelengths have been widely shown in many fruit and vegetable crops for improved secondary
metabolites production (Bian et al., 2014). The enhanced bioactive compounds biosynthesis is often
associated with plant’s own photoprotection mechanisms, developed against variable high light

environments (Tran et al., 2021).

Non-climacteric fruits lack the independent ripening mechanisms when picked early before maturation,
because, unlike climacteric species, they lack autocatalytic ethylene biosynthesis. Ripening in non-
climacteric fruit is often associated with increases in another plant hormone, abscisic acid (ABA), where
the levels tend to increase at the beginning of fruit maturation. However, the role of ABA has been
equally documented in both climacteric and non-climacteric fruit ripening (Jia et al., 2011; Pilati et al.,
2017). Determining the nature of fruit ripening based on hormonal release at onset is often misleading
and varies across species as documented in a study on strawberry, where certain attributes mimicked
climacteric fruit characteristics in planta (lannetta et al., 2006). Thus, even if non-climacteric fruits were
able to ripen independently of the mother plant or picked before maturation, it is important to investigate
if the fruit quality or metabolic profile is affected. For example, the capability of strawberries to ripen
when picked at the green stage was reported earlier but they were heavily devoid of fruit qualities such
as aroma, mass and bioactive compounds (Van de Poel et al., 2012). Hence, the lack of photosynthesis
(Das et al., 2011) and source-sink modulation from other tissues such as leaves are vital in determining
the fruit quality of detached berries as shown in grapevine, where the leaf area and fruit composition are

positively correlated (Kliewer & Dokoozlian, 2005).

Among the edible wild berries, bilberry (Vaccinium myrtillus L.), which is native to Northern Eurasian
boreal regions, is gaining worldwide attention for its rich bioactive and nutritional properties (Pires et
al., 2020). It is widely regarded as one of the richest sources of polyphenolic compounds, especially
anthocyanins and other related flavonoids, which accumulate in both skin and flesh during ripening
(Colak et al., 2018). In relation to bioactivity, the berry polyphenolic compounds are known to possess
cardio-protective properties, anti-carcinogenic, anti-inflammatory and antioxidant activities (Korus et
al., 2015; Seeram et al., 2008).
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In our recent study, we have shown that supplemental light can regulate anthocyanin biosynthesis in
naturally ripening bilberry, and especially red light promoted anthocyanin accumulation, mediated
through ABA signaling and metabolism (Samkumar et al., 2021). But to our knowledge, studies on
biosynthesis of flavonoids comparing natural and atypical ripening of detached, non-climacteric fruit in
response to different light quality treatments has not been fully characterized and reported before.
Therefore, the current study is aimed at understanding the biosynthesis of flavonoids, specifically
anthocyanins and flavonols, in detached berries. These are picked at the green stage and allowed to ripen
for comparison with berries ripening naturally on the plant and under supplemental light conditions. The
outcome of this work will benefit the understanding of differential light responses in fruit ripening that
could lead to better adaptation strategies in determining berry fruit quality and marketability.

2. Materials and methods
2.1 Plant material and light treatments

Wild bilberry (Vaccinium myrtillus L.) bushes with intact root systems and forest soil were collected in
large boxes (50 x 70 cm) during mid-summer (July month) when the green berries started to appear from
the flowers. The bilberry ecotype used throughout this experimental study were collected from the open
vegetation covers near Tromsg, Norway (69° 75'N, 19° 01'E). The bilberry bushes were kept in
phytotron conditions at 16°C for few days to acclimatize until they started to increase in size. For the
experiments with detached berries, unripe green berries were picked from the same stand and kept in
sterile distilled water until they were divided into samples for the light treatments. The berries were
rinsed a few times with sterile water and 50 berries were placed into each petri dish with 20 ml of sterile
water and closed with parafilm. The petri dishes were placed under the lamps in triplicates for each

treatment.

The bushes in boxes and detached berries in petri plates were placed inside the chambers covered by
photo reflective sheet with ambient natural light provided from the top. The temperature was maintained
at 16°C inside the chamber. Heliospectra RX30 lamps (Heliopsectra AB., Gothenburg, Sweden) to
irradiate blue (460 nm), red (660 nm) and far-red (735 nm) light wavelengths were inside the chambers.
The plants and petri plates kept under the shaded dark chambers only received ambient light from the
top, serving as a dark control. The plants and petri plates kept under normal greenhouse conditions with
ample ambient light (400-700 nm) served as positive control (white) for this experimental setup. The
photon fluence rate inside the chambers ranged from 8.0-10.0 umol m=2 s™%. The irradiation energy flux
(uW cm2) and the distance from light source to plants from all the light treatments were measured using
JAZ Spectrometer (Ocean Optics Inc., FL, USA). These parameters were used to calculate the relative

light intensity (Fig S1). The changes in berry skin coloration were assessed and scored visually in
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detached berries after 2, 5, 7 and 12 days from the beginning of light treatments. For RNA isolation,
berry samples (5-6 berries) were collected on 0, 2, 4, 7 and 11 days. Leaves and ripening berry samples
from the bushes were also collected at the same time-points. For metabolite screening, fully ripe berries
(blue colored berries) were collected approximately after 4 weeks of light treatment from the bilberry
bushes and until all the berries fully ripened in petri plates (12-14 days). A minimum of 20 berries per
replicate were collected from detached berries experimental setup and bushes after 14 days for
spectrophotometric analysis and FRAP antioxidant assays. All the berry and leaf samples were
immediately frozen in liquid nitrogen and stored at -80°C until used for further analyses.

2.2 RNA extraction and cDNA synthesis

The frozen berries and leaves were ground to a fine powder under liquid nitrogen using mortar and
pestle. Total RNA was isolated from approximately 120 mg tissue powder by using Spectrum Plant
Total RNA kit (Sigma-Aldrich, St. Louis, MO, USA) following the manufacturer’s instructions. The
residual DNA was eliminated with on-column digestion using DNase | (Sigma-Aldrich). The RNA was
qualified and quantified using a Nanodrop (Thermo Fischer Scientific, Waltham, MA, USA). First-
strand cDNA was synthesized using Invitrogen Superscript 1V reverse transcriptase (Thermo Fisher

Scientific) using 1ug of total RNA according to manufacturer’s instructions.
2.3 JRT-PCR analysis

Real-time quantitative reverse transcription PCR (qRT-PCR) analysis was performed in MJ
MiniOpticon Real-time PCR system (Bio-Rad laboratories, Hercules, CA, USA) using SSOFast
EvaGreen SYBR supermix (Bio-Rad) in 15 pl volume per reaction. The PCR conditions were 95°C for
30 sec (initial denaturation) followed by 40 cycles at 95°C for 5 sec, and 60°C for 10 sec. The program
was further followed by a melt-curve analysis ranging from 65°C to 95°C with an increment of 0.5°C
every cycle. All analyses were performed in three biological replicates and two technical replicates. The
results were analyzed using CFX connect software (Bio-Rad) using 2022°Y method. The relative
expression levels were normalized with either GAPDH (glyceraldehyde-3-phosphate dehydrogenase) or

Actin. Primer sequences for all genes used in this study are listed in Table S1.
2.4 Analysis of total polyphenols, total anthocyanins and total flavonoids

Berry samples collected after two weeks and at the end of light treatment from the bushes and petri
plates were ground to a fine powder under liquid nitrogen and freeze dried in lyophilizer (Virtis
benchtop-K, SP scientific, Gardiner, NY, USA). Approximately 100 mg of lyophilized berry powder
was subsequently extracted in 1ml of 100% methanol+0.1% HCI (v/v) under constant shaking for 1
hour. The samples were centrifuged at maximum speed and the supernatant with suitable dilution used

for analyses.
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Total soluble polyphenols were spectrophotometrically determined according to Doumett et al., (2011)
using Folin-Ciocalteau phenol reagent. The absorbance was measured at 740 nm and polyphenol
concentrations were calculated based on a catechin calibration standard curve. The results were

expressed as milligrams of catechin equivalent 100 g dry weight (DW) of berries.

The aluminum chloride based spectrophotometric method was used for the determination of the total
flavonoid content according to Chang et al. (2002). Quercetin was used for the standard calibration
curve. The absorbance of the reaction mixtures was measured against blank at 420 nm. The total
flavonoid content in the samples was calculated from the calibration curve and expressed as mg
quercetin equivalent 100g™ of dry weight (DW) of plant material.

Total monomeric anthocyanins were quantified using the pH differential method (Lee et al., 2005). The
absorptions in reaction mixtures from the changes in pH of two buffer systems were measured at 520
nm and 700 nm. The anthocyanins were calculated based on the differential equation mentioned in Lee
et al. (2005). The relative amounts were expressed as cyanidin 3-glucoside equivalents in mg 100g™* of
dry weight (DW). All the above analyses are performed with three independent biological replicates of
samples from detached berries and berries attached to bush.

2.5 LC-MS analysis of polyphenols

For liquid chromatography-mass spectroscopy (LC-MS) analysis, 100 mg of lyophilized tissue powder
per sample was used followed by extractions with 1ml of acidified methanol prepared as mentioned
above and the collected supernatants were dried by vacuum spin to remove excess methanol. The
extracts were resuspended in 500 pl of 20% methanol and filter sterilized using 0.45um syringe filter
(Phenomenex, Torrance, CA, USA). The samples were diluted to 1:10 before injecting into the

chromatography column.

Polyphenols were separated using a Luna Omega C18 (100 x 2.1 mm, 1.6 pm) column maintained at
40°C. The mobile phase: A = 0.2% formic acid and B = 100% acetonitrile at a flow rate of 400 uL min®
!, The solvent gradient was: initial composition 95% A, 0-0.5 min; linear gradient to 60% A, 0.5-7 min;
linear gradient to 5% A, 7-12 min; composition held at 5% A, 12-16 min; linear gradient to 95% A, 16—
16.2 min. The injection volume for samples and standards was 1 pL. The micrOTOF QII parameters
were: temperature 225°C; drying N, flow 6 L min-*; nebulizer N, 1.5 bar, endplate offset 500 V, mass
range 100-1500 Da, data were acquired at 5 scans s*. Negative ion electrospray was used with a
capillary voltage of 3500 V. Polyphenolic concentrations were calculated by comparison to external

calibration curves of authentic compounds.
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2.6 LC-MS analysis of anthocyanins

Anthocyanins were separated using a Luna Omega Polar C18 (100 x 2.1 mm, 1.6 um) column
maintained at 50°C. The mobile phase was composed of solvents: A = 5% formic acid in water and B =
100% acetonitrile at a flow rate of 300 pL min*. The solvent gradient was: initial composition 95% A,
0-0.5 min; linear gradient to 85% A, 0.5-10 min; linear gradient to 60% A, 10-20 min; linear gradient
to 5% A, 20-25 min; composition held at 95% A, 25-28 min; linear gradient to 95% A, 28-28.2 min;
to return to the initial conditions. The injection volume and the micrOTOF QIl parameters were as
above. Positive ion electrospray was used with a capillary voltage of 3000 V. All the anthocyanins were
quantified as cyanidin 3-O-glucoside (Extrasynthese, Genay, France) equivalents 100 mg™ of sample
DW.

2.7 FRAP antioxidant activity assay

Ferric reducing antioxidant power (FRAP) assay was used to measure the antioxidant potential
according to Benzie & Strain (1996). FRAP reagent was prepared with 10 volumes of 300 mM acetate
buffer (pH = 3.6), 1 volume of 10 mM 2,4,6-tripyridyl-s-triazine in 40 mM HCI and 1 volume of 20
mM FeCls. Aliquots of 100 pL of test samples along with 300 pL of distilled water were added to 3 mL
of FRAP reagent pre-warmed at 37°C. After two hours of incubation in the dark, absorbance was read
at 593 nm. The results were calibrated from the standard curve prepared from different amounts of FeCls
(100-500 pg) with FRAP reagent and expressed as mmol Fe (1) 100g* of DW berries.

2.8 Statistical analysis

Statistically significant differences among gene expression levels obtained from gRT-PCR analysis
between the control and light treatments were determined using independent t-test in IBM SPSS
statistics v26 software package (IBM corporation, Armonk, NY, USA). Concentrations of anthocyanins
and polyphenols between the light treatments and experimental setups were analyzed by ANOVA,
comparison of means followed by Tukey’s post-hoc test. All the visualizations and ANOVA were

performed in Origin pro software v2020b (OriginLab Corporation, Northampton, MA, USA).

3. Results and Discussion

There are several earlier studies which have shown that specific spectral light wavelengths can stimulate
the biosynthesis of flavonoids during ripening of fruits, including few species from the Vaccinium genus
(Ma et al., 2019; Zhang et al., 2018; Zhou et al., 2002; Samkumar et al. 2021). So far, there have not
been any comprehensive studies investigating the effect of spectral light qualities in ripening non-

climacteric berries from both living plants and in detached conditions. Postharvest ripening, when the
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fruit is picked before maturity, is unusual in non-climacteric species where many studies have previously
reported that the fruit quality had deteriorated over time (Llorca et al., 2019; Van de Poel et al., 2012).
Therefore, this study is one of the first to report the changes in the metabolite profiles and gene
expression related to flavonoid biosynthesis from postharvest unripe green berries compared with
berries ripening naturally under different spectral light qualities. Our results revealed dramatic
differential changes in the composition of flavonoid compounds between the detached and naturally

ripening bilberries (attached) under different light treatments.

3.1 Berry skin coloration in detached berries under light treatments

Under supplemental light irradiation and when compared with control, a rapid change in skin coloration
of detached berries was observed, where all the berries appeared to be fully ripened after two weeks in
petri plates. It has been shown in strawberries that detachment could accelerate stress related ripening
process including rapid coloration (Chen et al., 2014). Red light had the highest effect of anthocyanin
accumulation in berry skins that turned from green to blue-colored berries, as visually observed, between
two and five days (Fig 1a, b). The clear difference in visual scoring of berry skin coloration (green to
blue) can be seen after seven days of light treatment (Fig 1c). From our metabolite analyses, the
anthocyanin content was found to be the highest under blue light in fully ripe detached berries after 14
days, but rapid blue coloration in berry skin was observed under red light (Fig 1). It suggests that the
anthocyanin profile could differ in skin and flesh tissues even under altering light conditions as shown

earlier in grape (Guan et al., 2016).

3.2 Effect of light treatment on total polyphenolic compounds

We estimated total polyphenols (TPH), total flavonoids (TF), total monomeric anthocyanins (TMA) and
determination of antioxidant potential using FRAP assay (Figure 2). The highest TMA was quantified
at 4615 and 4737 (mg 100g* DW cyanidin-3 glucoside equivalent) in ripe berries from bush and
detached berries respectively. This significant increase is mainly due to red light in attached berries and
blue light in detached berries when compared to control. A previous study in cranberry (Vaccinium
macrocarpon) has shown that red light could selectively induce anthocyanin biosynthesis (Zhou et al.,
2002). From our results, we have shown that the total monomeric anthocyanins, total polyphenols and
total flavonoids were increased mainly by red light in attached berries that were ripening naturally on
the bush (Fig 2a-d).

On the other hand, in bilberry, blue light was also promoting flavonoid biosynthesis to a certain extent
in attached conditions but to the highest level in detached ripening berries (Fig 2a-d). Blue light has

been previously reported in several studies as a positive influencer of anthocyanin biosynthesis in many
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crops. For instance, blue irradiation promoted the bioactive compounds during pre-harvest conditions
in kale and increased the anthocyanin content in postharvest strawberry fruit (Jiang et al., 2021; Xu et
al., 2014). TF was found to be at almost similar levels at 8434 and 8905 (mg 100g* DW quercetin
equivalent) between both the highly impacted light treated samples (red and blue light). Similarly, TPH
was estimated at 9608 and 8838 (mg 100g™* DW catechin equivalent) respectively. Both red and blue
light treatment tend to significantly increase the phenolic compounds in general, but the trend is closely

followed by far-red treatment in detached berries which yielded more flavonoids than control samples.

The polyphenolic compounds, which include flavonols and anthocyanins, contribute to the overall
antioxidant capacity of these small berries (Zorzi et al., 2020). The relatively high concentration of
phenolic compounds observed in red light (attached) and blue light (detached) treatments contributed to
the overall antioxidant potential of the berries as estimated using FRAP assay (Fig 2d). However, this
is not the same case, where the increased phenolic content under far-red light treated berries have lower
antioxidant activity than control samples. Thus, we highlight the importance of environmental factors,
such as external light irradiation, that could potentially determine the phenolic profile of the berry
towards higher antioxidant potential. Also, the biochemical regulatory networks and signals from other
source tissues could be altered in detached conditions when compared with non-detached fruits. Some
of the major differences could be due to the limitation of photosynthesis, carbon-sugar homeostasis,
lack of substrates flow from other tissues such as leaves (source-sink modulation) in detached berries

when compared with attached berries from plants ripening under natural conditions (Yang et al., 2018).

3.3 Differential effect of light quality on anthocyanin accumulation in detached and attached

berries

Anthocyanins were the prominent compounds affected by light quality treatments, mostly influenced by
red light in naturally ripening bilberries and by blue light in detached berries (Fig 3, Table S2).
Delphinidins were the most affected and reactive towards spectral light treatment, as similarly reported
in a previous study (Zoratti et al., 2014). The delphinidin glycosides (glucoside, galactoside and
arabinoside) were the most differentially accumulating anthocyanin compounds in response to light
qualities as quantified by LC-MS (Table S2). The highest concentration of delphinidins was found in
attached berries (1529 mg 100g™* DW) and under the positive influence of red light followed by blue
light treatment in detached berries (1290 mg 100g* DW) (Fig 3a, d). In both cases, delphinidins
contributed as the major constituent towards the increase in total anthocyanins. Cyanidin, on the other
hand, was not majorly influenced by supplemental light treatments in either of the ripening conditions.
Interestingly, we found that in detached berries, blue light increased the total anthocyanins, even higher
than in bilberries attached to the bush (Fig 3c, S2). This is interesting concerning the nature of non-

climacteric fruit ripening, considering that detached berries lack hormonal signaling from leaf tissues
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and have limited substrate flow. Also, the increase in overall anthocyanin composition in detached
berries was evenly distributed among all the anthocyanin classes except peonidins (Fig 3d). The highest
elevated total anthocyanin level detected in detached berries under the influence of blue light (4440 mg
100g* DW), was majorly contributed by delphinidins alongside an even distribution of cyanidins,
malvidins and petunidins (Fig 3c). Interestingly, under the influence of red light in naturally ripening
attached berries, the elevated total anthocyanin content (3500 mg 100g™* DW) was mostly contributed
by the delphinidin class of anthocyanins alone (43.4%) (Fig 3d). Both red and blue light treatments have
earlier been shown to increase anthocyanin content in fruit and leaf tissues under controlled conditions
(Lobiuc et al., 2017; Zhang et al., 2018). The most interesting finding in our study was how both the
light qualities were perceived and differentially regulated regarding anthocyanin biosynthesis in
detached and non-detached berries. An earlier similar study also showed that how UV A/B/C light could
differentially regulate the anthocyanin accumulation by affecting the downstream biosynthetic genes
such as DFR and UFGT in pre- and postharvest blueberries (Vaccinium corymbosum) (Yang et al.,
2018).

3.4 Differential effect of light quality on accumulation of flavonols in detached and attached

berries

Flavonols, on the other hand, were highly influenced by red light treatment in both naturally ripening
berries as well as detached berries (Fig 4, Table S3). It was closely followed by far-red light, which is
found to be much more effective in increasing flavonol compounds than other light treatments. LC-MS
analysis showed that myricetin 3-glucoside and its derivate laricitin 3-glucuronide compounds were
significantly increased in attached berries under red light treatment compared to control and other light
treatments (Fig 4 a, b). Both blue and far-red light treatment also had a positive influence on these
classes of compounds (Table S3). This is in accordance with a study which shows that quercetin
compounds can be influenced directly by continuous far-red light and can be differentially regulated
from anthocyanin content through phytochrome-induced biosynthesis (Beggs et al., 1987). Quercetin 3-
arabinopyranoside did not show any significant increase under the influence of light treatments (Fig 4c).
Syringetin 3-glucuronide was found to be significantly increased in detached berries by blue light
followed by far-red light treatment (Fig 4d). Interestingly, gallocatechin, which was detected in very
low levels in control and other treatments, increased almost 4-fold under red light treatment in attached
berries (Fig 4e). The procyanidin dimers (B1, B2, C1) were not found to be significantly affected by the
light treatments (Fig 4f, Table S3), but procyanidin C1, B2 was increased in attached berries under the
influence of far-red light. Overall, the total flavonols concentration was found to be higher in red light
treatment for berries ripening in bush (240 mg 100g™* DW) compared with other light treatments (Table
S3). In detached berries, red light (254 mg 100g* DW), followed by far-red light (246 mg 100g™* DW),
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increased the total flavonol concentration. The effect of far-red was also seen on caffoyl-4-glucoside
concentration on both detached and attached berries (Table S2). Nandinaside-A (C2H2010) was
detected in increased levels only in dark shaded control samples (Table S2). Leucocyanidin had a very
similar trend in concentration levels to the observed total anthocyanin amounts with red light influencing
in attached and blue light in detached berries (Table S2). Epicatechin and trans-p-coumaric acid were
found in increased levels in our analysis under far-red light, whereas catechin concentrations were
elevated by red light in naturally ripening berries (Table S3). A previous study in bilberry which
quantified the total flavonol concentrations corresponding to the effect of monochromatic red, far-red
light in ripe bilberries and was found in accordance with our metabolite analysis (Zoratti et al., 2014).

3.5 Expression profile of flavonoid biosynthesis genes

The relative expression of key flavonoid biosynthetic genes from berries of both attached and detached
experimental setups was analyzed over the time course (from day zero to day 11) (Fig 5a, b). Red light
increased the key early biosynthetic gene VmCHS expression on day 4 in detached berries and 7" day
in attached berries under blue light, respectively. VmMDFR expression was shown to steadily increase
with the highest level observed under blue light treatment in both setups on the 7" day of the treatment.
Interestingly, far-red light also tends to increase the DFR expression levels after seven days in detached
berries (Fig 5 a, b). Expression of the cyanidin and delphinidin branchpoint enzyme genes, the flavonoid
hydroxylases (VmF3'H, VmF3'5'H), was found at significantly higher level in attached berries from the
bush under red light at 4" day, whereas the blue light appeared to increase the expression of these genes
at later time points. In detached berries, red light was found to influence the VmF3'H expression only
after 7 days whereas both red and blue light treatments significantly increased expression of VmF3'5'H
after 7 days (Fig 5 a, b). In naturally ripening berries, flavonols and anthocyanin concentrations could
be correlated with VmF3'H, VmDFR and VmF3'5'H expression, where red light increased the expression
levels of these genes after four days of light treatment (Fig 5a). Whereas in detached berries, VmF3'5'H
and VmDFR expression, which steadily increased after seven days under blue light, could be directly
linked to increased anthocyanin accumulation. The positive influence of red light on VmF3'H and
VmDFR gene expression levels could also be related to the accumulation of flavonols in detached berries
(Fig 5b).

The expression of the late biosynthetic genes such as VmANS was found to show similar trends (Fig 6
a, b) in both experimental setups. VmUFGT transcript levels, on the other hand, increased under red
light in berries attached to bushes after four days and under blue light in detached berries after seven
days of irradiation. Interestingly, one of the key anthocyanin regulatory transcription factors,
VmMYBAL, was found to be five-fold higher in detached berries under blue light (Fig 6 a, b). Under red
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light, both VmMYBAL and VmMMYBPAL.1 had the highest expression levels after 4 days of treatment in
attached berries (Fig 6a, b). A similar expression pattern was found in late biosynthetic genes, such as
VmMANS and VmUFGT expression in naturally ripening berries, which coincides with the anthocyanin
accumulation under the red light with an increase in expression between four to seven days of light
treatment (Fig 6a). In detached berries, VmUFGT was found to increase under blue light between seven
to nine days, coinciding with the accumulation of anthocyanins (Fig 6b). It suggests that certain key
biosynthetic genes perform the light-dependent regulation in both experimental setups in a totally
different manner. The regulatory gene VmMMYBAL expression was found to be the key component for
highly elevated anthocyanin levels in detached berries under blue light (Fig 6b). This also indicates that
it might be the key factor driving the blue light-mediated anthocyanin accumulation in detached,
independently ripening berries by specifically interacting with the late biosynthetic genes. MYBA1 has
been earlier reported as one of the key regulators of anthocyanin biosynthesis in Vaccinium berries,
activating the promoters of DFR and UFGT (Die et al., 2020; Plunkett et al., 2018). Whereas both
VmMYBAL and VmMYBPAL.1 showed very similar expression patterns in naturally ripening berries
under the influence of red light, suggesting that both of these MYB transcription factors might co-
regulate anthocyanin biosynthesis (Fig 6a, b). It has been recently reported that these two MYBs are the

key regulators of anthocyanin biosynthesis during bilberry ripening (Karppinen et al., 2021).

We did not observe significant differences in expression levels of most of the flavonoid biosynthesis
related genes in bilberry leaves between control and light treatments. Apparently, only VmCHS
expression increased under red light treatment in leaves. It appeared to have a synergetic effect to that
of expression in berries, with the highest level reached under blue light after 2 days, and red light
increased the expression rapidly from 4" day onwards (Fig S2a). One of the major key regulatory gene
in anthocyanin biosynthesis, VmMYBPAL.1 also showed significantly higher expression levels early in
response to blue light treatment (Fig S2b), but steadily increased towards higher levels after 7 days,
under both red and blue light. The leaves are mostly regarded as waste by-product in fruit crops, but in
some species such as blueberry, the polyphenolic constituents in leaves were often found to be higher
than fruits (Li et al., 2012; Zhu et al., 2013). In terms of molecular regulation, the most important role
of leaves in attached berry ripening conditions could be modulating the source-sink balance which could

potentially affect the berry coloration and anthocyanin composition (Bobeica et al., 2015).
3.6 Expression profile of photomorphogenesis-related genes

The effect of spectral light qualities on the VmCOP1-related regulatory mechanisms was not vastly
influenced in detached berries, including VmHY5 expression. Bilberry has two characterized COP1
genes (VmCOP1a, VmCOP1b) (Karppinen et al., unpublished), where both the genes, alongside
VmHYS5, had little effect in response to any light treatments in detached conditions (Fig 7 a, b). In

contrary, in naturally ripening berries, photomorphogenesis seems to have occurred and mediated via
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VmCOP1b, the repressor of anthocyanin biosynthesis. Generally, in high light conditions, COP1 is
exported to the cytosol which allows positive regulators, such as HY5, to accumulate in the nucleus, as
its expression levels tend to increase after 7 days under red light treatment from our results (Fig 7b). In
attached ripening berries under red light, the expression of both VmHY5 and VmCOPL1b increased after
7 days, whereas VmCOP1a expression was significantly increased under far-red light treatment after 2
days (Fig 7a, b). The key interaction between COP and HY5 genes has been shown to determine the
inhibitory effects and hyperaccumulation of anthocyanins under low and high light (Maier et al., 2014).
Hence, detached berries ripening independently, and berries attached to the plant might have contrasted
regulatory mechanisms and signaling routes to protect the tissues from high monochromatic light
environments. The former showing a very strong systemic response by producing high levels of
photoprotective anthocyanin compounds which also reflected in its overall antioxidant capacity.

In climacteric fruits such as banana, apple and mango, ripening is usually mediated by an ethylene burst
causing changes in respiration rates, which allows ripening even when detached from the plant (Adams-
Phillips et al., 2004; Symons et al., 2012). In contrary, non-climacteric fruits such as wine grapes and
many other berries lack the autocatalytic ethylene biosynthesis in immature fruits, which prevents
ripening on its own when picked and possible only with the involvement of plant signals or via
exogenous hormonal regulation such as ABA (Cherian et al., 2014; Luo et al., 2014). The possibility of
similar mechanisms found in climacteric fruits could exist, as documented by some of the studies that
have shown the involvement of increased ethylene production before e véraison in grape (Chervin etal.,
2004), and the autocatalytic ethylene biosynthesis-like response observed in young citrus fruits (Katz et
al., 2004). However, knowledge concerning independent ripening in non-climacteric fruits is still scarce
and widely varies across species. Further studies that compare fruit ripening with or without connection
to mother plant will bridge the gap in understanding the independent ripening mechanisms and

subsequent accumulation of the phytochemicals.

Conclusion

This study has shown that higher accumulation of anthocyanins and flavonols were achieved upon
certain simulated light conditions even in green, detached non-climacteric species such as bilberry. Our
results clearly show that flavonoid biosynthesis during ripening was positively influenced and
differentially regulated in controlled experimental conditions. Blue light induced the highest
anthocyanin accumulation in detached berries and red light stimulated anthocyanin biosynthesis in
naturally ripening attached berries. The overall anthocyanin content was found to be highest and
significantly elevated in blue-light treated detached berries with an even distribution of all the major
anthocyanin classes of compounds. The current study has shown that Vaccinium berries could be used

in further investigation of molecular mechanisms and hormonal regulation of independently ripening
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non-climacteric fruits. Treatments with both supplemental blue and red light might be also considered

in future cultivation practices for improved anthocyanin content in blue-colored berries.
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Figure Legends

Fig 1. Effect of light spectral qualities on skin coloration after 2" and 5" day of observation from
detached berries (A, B) ripening in petri plates (expressed in percentages from + SE of 3 replicates of
50 berries from each treatment). ‘Control’ represent the samples treated with normal white light (W)

and under dark conditions (D). Berry skin coloration after 7 days of light treatment in detached berries

(©).

Fig 2. Total soluble polyphenols of detached and attached berries expressed as mg catechin (CAT)
equivalent 100 g* DW (dry weight) (A). Total monomeric anthocyanins expressed as mg cyanidin-3-
glucoside (CYA-3-GLU) equivalent 100 g* DW (B). Total flavonoids expressed as quercetin (QUE)
equivalent 100g* DW (C). Ferric reducing/antioxidant power (FRAP) antioxidant activity assay
expressed as FE (11) mmol 100g* DW (D). Different letters indicate significance between the light

treatments when measured using ANOVA with pairwise comparisons (p < 0.05).

Fig 3. Concentrations of anthocyanins in mg 100g™* DW (dry weight) quantified by LC-MS from fully
ripe berries harvested from bush (A) and from detached conditions (B) under spectral light treatment.
The amounts are expressed in average of three replicates + SE from glucoside, galactoside and
arabinoside-type derivatives from each class of anthocyanin compounds. Asterisks indicate significance
between the light treatments when measured using ANOVA with pairwise comparisons (*p < 0.05, **p
< 0.01). The distribution of anthocyanin constituents shared from all the five classes from each
experimental setup in response to a major positively affected light treatment (Red and Blue) is
represented as pie charts. The distribution of red light affected anthocyanin profile in attached berries

(C) and blue light affected anthocyanin profile in detached berries (D).
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Fig 4. Concentrations of flavonols under different light treatments, myricetin 3-glucoside (A), laricitrin
3-glucuronide (B), quercetin-3-arabinopyranoside (C), syringetin 3-glucuronide (D), gallocatechin (E),
and procyanidin B2 dimer (F) compounds in mg 100g™* DW (dry weight) quantified using LC-MS from
detached berries and fully ripe berries from bush at the end of light treatment. The amounts are expressed
in average of three replicates £ SE. Asterisks indicate significance between the light treatments when
measured using ANOVA with pairwise comparisons (* p < 0.05, ** p < 0.01, *** p <0.001) ‘nd’-not
detected.

Fig 5. Effect of light spectral treatment on gene expression of early flavonoid biosynthetic genes in
attached berries from bushes (A) and from detached berries (B), chalcone synthase (VmCHS),
dihydroflavonol 4-reductase (VmDFR), flavonoid 3' hydroxylase (VmF3'H), flavonoid 3'5' hydroxylase
(VmF3'5'H). The expression levels are normalized to the housekeeping gene VmGAPDH
(glyceraldehyde 3-phosphate dehydrogenase) or actin. Error bars represents =SE of three biological
replicates and significant differences between control and light treatments were analyzed by comparison

of means using student’s t-test (indicated in asterisks*) with p-value < 0.05.

Fig 6. Effect of light spectral treatment on gene expression of late flavonoid biosynthetic genes and
key regulatory genes in attached berries from bushes (A) and from detached berries (B), anthocyanidin
synthase (VmMANS), anthocyanidin 3-O-glucosyltransferase (VmUFGT), MYB transcription factors
(VmMYBAL, VmMYBPA1.1). The expression levels are normalized to the housekeeping gene
VmMGAPDH (glyceraldehyde 3-phosphate dehydrogenase) or actin. Error bars represents £SE of three
biological replicates and significant differences between control and light treatments were analyzed by

comparison of means using student’s t-test (indicated in asterisks*) with p-value < 0.05.

Fig 7. Effect of light spectral treatment on gene expression of photomorphogenesis related genes in
attached berries from bushes (A) and from detached berries (B), constitutive photomorphogenic 1
(VmCOP1a, VmCOP1b), elongated hypocotyl 5 (VmHY5). The expression levels are normalized to the
housekeeping gene VmGAPDH (glyceraldehyde 3-phosphate dehydrogenase) or actin. Error bars
represents £SE of three biological replicates and significant differences between control and light
treatments were analyzed by comparison of means using student’s t-test (indicated in asterisks*) with

p-value < 0.05.
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Abstract

Bilberry is regarded as one of the best natural sources of anthocyanins and is widely explored for its
health-beneficial compounds. Besides anthocyanins, one of the major attributes that determines the
berry quality is the accumulation of sugars that provide sweetness and flavor to the ripening fruit. In this
study, we have identified 25 sugar metabolism related genes in bilberry that are categorized into
invertases, hexokinases, fructokinases, sucrose synthases and sucrose phosphatases. The results indicate
that various isoforms of the identified genes express differentially suggesting that they might have
specialized functions. The highest sugar content was found in fully-ripe berries with fructose and
glucose dominating the composition with low sucrose amounts. The related enzyme activities across
four berry developmental stages were further analyzed to understand the molecular mechanism of sugar
accumulation. The activity of the invertases in the cell wall and vacuolar spaces tend to increase rapidly
towards ripe berries. Amylase activity involved in starch metabolism was not detected in unripe berries
and was only found at very low rate in ripe berries. Sucrose resynthesizing enzymes showed higher
activity upon early ripening and had the highest activity in ripe berries. Interestingly, we found that
continuous red and blue light supplemental irradiation triggered starch degradation by up-regulating
both a- and P amylases, and contrasting differential expression pattern across sucrose, galactose and
sugar-alcohol metabolism were found. Both enzymological and transcriptional data in the present study
provide new understanding on the sugar metabolism during bilberry fruit development having major

effect on the fruit quality.

Keywords: Vaccinium myrtillus, bilberry, sugar metabolism, sucrose, glucose, fructose, starch
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1. Introduction

Carbohydrates are primarily formed during photosynthesis being the main energy source for plant
growth and development (Rolland et al., 2006). They comprise of simple building units of
monosaccharides (glucose, fructose, galactose), which can be combined through glycosidic bonds to
form complex molecules such as disaccharides (sucrose), oligosaccharides (stachyose, raffinose)
polysaccharides (starch) and derived sugar-alcohols (Hu et al., 2016; Moing, 2000). Glucose, fructose
and sucrose are classified as soluble sugars. Starch being the non-soluble sugar that accumulates in
storage tissues such as plastids and can be utilized only as reserve energy source (Cho et al., 2020; Wang
et al., 2013). In addition to being precursors for energy yielding processes, the soluble sugars have been
identified as signaling molecules in various plant metabolic processes and known to be involved in stress
and defense responses (Tauzin & Giardina, 2014). During plant development, the soluble sugars are
transported from photosynthetic-source tissues, such as leaves, towards sink tissues such as fruit, root
and shoot (Hammond & White, 2008). In fruits, the amount and type of sugars accumulating during the
ripening improve sweetness and flavor of fruit, thus, affecting to the quality of fleshy fruits (Borsani et
al., 2009). In most fleshy fruits, glucose, fructose, and sucrose constitute more than 99% of sugar content

followed by trace amounts of other minor carbohydrates and sugar-alcohols.

Sucrose is the major sugar which is transported to sink tissues via phloem during fruit development. In
fruit tissues, sucrose is either hydrolyzed to hexoses, such as glucose and fructose, by the invertases or
converted to fructose and UDP-glucose by sucrose synthase (SS) (Verma et al., 2011). A schematic
representation of the identified bilberry sugar metabolism genes is shown in Fig. 1. Three types of
invertases are known to be involved in sucrose hydrolysis and degradation. A neutral invertase (NINV),
which is predominantly localized in cytosol and two acid invertases, a soluble invertase bound to
vacuoles (VINV) and an insoluble form found in the cell wall (CWINV) has been shown to be involved
in plant sugar metabolism (Ruan et al., 2010). The cleaved hexoses from sucrose, i.e., glucose and
fructose, found in extracellular space are further phosphorylated into glucose-6-phosphate (G6P),
fructose-6-phosphate (F6P) by hexokinase (HK) and fructokinase (FK), respectively. These hexose
phosphates are the precursors in energy-yielding glycolysis process leading towards the citric acid
(TCA) cycle (Granot et al., 2013). The cleaved sugars from hydrolysis of sucrose into UDP-glucose and
F6P by SS can be further involved in sucrose resynthese by sucrose phosphate synthase (SPS) and
sucrose phosphate phosphatase (SPP). The degradation of sucrose and resynthesis, which is known as
‘futile sucrose recycle’ is critical for accumulation of fruit sugars and thus playing a key role in fruit

development (Nguyen-Quoc & Foyer, 2001).

Sugars being the primary determinants of fruit quality also vary in its composition and accumulation
across fruit crops. In climacteric fruits such as apples and tomatoes, a gradual increase of sugar content

can be seen towards fruit maturation (Li et al., 2012; Nguyen-Quoc & Foyer, 2001), whereas in non-
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climacteric fruits such as grapes and strawberries, a rapid accumulation of sugars is reported only at
later stages of ripening. (Aksi¢ et al., 2019; Zhu et al., 2017). Some of the earlier studies on sugar
metabolism related to fruit ripening have mainly focused only on few genes or isoforms and are not very
comprehensive (Dai et al., 2016; Zhu et al., 2017).

Apart from flavor enhancement, the roles of sugars in fruit development are diverse. Galactose, another
important hexose sugar found comparatively only in very low amounts in fleshy fruits, has a major role
in the reduction of cell-wall loosening during fruit ripening (Althammer et al., 2020; Brummell, 2006).
Unlike sucrose metabolism, galactose pathway in plants is poorly understood. Galactose moieties are
often associated with production of raffinose-type oligosaccharides including stachyoses in cell wall
localized polysaccharides, which are derived from sucrose metabolism (Gangl & Tenhaken, 2016).
Furthermore, sugar alcohols such as sorbitol, myo-inositol and galactinols are synthesized by a-
galactosyltransferases (o-gal), and they are known to be involved in protecting fruit tissues from
dehydration by maintaining the cellular turgor pressure (Loescher, 1987). The hexose interconversion
reactions in these pathways are usually mediated by UDP-glucose-pyrophosphorylases (UDPG-PP),
phosphoglucoisomerases (PGI) and phosphoglucomutases (PGM) enzymes (Decker & Kleczkowski
2019; Fig. 1). Some studies have shown the correlation of insoluble starch accumulation and soluble
sugar content in ripe fruits (Cho et al., 2020). However, the breakdown of starch by a-amylase and j3-
amylase could also contribute well towards significant increase in sugar content at later stages of fruit

development (Souleyre et al., 2004).

Bilberry (Vaccinium myrtillus L.) is an important wild berry species native to Northern Eurasian regions
gaining worldwide economic importance due to high levels of anthocyanins accumulating during fruit
ripening (Pires et al., 2020). In Vaccinium berries, the sugars are mostly accumulating at later stages of
ripening upon pigmentation. Also, the glycoside residues in bilberry anthocyanin compounds are mostly
of glucoside, galactoside and arabinoside derivatives (Kahkdnen et al., 2003; Karppinen et al., 2018).
Earlier, we have shown that specific light wavelengths such as red and blue light can improve
anthocyanin accumulation in bilberries (Samkumar et al., 2021), but further information on sugar
metabolism, transport and signaling is lacking. Red and blue light wavelengths could selectively induce
sugar metabolism as evidenced by some of the recent studies in tomato and lettuce crops (Chen et al.,
2019; Lietal., 2017).

The current study aims to shed light on sugar biosynthesis and metabolism in developing bilberries
through analysis of the sugar content, related gene expression and enzyme activity assays. The study
also highlights the role of spectral light quality, specifically the effect of red and blue light on sugar
metabolism identified from light-treated bilberry transcriptome dataset. The results provide deeper

understanding on the relationship between sugar metabolism and fruit ripening in bilberry by adding
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further knowledge towards improving economic value of small berries, fruit quality, marketability and

could also accelerate Vaccinium breeding programs in future.

2. Materials and methods
2.1 Plant materials

Wild bilberry fruits were collected from forest stands in Oulu (65°01' N, 25°28' E), Finland and Tromsg
(69°71' N, 19°41' E), Norway. The samples were kept in -80°C until RNA and enzyme extraction. The
berry samples were collected at four different developmental stages of bilberry; small unripe green
berries (S2), large unripe green berries (S3), ripening purple berries (S4) and fully ripe blue-colored
berries (S5) as previously described (Karppinen et al., 2013).

The earlier published transcriptome dataset from red, blue, and light treated bilberry fruits was utilized
in this study (Samkumar et al., 2021). The raw reads can be retrieved from the Bio Project ID
PRINA747684 from NCBI-SRA database. The top differentially expressed genes (DEGS) were
analyzed and subjected to KEGG pathway enrichment analysis using Blast2GO software suite and all
the genes classified under sugar metabolic pathways were filtered out and further analyzed. The S5

berries from the light treatments were collected for analysis of the sugar content.
2.2 ldentification of sugar metabolism genes

Genes encoding the major groups of sugar metabolism enzymes corresponding to CWINV, NINV,
VINV, FK, SS, SPP and SPS were retrieved from transcriptome shotgun assembly (TSA) sequence
databases of Vaccinium virgatum (Qi et al., 2019) and transcriptomes of Vaccinium myrtillus (Nguyen
et al., 2018; Samkumar et al., 2021).

2.3 Phylogenetic analysis

Multiple sequence alignments of deduced amino acid sequences were performed using EMBL-EBI,
Clustal Omega program (https://www.ebi.ac.uk/Tools/msa/clustalo/). To analyze the common
relationship between the sugar-enzyme families and across fruit-crop species, phylogenetic analysis was
performed from the CLUSTAL-aligned sequences. The unrooted phylogenetic tree was constructed
using MEGA X software package (Kumar et al., 2018) using the maximum-likelihood method with

bootstrap test value set to 500 replicates in a poisson-distributed model.
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2.4 RNA extraction and gRT-PCR analysis

The frozen berries were ground to a fine powder under liquid nitrogen using mortar and pestle. Total
RNA was isolated from approximately 120 mg tissue powder by using Spectrum Plant Total RNA kit
(Sigma-Aldrich, St. Louis, MO, USA) following the manufacturer’s instructions. The residual DNA
was eliminated with on-column digestion using DNase | (Sigma-Aldrich). The RNA was qualified and
quantified using a Nanodrop (Thermo Fischer Scientific, Waltham, MA, USA). First-strand cDNA was
synthesized using Invitrogen Superscript IV reverse transcriptase (Thermo Fisher Scientific) using 4 pg

of total RNA according to manufacturer’s instructions.

Real-time quantitative reverse transcription PCR (QRT-PCR) analysis was performed in C1000 Thermal
cycler (CFX96 Real-Time System; Bio-Rad, Hercules, California, USA) and using SSOFast EvaGreen-
SYBR supermix (Bio-Rad) in 15 pl volume per reaction. The PCR conditions were 95°C for 30 sec
followed by 40 cycles at 95°C for 5 sec, and 60°C for 10 sec. The program was further followed by a
melt-curve analysis ranging from 65°C to 95°C with an increment of 0.5°C every cycle. All analyses
were performed in three biological replicates. The results were analyzed using CFX connect software
(Bio-Rad) using 20449 method. The relative expression levels were normalized with either GAPDH
(glyceraldehyde-3-phosphate dehydrogenase) or Actin housekeeping genes with similar results. Primer

sequences for genes used in this study are listed in Table S2.
2.5 Enzyme activity assays

For enzyme activity assays, we used a slightly modified extraction protocol as previously described by
Xie et al. (2009). Approximately 1g of freshly grounded fruit tissues with 1:8 (w/v) of extraction buffer
containing 50 mM HEPES-NaOH (pH 7.5), 10 mM MgCl,, 2.5 mM DTT, 1.0 mM EDTA, 0.05% (v/v)
Triton X-100, 0.1% (w/v) BSA, 0.1% B-merchaptoethanol, and 2% wi/v polyvinylpolypyrrolidone
(PVPP). The homogenate was centrifuged at 12,000 g for 15 min to obtain the supernatant. The crude
extract was then dialyzed using a cellulose tubing (dialysis membrane with molecular cut-off 14,000
Da; Sigma-Aldrich) for 16 h with 25 mM HEPES-NaOH (pH 7.5) and 0.25 mM disodium-EDTA
dialysis buffer. The insoluble pellet was homogenized two times of 10 ml extraction buffer and then
resuspended in 3 ml of 50 mM HEPES-NaOH (pH 7.5) and 0.5 mM disodium-EDTA. The pellets were
further washed with 200 ml extraction buffer (1:40 v/v) without PVPP to assay the insoluble CWINV.
All the extracts were transferred in pre-chilled vials and the analyses were carried out at 0-4°C. The
enzyme activities were measured in proportional to the amount of corresponding sugar released to the

reaction time.

Activity of VINV and NINV were measured according to Lowell et al. (1989). Amount of 0.3 ml of
enzyme extract was incubated for 40 min at 37°C with 80 mM K3POs-acetate (pH 4.5) and 500 mM

sucrose in a total volume of 1 ml. The reaction was stopped at 30 min by adding 600 pl of 1% (w/v) 3,5
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dinitro salicylic acid (DNS) and boiling for 5 min. Absorbance was read at 540 nm in a
spectrophotometer (Smart Spec; Bio-Rad, Hercules, California, USA). CWINV activity assay was
carried out from the extracts of insoluble pellets washed with extraction buffer without PVPP. The
activity of invertases was expressed as amount of glucose (umol) produced h g of sample fresh weight
(FW).

SPS and SS activity were measured according to Zhang et al. (2011). The reaction solution consists of
0.5 M HEPES-NaOH (pH 7.5), 0.14 M MgCl,, 0.028 M disodium EDTA, 0.112 M fructose-6-phosphate
(F6P) and 0.042 M uridine diphosphate glucose (UDP-G). Amount of 85 pl of crude enzyme extract
was mixed with 55 pl of reaction solution. The mixture was then incubated for 40 min at 37°C and then
the reaction was terminated by adding 70 pl of 1.0 M NaOH. Non-reacted F6P was degraded by keeping
samples in 100°C for 10 min. After cooling, 0.25 ml of resorcinol solution (w/v dissolved in 95%
ethanol) and 0.75 ml of 35% HCI (v/v) were added into the mixture and the tubes were incubated at
80°C for 8 min. SS and SPS were measured the same way except by replacing of F6P with 0.084 M
fructose in reaction mixtures. The amount of sucrose produced was calculated from the standard curve
derived from sucrose standard concentrations and the absorbance values measured at 520 nm were

expressed as pmol of sucrose generated h't g FW.

Starch degradation activity by a-amylase and 3-amylase were measured according to Hagenimana et al.
(1994). Amount of 0.25 ml of 100 mM phosphate buffer (pH 6.0), 0.25 ml of enzyme extract and 0.5
ml of 1% (g ml?) starch solution were mixed together. The reaction mixtures were pre-incubated for 5
min at 40°C and terminated by adding 1 ml of 0.4 M NaOH. The generated reducing sugars were
determined by DNS reagent based on Miller (1959). For a-amylase activity, we followed the same
procedure, but the enzyme extract was pre-incubated at 15 min at 70°C to deactivate B-amylase. The
activity of p-amylase was determined by the difference in total amylase and a-amylase activity and

expressed as amount of maltose produced h* g FW.
2.6 Measurement of sugar content

Part of the berry samples ground for RNA extraction were dried in a freeze dryer (Virtis benchtop-K;
SP Scientific, Gardiner, NY, USA). The dried sample powder of 0.1 g was extracted with 12 ml water
containing 0.12 g PVPP in an orbital shaker for 1.5 h. The extracts were centrifuged at 4500 g for 10
min and the supernatant was filtered using a 0.2 pm filter (Merck-Millipore, NJ, USA) and stored in -

20°C until used for sugar content analysis.

Total sugar content was analyzed according to the phenol-sulfuric acid method described by Nielsen et
al. (2010). Amount of 100 ul of the sample was added with 1.9 ml of water to make it a 2-ml sample
volume followed by 0.05 ml of 80 % of phenol. Samples were mixed vigorously. After constant shaking,

5 ml of sulfuric acid was added to the sample mixture. The samples were incubated in room temperature
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for 10 min and the tubes were kept at 25°C for 10 min. Finally, the absorbance was read at 490 nm and

quantified against a glucose standard curve.

Individual soluble sugars were analyzed using Sucrose/D-Glucose/D-Fructose assay kit (R-biopharm,
Darmstadt, Germany). All samples were analyzed in triplicates and the absorbances were measured at
340 nm with the spectrophotometer. The absorbance difference for each sugar was calculated using the

formula provided by the manufacturer.
2.7 Statistical analysis

The comparison of means from the concentrations of sugar were analyzed by one-way ANOVA. The
means-comparison was followed by Tukey’s post-hoc test. All the visualizations and ANOVA were
performed in Origin pro software v2021b (OriginLab Corporation, Northampton, MA, USA).

3. Results and discussion
3.1 Sugar content during bilberry fruit development

The total sugar content analyzed by phenol-sulfuric acid method showed that the highest sugar levels
were found in fully ripe S5 berries followed by the S4 berries, while the lowest sugar content was found
on S3 berries (Table 1). The results were confirmed by the total amount of individual sugars. A recent
study in strawberries has shown similar pattern of soluble sugar accumulation with a decrease in middle

stage followed by an increase in later developmental stages (Wang et al., 2018).

From the individual soluble sugars quantification, the fructose concentration was slightly higher than
glucose concentrations and the sucrose concentration was much lower than fructose and glucose (Table
1). In earlier studies, fructose was found to be the predominant sugar in bilberry fruits followed by
glucose, and sucrose is found in relatively low amounts (Milivojevi¢ et al., 2012; Mikulic-Petkovsek et
al., 2015; Uleberg et al., 2012). Fructose and glucose levels showed similar trends in concentration
during ripening. In small unripe green fruit (S2), fructose and glucose concentration were measured at
80 mg g* DW and 70 mg g* DW, respectively, before decreasing nearly by two-fold at S3 stage, and
then increasing by approximately 1.5 times at S4 stage. In the final maturation stage (S5), the fructose
concentration was 225 mg g DW and glucose concentration 161 mg g. The sucrose concentration was
4 mg g DW in S2 stage and increased slightly in later stages of fruit development and ripening (Table
1).
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3.2 ldentification and phylogenetic analysis of sugar metabolism related gene families in bilberry

The genes coding for sugar metabolism-enzyme families such as CWINV, VINV, NINV, HK, FK, SPP,
SPS and SS were retrieved from the available transcriptome datasets on Vaccinium species. Altogether,
25 sugar metabolism pathway genes were identified; three isoforms of CWINV, two isoforms of VINV,
five isoforms of NINV, five isoforms of HK, five isoforms of FK, two isoforms of SPP, four isoforms
of SPS and four isoforms of SS. All the identified V. virgatum sequences, with their matching sequences
from TSA database and corresponding bilberry sequences retrieved from SRA transcriptome datasets
are presented in the Supplementary Table 1.

We used Plant-mSubP online tool to predict the subcellular localization of the invertases, as it is one of
the differentiating factors to classify its types. It is performed to confirm the precise subcellular
localization of identified genes belonging to invertases class based on signal peptides (Table S1).
Although, it is widely believed that neutral invertases are only found in cytoplasm, a previous study has
shown that it can be found on plastids also (Murayama and Handa, 2007). From our analysis, three
isoforms were predicted; NINV 1,2 & 4, which are most likely to be present on plastids than in the
cytoplasm. Another study showed that sucrose could enter inside plastids, but the metabolism of sucrose

by invertases inside that organelle are relatively unknown (Gerrits et al., 2001).

A phylogenetic tree was constructed using sequences of V. myrtillus sugar genes with sequences from
related fruit species such as apple, strawberry, peach and grapevine is shown for its evolutionary
relationship (Fig, 2). The phylogenetic tree shows that HK and FK were grouped in similar branches
from the main clade because of its similar phosphorylating nature of hexoses (Granot et al., 2014),
whereas CWINV and VINV were grouped in the same branches considering both are acid invertases
(Roitsch, & Gonzéalez, 2004). Likewise, SS and SPS were branched from the next major clade and NINV
was found in the distant clade grouped together with SPP (Fig. 2).

3.3 Expression of sugar metabolism genes during bilberry fruit development

The relative gene expression levels of all identified gene isoforms were determined by using gRT-PCR
during berry development. The expression pattern of all three isoforms of CWINV was different from
one another (Fig. 3a). VmCwINV1 expression was low in S3 and S4 fruits, but slightly higher in the
ripening stage S5, whereas VmCwINV2 showed 4 times higher expression in S3 than in the S2. In later
stages of ripening (S4 and S5), there was no expression of the VmCwINV2. The VmCwINV3 showed
slightly lower expression in S3 than in S2, whereas it showed similar expression in S4 and again
decreased its expression in fully ripe fruit (Fig. 3a). However, the expression of VmCwINV3 did not

vary significantly across the different fruit development and ripening stages (Fig. 3a). CWINVs are vital
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during sink organs development such as fruit and play a major role in fruit setting (Ru et al., 2017).
These are the key partitioning enzymes once the sucrose is transported from source tissues and
upregulate the sink strength in fruits (Roitsch & Gonzalez, 2004). From our results, we can infer that all
these differently expressed isoforms of CWINV might have distinct functions at certain developmental

stages.

The expression of VmVINV1 showed increment from S3 to S5. VmVINV1 had the highest expression in
S5 (Fig. 3b). VmVINV2 showed a 13-fold higher expression in ripening purple fruit, whereas the
expression of VmVINV2 decreased significantly in fully ripe blue fruit. The expression of VmVINV2 was
also found negligible in green unripe fruit stages (Fig. 3b). Since VINV determine the storage and
resynthesis of sucrose in vacuoles at mature stages of fruit development (Hussain et al., 2001; Tang et
al., 1999), we speculate that the increase in expression levels of two isoforms of VINVSs at the ripening
stages S4 and S5 could be responsible for maintaining the sugar balance in such organelles and in ripe
bilberries.

The expression pattern of three isoforms of neutral invertases (VmMNINV1,2 & 3) were similar among
small green unripe fruit and large green unripe fruit. All three genes were slightly lower expressed in
large green unripe fruit than in small green unripe fruit. VmNINV1 had the highest expression in ripening
red colored fruit (S4), and VmNINV2 had the highest expression in blue-colored S5 fruit. VmNINV3 had
lower expression in S4 and expression of VmNINV3 in the other three ripening stages was similar.
VmNINV4 had similar expression in S3 and S5 stages, and expression in these two stages were higher
than in the small unripe green fruit (S2). VmNINV5 also had much lower transcript levels in S4 and S5
fruit (Fig. 3c). A direct correlation of neutral invertases activity to that of fructose-to-glucose ratios has
earlier been shown in fruits (Desnoues et al., 2014). Our results show that NINVs were expressed in all
the developmental stages during bilberry fruit development. This indicates that higher NINV activity
means an increase in fructose amounts in all developmental stages achieved by the segregation of

sucrose in the cytoplasm (Ran et al., 2017).

The hexose phosphorylating enzymes, HKs and FKs, VmHK1, VmHK2 and VmHK4 isoforms were
similarly expressed between developmental stages S2-S3. Afterwards, VmHK2 increased expression
rapidly and to some extent by VmHKZ1 in stages 4 and 5, unlike other isoforms, which were not altered
significantly (Fig. 4a). Glucose can only be phosphorylated by HKs, while fructose will be
phosphorylated by both HKs and FKs, although the affinity towards fructose moieties will be higher in
FKs (Granot, 2013). From our results, all the FKs, except VmFKS5 (VmFK1,2,3 & 4), rapidly increased
expression after stage 2, and increased further with the highest expression level found on stage 3 berries.
However, during late developmental stages 4 and 5, the expression levels fall down dramatically (Fig.
4b). The HKs and FKs are showing an interesting opposite expression pattern in early and late berry

developmental stages (Fig. 4). The result suggests that an increase in fructose content can be attributed
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by the interplay of FKs in the beginning of ripening and by both FKs and HKs at late berry

developmental stages.

Finally, in regards with the sucrose metabolism enzymes, expression of VmSPS1 increased in late stages,
whereas, VmSPS2 and VmSPS3 expression in stages 4 and 5 was low. VmSPS2 was highest in stage 3
berries (Fig. 5a). SPS is the key enzyme involved in the sucrose resynthesis and an increase in expression
at the onset of ripening implies that sucrose is recycled actively, especially at S3 stage. It could also be
correlated with the increase in sucrose content at same stage (Table 1), as previously shown in another
study (Vimolmangkang et al., 2016). SPP did not show significant variation across developmental
stages, except at S4 where VmSPP1, VmSPP?2 levels slightly increased (Fig. 5b). The only characterized
and expressed sucrose synthase isoform VmSS was also higher in early berry development and tended
to decrease lately (Fig. 5¢). A similar trend was shown in kiwifruit ripening, where SS was shown to be
involved in post sucrose-unloading pathways (Chen et al., 2017).

3.4 Sugar related enzyme activities across bilberry developmental stages

Enzyme activities of CWINV, VINV were not detected or were only found in very low levels in early
developmental stages (S2, S3), but increased rapidly from S3 on with the highest activity found in S5
berries (Fig. 6). Generally, CWINVs are considered sink-specific enzyme, which should be involved in
sucrose unloading very early in berry development, but some studies have shown that gene expression
and enzyme activities of CWINVs are lower in fruits and may not be directly related in apoplastic
sucrose unloading in the beginning of ripening (Li et al., 2012). Contrastingly, NINV activity was found
early in S2 berries and then the activity increased later at fully ripe S5 berries (Fig. 6). Activities of both
sucrose metabolism enzymes SS and SPS were also detected in unripe berries and those tend to increase
only at later stages. Both of these enzymes have an opposite enzyme activity at S3, which might be the
critical stage in sucrose resynthesis occurring in bilberry fruits (futile cycle). SPS activity was highest
in S3 whereas SS activity was lowest at the same stage (Fig. 6). Our results are consistent with earlier
studies, as previously demonstrated that SS activities are often higher than NINVs as the former
produces reversible conversion and better homeostasis in sink tissues (Moscatello et al., 2011). SS is
also likely to be involved in starch accumulation in plastids at the beginning of fruit ripening (Ross et
al., 1994). However, degradation of starch occurs during late berry development in amyloplasts. The
activities of both of the starch-degrading amylases (o, p amylases), were only found increased in fully

ripe berries at S5, and not detected in other stages of bilberry fruit development (Fig. 6).
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3.5 Effect of light spectral quality in bilberry sugar metabolism

Sugar concentrations of glucose and fructose were significantly higher in red light treatment (165 and
210 mg g DW, respectively), when compared with control (Fig. 7b). Blue light also slightly increased
glucose and fructose content in ripe berries but was not found significantly different (141 and 166 mg
gt DW). Sucrose levels were found to be very low across the light treatments (2-3.5 mg g* DW) and

they were not found to be significantly affected by the supplemental light treatments (Fig. 7b).

The top DEGs obtained between the control and light treatments (red, blue) were visualized and shown
as heatmap with log2-fold changes (Log2 FC) (Fig. 7a). Both light treatments up-regulated a-amylase
and B-amylases, which are the key genes involved in starch degradation in plastids (Fig. 7a). Red light
up-regulated B-amylase levels up to 3-folds, which indicates that maltose levels have been elevated
inside amyloplasts, which subsequently can be converted to other hexoses such as glucose, thus adding
sweetness or flavor to the fully ripe fruit (Xiao et al., 2018). Blue light down-regulated the hexose inter-
conversion enzymes involved in galactose metabolism such as phosphoglucomutase (PGM), a-
galactosyltransferse (a-gal) and UDP-glycopyrophophorylase (UDPG-PP) (Fig. 7a). On the other hand,
red light upregulated a-galactosyltransferse gene, which is likely to be involved in deriving sugar
alcohols. Other key enzymes arising from galactose metabolism, such as galactinol synthase (GS), UDP-
galactose epimerase (UGE) and raffinose synthase (RFS), were also up-regulated in red light treatment
(Fig. 7a). Comparatively, blue light up-regulated hexose phosphorylating enzymes such as HK, FK and
PFK genes more than red light. The VINV were up-regulated by both light treatments (Fig. 7a). The
result suggests that the degradation of sucrose to hexoses, which was highly upregulated in response to
light treatment was mostly occurring in vacuolar spaces by VINVs than in the cytosol by the NINVs
(Rabot et al., 2014). Likewise, it is also evidenced by the NINVs, which are lowly expressed under light
treatments. All the CWINV were down-regulated under light treatments. The result is consistent with
the earlier studies which have shown that CWINV activities are reduced under abiotic stress during fruit
set and are the most targeted during altered circadian rhythm (Liu et al., 2016; Proels & Hiickelhoven,
2014). Sucrose enzymes such as SS and SPP were up-regulated under red-light whereas, SPP and SPS

were down-regulated under blue light (Fig. 7a).

Conclusion

In the current study, we have identified and analyzed the sugar metabolism encoding genes in bilberry
across fruit developmental stages through enzyme activities and related gene expression. The results
shown that the gene expression and enzyme activities of acid invertases were low in the beginning of
bilberry development, and detected rapid increases in the expression of the enzyme genes producing

irreversible sucrose conversions at later stages. Our results indicate that SS is most likely the key enzyme
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involved in the reversible sucrose conversions, as both its activity and expression levels were found
consistent across all the four bilberry developmental stages. All the invertases, hexose-kinases and
sucrose resynthesizing enzymes at the last ripening stage contributed to the final accumulation of sugars
in fully ripe berries, where fructose and glucose were found as the most abundant sugars. In response to
light spectral quality, we have shown that both red and blue supplemental light irradiation trigger
degradation of starch, which is stored in amyloplasts, and likely contributes to the increase in hexoses
content. In addition, both light qualities have negative impact on CWINV, but the up-regulation in both
hexose-kinases and vacuolar invertases are responsible for the increase in glucose and fructose content
under red light. Further, red light increased sugar concentrations of bilberries. This study provides the
first comprehensive report on bilberry sugar metabolism, and provides an ideal platform towards further
functional genomics studies on improving the berry fruit quality.

Acknowledgments

The authors would like to thank Leidulf Lund for the technical help in setting up light experiments at
the Phytotron facility at UiT The Arctic University of Norway. The work was financially supported by
NordPlant (NordForsk grant no. 84597).

Author contributions

LJ and KK conceptualized the project. AS performed the enzyme activity assays, analyzed the data, and
wrote the manuscript. BD and KK performed the gene expression analyses. KK with contribution of BD
guantified the sugar content. LJ, KK and IM contributed to the editing and proofreading of the
manuscript draft. All authors have read and approved the manuscript.

Conflict of interest

The authors declare that they have no conflicts and competing interests.

110



References

Aksi¢, M. F., Tosti, T., Sredojevi¢, M., Milivojevi¢, J., Meland, M., & Nati¢, M. (2019).
Comparison of sugar profile between leaves and fruits of blueberry and strawberry cultivars
grown in organic and integrated production system. Plants, 8(7).
https://doi.org/10.3390/plants8070205

Althammer, M., Bldchl, C., Reischl, R., Huber, C. G., & Tenhaken, R. (2020).
Phosphoglucomutase is not the target for galactose toxicity in plants. Frontiers in plant science,
11(February), 1-9. https://doi.org/10.3389/fpls.2020.00167

Borsani, J., Budde, C. O., Porrini, L., Lauxmann, M. A., Lombardo, V. A., Murray, R. ... Lara
M.V. (2009). Carbon metabolism of peach fruit after harvest: Changes in enzymes involved in
organic acid and sugar level modifications. Journal of Experimental Botany, 60(15), 1823-1837.

Brummell, D. (2006). Cell wall disassembly in ripening fruit. Functional Plant Biology, 33(2),
103. doi: https://doi.org/110.1071/fp05234

Chen, C., Yuan, Y., Zhang, C., Li, H., Ma, F., & Li, M. (2017). Sucrose phloem unloading follows
an apoplastic pathway with high sucrose synthase in Actinidia fruit. Plant Science, 255, 40-50.
https://doi.org/10.1016/j.plantsci.2016.11.011

Chen, X. li, Wang, L. chun, Li, T., Yang, Q. chang, & Guo, W. zhong. (2019). Sugar
accumulation and growth of lettuce exposed to different lighting modes of red and blue LED light.
Scientific Reports, 9(1), 1-10. https://doi.org/10.1038/s41598-019-43498-8

Cho, Y. G., & Kang, K. K. (2020). Functional analysis of starch metabolism in plants. Plants,
9(9), 1-6. https://doi.org/10.3390/plants9091152

Dai, Z., Wu, H., Baldazzi, V., van Leeuwen, C., Bertin, N., Gautier, H., ... Génard, M. (2016).
Inter-species comparative analysis of components of soluble sugar concentration in fleshy fruits.
Frontiers in Plant Science, 7 (May2016), 1-12. https://doi.org/10.3389/fpls.2016.00649

Decker, D., & Kleczkowski, L. A. (2019). UDP-sugar producing pyrophosphorylases: Distinct and
essential enzymes with overlapping substrate specificities, providing de novo precursors for
glycosylation reactions. Frontiers in Plant Science, 9(January).
https://doi.org/10.3389/fpls.2018.01822

111


https://doi.org/10.1016/j.plantsci.2016.11.011
https://doi.org/10.3390/plants9091152
https://doi.org/10.3389/fpls.2016.00649
https://doi.org/10.3389/fpls.2018.01822

Desnoues, E., Gibon, Y., Baldazzi, V., Signoret, V., Génard, M., & Quilot-Turion, B. (2014).
Profiling sugar metabolism during fruit development in a peach progeny with different fructose-
to-glucose ratios. BMC Plant biology, 14(1), 12-14. https://doi.org/10.1186/s12870-014-0336-x

Gangl, R., & Tenhaken, R. (2016). Raffinose family oligosaccharides act as galactose stores in
seeds and are required for rapid germination of Arabidopsis in the dark. Frontiers in Plant
Science, 7(July2016), 1-15. https://doi.org/10.3389/fpls.2016.01115

Granot, D, Kelly, G Stein, O, David-Schwartz, R. (2014) Substantial roles of hexokinase and
fructokinase in the effects of sugars on plant physiology and development, Journal of
Experimental Botany, Volume 65, Issue 3, March 2014, Pages 809-819,
https://doi.org/10.1093/jxb/ert400

Granot, D., David-Schwartz, R., & Kelly, G. (2013). Hexose kinases and their role in sugar-
sensing and plant development. Frontiers in plant science, 4(MAR), 1-17.
https://doi.org/10.3389/fpls.2013.00044

Hagenimana, V., Vézina, L.-P, & Simard, R. E. (1994). Sweetpotato a- and B-Amylases:
Characterization and Kinetic Studies with Endogenous Inhibitors. Journal of Food Science, 59(2),
373-376. doi:https://doi.org/10.1111/j.1365-2621.1994.tb06970.x

Hao-Ran, W., Jia-Yu, Y., Tong-Tong, Z., Na, C., Sheng, H., Rui, Z., & Si-Qiong, X. (2017).
Relationship between neutral invertase activity and sugar contents in tomato fruit and its
functional prediction analysis. Biotechnology journal international, 20(1), 1-6.
https://doi.org/10.9734/hji/2017/37195

Hu, W., Sun, D. W., Pu, H., & Pan, T. (2016). Recent Developments in Methods and Techniques
for Rapid Monitoring of Sugar Metabolism in Fruits. Comprehensive Reviews in Food Science
and Food Safety, 15(6), 1067-1079. https://doi.org/10.1111/1541-4337.12225

Husain, S. E., Thomas, B. J., Kingston-Smith, A. H., & Foyer, C. H. (2001). Invertase protein, but
not activity, is present throughout development of Lycopersicon esculentum and L.
pimpinellifolium fruit. New Phytologist, 150(1), 73-81. https://doi.org/10.1046/j.1469-
8137.2001.00064.x

Jia, H., Wang, Y., Sun, M., Li, B., Han, Y., Zhao, Y., ... Jia, W. (2013). Sucrose functions as a
signal involved in the regulation of strawberry fruit development and ripening. New Phytologist,
198(2), 453-465. https://doi.org/10.1111/nph.12176

112


https://doi.org/10.1186/s12870-014-0336-x
https://doi.org/10.3389/fpls.2016.01115
https://doi.org/10.1093/jxb/ert400
https://doi.org/10.3389/fpls.2013.00044
https://doi.org/10.1111/1541-4337.12225
https://doi.org/10.1111/nph.12176

John P. Hammond, Philip J. White. (2008) Sucrose transport in the phloem: integrating root
responses to phosphorus starvation, Journal of Experimental Botany, Volume 59, Issue 1, January,
Pages 93-109, https://doi.org/10.1093/jxb/erm221

Ké&hkonen, M. P., Heindmadki, J., Ollilainen, V., & Heinonen, M. (2003). Berry anthocyanins:
Isolation, identification and antioxidant activities. Journal of the Science of Food and Agriculture,
83(14), 1403-1411. https://doi.org/10.1002/jsfa.1511

Karppinen, K., Hirveld, E., Nevala, T., Sipari, N., Suokas, M., & Jaakola, L. (2013). Changes in
the abscisic acid levels and related gene expression during fruit development and ripening in
bilberry (Vaccinium myrtillus L.). Phytochemistry, 95, 127-134.

doi: https://doi.org/10.1016/j.phytochem.2013.06.023

Karppinen, K., Tegelberg, P., Haggman, H., & Jaakola, L. (2018). Abscisic acid regulates
anthocyanin biosynthesis and gene expression associated with cell wall modification in ripening
bilberry (Vaccinium myrtillus L.) fruits. Frontiers in Plant Science, 9(August), 1-17.
https://doi.org/10.3389/fpls.2018.01259

Li, M., Feng, F., & Cheng, L. (2012). Expression patterns of genes involved in sugar metabolism
and accumulation during apple fruit development. PLoS ONE, 7(3).
https://doi.org/10.1371/journal.pone.0033055

Li, Y., Xin, G., Wei, M., Shi, Q., Yang, F., & Wang, X. (2017). Carbohydrate accumulation and
sucrose metabolism responses in tomato seedling leaves when subjected to different light
qualities. Scientia horticulturae, 225(March), 490-497.
https://doi.org/10.1016/j.scienta.2017.07.053

Liu, Y. H., Offler, C. E., & Ruan, Y. L. (2016). Cell wall invertase promotes fruit set under heat
stress by suppressing ROS-independent cell death. Plant Physiology, 172(1), 163-180.
https://doi.org/10.1104/pp.16.00959

Loescher, W. (1987). Physiology and metabolism of sugar alcohols in higher plants. Physiologia
plantarum, 70(3), 553-557. doi: https://doi.org/10.1111/j.1399-3054.1987.tb02857.x

Lowell, C. A., Tomlinson, P. T., & Koch, K. E. (1989). Sucrose-Metabolizing Enzymes in
Transport Tissues and Adjacent Sink Structures in Developing Citrus Fruit. Plant Physiology,
90(4), 1394-1402. https://doi.org/10.1104/pp.90.4.1394

113


https://doi.org/10.1093/jxb/erm221
https://doi.org/10.3389/fpls.2018.01259
https://doi.org/10.1371/journal.pone.0033055
https://doi.org/10.1016/j.scienta.2017.07.053
https://doi.org/10.1104/pp.16.00959

Mikulic-Petkovsek, M., Schmitzer, V., Slatnar, A., Stampar, F., & Veberic, R. (2015). A
comparison of fruit quality parameters of wild bilberry (Vaccinium myrtillus L.) growing at
different locations. Journal of the Science of Food and Agriculture, 95(4), 776-785.
https://doi.org/10.1002/jsfa.6897

Milivojevic, J., Maksimovic¢, V., Dragisi¢c Maksimovi¢, J., Radivojevi¢, D., Poledica, M., &
Ercisli, S. (2012). A comparison of major taste-and health-related compounds of Vaccinium
berries. Turkish journal of biology, 36, 738-745.

doi: https://doi.org/10.3906/biy-1206-39

Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar.
Analytical chemistry, 31(3), 426—428. https://doi.org/10.1021/ac60147a030

Moing, A. (2000). Sugar alcohols as carbohydrate reserves in some higher plants. Developments
in crop science, 337-358. doi: https://doi.org/10.1016/s0378-519x(00)80017-3

Moscatello, S., Famiani, F., Proietti, S., Farinelli, D., & Battistelli, A. (2011). Sucrose synthase
dominates carbohydrate metabolism and relative growth rate in growing kiwifruit (Actinidia
deliciosa, cv Hayward). Scientia Horticulturae, 128(3), 197-205.
https://doi.org/10.1016/j.scienta.2011.01.013

Murayama, S., & Handa, H. (2007). Genes for alkaline/neutral invertase in rice: Alkaline/neutral
invertases are located in plant mitochondria and also in plastids. Planta, 225(5), 1193-1203.
https://doi.org/10.1007/s00425-006-0430-x

Nguyen, N., Suokas, M., Karppinen, K., Vuosku, J., Jaakola, L., & Haggman, H. (2018).
Recognition of candidate transcription factors related to bilberry fruit ripening by de novo
transcriptome and qRT-PCR analyses. Scientific reports, 8(1), 1-12.
https://doi.org/10.1038/s41598-018-28158-7

Nguyen-Quoc, B., & Foyer, C. (2001). A role for ‘futile cycles’ involving invertase and sucrose
synthase in sucrose metabolism of tomato fruit. Journal of experimental botany, 52(358), 881-8809.
doi: https://doi.org/10.1093/jexbot/52.358.881

Nielsen, S. S. (2010). Phenol-Sulfuric Acid Method for Total Carbohydrates. In S. S. Nielsen
(Ed.), Food Analysis Laboratory Manual (pp. 47-53). Boston, MA: Springer US.

Pires, T. C. S. P., Caleja, C., Santos-Buelga, C., Barros, L., & Ferreira, I. C. F. R. (2020).

Vaccinium myrtillus L. Fruits as a Novel Source of Phenolic Compounds with Health Benefits

114


https://doi.org/10.1002/jsfa.6897
https://doi.org/10.1016/s0378-519x(00)80017-3
https://doi.org/10.1007/s00425-006-0430-x
https://doi.org/10.1093/jexbot/52.358.881

and Industrial Applications - A Review. Current pharmaceutical design, 26(16), 1917-1928.
https://doi.org/10.2174/1381612826666200317132507

Proels, R. K., & Hiickelhoven, R. (2014). Cell-wall invertases, key enzymes in the modulation of
plant metabolism during defence responses. Molecular plant pathology, 15(8), 858-864.
https://doi.org/10.1111/mpp.12139

Qi X, Ogden EL, Ehlenfeldt MK, Rowland LJ. (2019) Dataset of de novo assembly and functional
annotation of the transcriptome of blueberry (Vaccinium spp.). Data Brief. Aug 12;25:104390.

Rabot, A., Portemer, V., Péron, T., Mortreau, E., Leduc, N., Hamama, L., ... Le Gourrierec, J.
(2014). Interplay of sugar, light and gibberellins in expression of Rosa hybrida vacuolar invertase
1 regulation. Plant and Cell Physiology, 55(10), 1734-1748. https://doi.org/10.1093/pcp/pcul06

Roitsch, T., & Gonzélez, M. C. (2004). Function and regulation of plant invertases: sweet
sensations. Trends in Plant Science, 9(12), 606-613. https://doi.org/10.1016/j.tplants.2004.10.009

Rolland, F., Baena-Gonzalez, E., & Sheen, J. (2006). Sugar sensing and signaling in plants:
conserved and novel mechanisms. Annual review of plant biology, 57, 675-709.
https://doi.org/10.1146/annurev.arplant.57.032905.105441

Ross, H., Davies, H., Burch, L., Viola, R., & McRae, D. (1994). Developmental changes in
carbohydrate content and sucrose degrading enzymes in tuberising stolons of potato (Solanum
tuberosum). Physiologia Plantarum, 90(4), 748-756.

doi: https://doi.org/10.1111/j.1399-3054.1994.tb02533.x

Ruan, Y. L., Jin, Y., Yang, Y. J., Li, G. J., & Boyer, J. S. (2010). Sugar input, metabolism, and
signaling mediated by invertase: roles in development, yield potential, and response to drought
and heat. Molecular plant, 3(6), 942-955. https://doi.org/10.1093/mp/ssq044

Samkumar, A., Jones, D., Karppinen, K., Dare, A. P., Sipari, N., Espley, R. V., ... Jaakola, L.
(2021). Red and blue light treatments of ripening bilberry fruits reveal differences in signalling
through abscisic acid-regulated anthocyanin biosynthesis. Plant Cell and Environment, 44(10),
3227-3245. https://doi.org/10.1111/pce.14158

Smeekens S. 2000. Sugar induced signal transduction in plants. Annual Review of Plant

Physiology and Plant Molecular Biology 51:49-81.

115


https://doi.org/10.2174/1381612826666200317132507
https://doi.org/10.1111/mpp.12139
https://doi.org/10.1016/j.tplants.2004.10.009
https://doi.org/10.1146/annurev.arplant.57.032905.105441
https://doi.org/10.1093/mp/ssq044
https://doi.org/10.1111/pce.14158

Souleyre, E., lannetta, P., Ross, H., Hancock, R., Shepherd, L., & Viola, R. et al. (2004). Starch
metabolism in developing strawberry (Fragaria X ananassa) fruits. Physiologia Plantarum, 121(3),
369-376. doi: https://doi.org/10.1111/j.0031-9317.2004.0338.x

Kumar, S., Stecher, G., Li, M., Knyaz, C & Tamura, K (2018) MEGA X: Molecular Evolutionary
Genetics Analysis across computing platforms. Molecular biology and evolution 35:1547-1549

Tang, G. Q., Luscher, M., & Sturm, A. (1999). Antisense repression of vacuolar and cell wall
invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell,
11(2), 177-189. https://doi.org/10.1105/tpc.11.2.177

Tauzin, A. S., & Giardina, T. (2014). Sucrose and invertases, a part of the plant defense response
to the biotic stresses. Frontiers in plant science, 5(JUN), 1-8.
https://doi.org/10.3389/fpls.2014.00293

Uleberg, E., Rohloff, J., Jaakola, L., Trost, K., Junttila, O., Haggman, H., & Martinussen, I.
(2012). Effects of temperature and photoperiod on yield and chemical composition of northern and
southern clones of bilberry (Vaccinium myrtillus L.). Journal of agricultural and food chemistry,
60(42), 10406-10414. https://doi.org/10.1021/jf302924m

Verma, A.K.; Upadhyay, S.K.; Verma, P.C.; Solomon, S.; Singh, S.B (2011). Functional analysis
of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum)
cultivars. Plant Biology., 13, 325-332.

Vimolmangkang, S., Zheng, H., Peng, Q., Jiang, Q., Wang, H., Fang, T., ... Han, Y. (2016).
Assessment of sugar components and genes involved in the regulation of sucrose accumulation in
peach fruit. Journal of agricultural and food chemistry, 64(35), 6723-6729.
https://doi.org/10.1021/acs.jafc.6b02159

Wan, H., Wu, L., Yang, Y., Zhou, G., & Ruan, Y.-L. (2018). Evolution of Sucrose Metabolism:
The Dichotomy of Invertases and Beyond. Trends in Plant Science, 23(2), 163-177.
doi: https://doi.org/10.1016/j.tplants.2017.11.001

Wang, K., Shao, X., Gong, Y., Zhu, Y., Wang, H., & Zhang, X. et al. (2013). The metabolism of
soluble carbohydrates related to chilling injury in peach fruit exposed to cold stress. Postharvest
biology and technology, 86, 53-61.

doi: https://doi.org/10.1016/j.postharvbio.2013.06.020

116


https://doi.org/10.1111/j.0031-9317.2004.0338.x
https://doi.org/10.1105/tpc.11.2.177
https://doi.org/10.3389/fpls.2014.00293
https://doi.org/10.1021/jf302924m
https://doi.org/10.1021/acs.jafc.6b02159

Wang, S., Song, M., Guo, J., Huang, Y., Zhang, F., Xu, C., ... Zhang, L. (2018). The potassium
channel FaTPK1 plays a critical role in fruit quality formation in strawberry (Fragaria x
ananassa). Plant Biotechnology Journal, 16(3), 737-748. https://doi.org/10.1111/pbi.12824

Xiao, Y. Y., Kuang, J. F., Qi, X. N,, Ye, Y. J., Wu, Z. X, Chen, J. Y., & Lu, W. J. (2018). A
comprehensive investigation of starch degradation process and identification of a transcriptional
activator MabHLH®6 during banana fruit ripening. Plant Biotechnology Journal, 16(1), 151-164.
https://doi.org/10.1111/pbi.12756

Xie, Z. Sen, Li, B., Forney, C. F., Xu, W. P., & Wang, S. P. (2009). Changes in sugar content and
relative enzyme activity in grape berry in response to root restriction. Scientia Horticulturae,
123(1), 39-45. https://doi.org/10.1016/j.scienta.2009.07.017

Zhang, X. M., Dou, M. A., Yao, L., Du, L. Q., Li, J. G., & Sun, G. M. (2011). Dynamic analysis
of sugar metabolism in different harvest seasons of pineapple (Ananas comosus L. (Merr.)).
African Journal of Biotechnology, 10(14), 2716-2723. https://doi.org/10.5897/ajb10.1284

Zhu, X., Zhang, C., Wu, W., Li, X., Zhang, C., & Fang, J. (2017). Enzyme activities and gene
expression of starch metabolism provide insights into grape berry development. Horticulture
Research, 4(1), 1-16. https://doi.org/10.1038/hortres.2017.18

117


https://doi.org/10.1111/pbi.12824
https://doi.org/10.1016/j.scienta.2009.07.017
https://doi.org/10.5897/ajb10.1284
https://doi.org/10.1038/hortres.2017.18

Figures and legends

Sucrose
I CWINV Intracellular space
Cell wall Glucose Fructose

Glycolysis
T D-Glucose D-Fructose <=— UDP-Glucose

Nucleotide sugar extracellular

: SS SPS
metabolism .
. Fructose 1,6 BP v SPP CWINV (apoplastic)

Sucrose <«— Sucrose 6'P
PFK FK

Mannose 6'P <+— Fructose 6'P <« Fructose Fructose Galactose metabolism
A
HK HK NINV —> Upp

I . : galactose
Glucose 6'P < Glucose ;
i TUDPG-PP UGE
D-Mannose

1 a-D-galactose
' UDP glucose

-am ,
Cotoron Y i e s
Malto- 0o .
dextrin ' D-galactose  Galactinol

Pentose a-amy E Ratﬁ ::sse
Phosphate : ‘a-gal A
Pathway Maltase AmylopIaSt CytOSOI :ufD—gIucosiu:T:enfD—;Itj;:::Z

Sugar alcohols ia-gal | PGM

Fig. 1 Schematic representation of sugar metabolism. The key genes discussed in this study are
highlighted in red color. CwINV, cell wall invertase; VINV, vacuolar invertase; NINV, neutral invertase;
FK, fructokinase, HK, hexokinase; SS, sucrose synthase; SPS, sucrose phosphate synthase; SPP, sucrose
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Fig. 2 Phylogenetic analysis of bilberry sugar metabolism-related genes. The identified bilberry gene
isoforms are highlighted with black circles. The sequences were classified into seven enzyme groups in
corresponding subclades, neutral invertases (NI), cell wall invertases (CWI), vacuolar invertases (V1),
hexokinases (HK), fructokinases (FK), sucrose phosphate phosphatases (SPP), sucrose synthases (SS)
and sucrose phosphate synthases (SPS), respectively. Numbers in forks represents... Bar represents...
Fv, Fragaria vesca; Md, Malus x domestica; Pp, Prunus persica; Vv, Vitis vinifera; Vm, Vaccinium

myrtillus.
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Fig. 3 Relative expression of invertase genes during bilberry fruit development. The relative expression
levels of A) CWINV, (B) VINV and (C) NINV were quantified by gRT-PCR. The expression level of
gene isoforms was normalized to the level of VmMGAPDH. S2, small unripe green fruit; S3, large unripe
green fruit; S4, ripening purple fruit; S5, fully ripe blue fruit. All the values are means of four biological

replicates + SEM.
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Fig. 4 Relative expression of (A) HK and (B) FK genes during bilberry fruit development. The relative
expression levels of genes were quantified by gRT-PCR. The expression level of every gene isoform
was normalized to the level of VmGAPDH. S2, small unripe green fruit; S3, large unripe green fruit; S4,
ripening purple fruit; S5, fully ripe blue fruit. All the values are means of four biological replicates £
SEM.
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Fig. 5 Relative expression of the sucrose metabolism genes SPS, (A) SPP, (B) SS (C) during bilberry
fruit development. The relative expression levels of each gene were quantified by gRT-PCR. The
expression level of gene isoforms was normalized to the level of VmGAPDH. S2, small unripe green
fruit; S3, large unripe green fruit; S4, ripening purple fruit; S5, fully ripe blue fruit. All the values are

means of four biological replicates + SEM.
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Fig.6 Changes in enzyme activities related to sucrose and starch metabolism during bilberry fruit
development. The enzyme activities were expressed in amounts of corresponding sugar released per
hour from fresh weight (FW) used in each assay. The values represent mean + SEM of four biological
replicates. S2, small unripe green fruit; S3, large unripe green fruit; S4, ripening purple fruit; S5, fully

ripe blue fruit.
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Fig.7 Differentially expressed genes (DEGS) related to sugar metabolism and sugar content in response
to spectral light qualities. (A) The associated DEGs from red and blue light vs. control were represented
in color code boxes based on log2 fold changes. Red light treatment is shown on left and blue light
treatment on the right side of the box. Gene names: Phosphofructokinases (PFK), fructokinases (FK),
hexokinases (HK), neutral invertases (NINV), vacuolar invertases (VI), cell wall invertases (CWINV),
sucrose phosphate synthases (SPS), sucrose phosphate phosphatases (SPP), sucrose synthases (SS), a-
amy, a-amylases; p-amy, p-amylases, UDP-galacturonate 4-epimerase (UGE), galactinol synthase
(GS), phosphoglucomutase (PGM), raffinol synthase (RFS), a- galactosidases (a- gal), UDP
glucose7galactose pyrophosphorylases (UDPG PP), (B) Sugar content in light-treated bilberry
samples. The values (mg g?) represent mean + SEM of biological and technical replicates. Different
letters denote significant differences among light treatments analyzed by one-way ANOVA followed
by Tukey’s post hoc test (p-value <0.05).
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Table. 1 Quantification of sugar content during bilberry fruit developmental with two different methods

(Phenol-sulfuric method and Sucrose/D-Glucose/ D-Fructose assay kit). The values are mean of three

biological replicates + SEM and expressed in mg g of dry weight (DW). S2, small unripe green fruit;

S3, large unripe green fruit; S4, ripening purple fruit; S5, fully ripe blue fruit.

Ripening Glucose Frutose Sucrose Total Sugar | Total Sugar
stages of content content content content content
bilberry

(mg g?) (mg g?) (mg g?) (mgg?) (Phenol-sulfuric

method) (mg g?)

Stage 2 70.06 £0.26 | 78.04+0.38 = 4.57+0.22 | 152.67 +0.86 135.63+6.73
Stage 3 35.90+0.77  4729+129 7.48+0.54 | 90.67 +2.60 87.56+2.73
Stage 4 10111 +3.45 12369+4.94 797+0.38 |232.77+8.77 | 214.55+13.84
Stage 5 165.76 +4.06  227.55+2.17  455+0.19 |397.86+6.42 | 333.36+13.78
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Supplementary figure S1. Principal component analysis (PCA) lot of the three sample groups
(control, blue and red; n= 9) from metabolic profiling analysis with UPLC-HDMS. Color codes

indicate the different sample groups
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Supplementary figure S2. Heat map analysis of metabolic profiling data (average) with UPLC-

HDMS. Color codes indicate different sample groups.
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Supplementary figure S3. BLAST search distribution among top 25-species, the top-hit species were
expressed as percentage and in bars whereas the corresponding number of search hits in terms of

sequences were visualized as line-graph.
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Supplementary figure S4. Sequence similarity distribution of BLAST hits among the top 500 DEGs
analyzed by Blast2GO suite.
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Supplementary figure S5. Gene expression box plot from all the samples under different conditions

based on fragments per kilobase of transcript sequence per millions base pairs sequenced (FPKM)

distribution. (The sample codes correspond to replicates of berry samples from light treatments)
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Supplementary figure S6. Principal component analysis (PCA) plot for all the analyzed RNA-seq
samples as a QC method before differential expression analysis using DESeq2. The clustering of
samples is based on the type of light treatment as indicated in color codes and the percentage of variance

between the components are shown next to it.

136



I 1} I
=] [Ts] e}
= ™ o 5 xw
sasuanbag Jo "oN &e@ @«\ fu«
<
%, %
.&@ “n

IPS Domains

Supplementary figure S7. InterproScan protein domain families identified from the top differentially
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expressed genes (DEGS)
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Supplementary figure S8. List of transcription factor families (TF) identified from DEGs, size of the
bars represents the number of unigenes assigned to TFs as provided in scale chart
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Fig S1. Supplemental blue (460 nm), red (660 nm) and far-red (735nm) light treatments provided for
bilberry plants by Heliospectra LED lamps alongside control (400-700 nm). Relative intensities of light

spectra from the treatments expressed in arbitrary units (AU).
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Fig S2. Effect of light spectral treatment on gene expression of a major flavonoid biosynthetic gene
and a regulatory gene in bilberry leaves, Chalcone synthase (VmCHS) (A), R2R3-MYB transcription
factor (VmMMYBPAL.1) (B). The expression levels are normalized to the reference gene VmGAPDH
(Glyceraldehyde 3-phosphate dehydrogenase). Error bars represents +SE of three biological replicates
and significant differences between control and light treatments were analyzed by comparison of means

using student’s t-test (indicated in asterisks*) with p-value < 0.05.
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Supplementary table S1. List of primers used in qRT-PCR analysis

Gene Forward primer sequence Reverse primer sequence

VinCHS CCAAGGCCATCAAGGAATG TGATACATCATGAGTCGCTTCAC
VimANS GCAACTCTTCTACGAGGGCAAA CCTGTGGAGAATGCTCTTGCAC
VinMYBAI CTCGACCACAAACCTTGTCCA GCCTCCTCATTTGATCCGTCA
VimDFR GAAGTGATCAAGCCGACGAT ATCCAAGTCGCTCCAGTTGT
VimF3'H TTCTTCGACACCCGAAAGTC TCGAACCCTTTGGAATGAAG
VimF3'5'H GATTGCGTGGATGGACTTACA AAATCTGGGTTCCCTTTACGC
VinUFGT CATCCAAACCCTGTTCCCATCC TCATCCCTGCCTTCAAGCTCTC
VinMYBPAlL.l GGACATTCAACGCCAATCTGGT CGGCAAAGGAATCCAACTGAAG
VinCOPla GGAAAATTTGCCGATTCGTA GATCCGGCATCTTCATCAGT
VinCOP1b TGAGAAATGTCAGCCAACCA CTCTAAATGTGCGCAGTGGA
VimHYS5 GGGAGGAAGTAAGGTCCAAATG TATAGGGTTACCGGGAGGAATG
VmGAPDH — CAAACTGTCTTGCCCCACTT CAGGCAACACCTTACCAACA
VmActin TTCCCTGGGATTGCTGATAG GGTCTTGGCAATCCACATCT
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Insights into sugar metabolism during bilberry (Vaccinium
myrtillus L.) fruit development
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Jaakola'?

!Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsg,
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Supplementary Table 1. The Identified sugar metabolism genes from V.myrtillus fruit. The

corresponding sequences are retrieved from V.virgatum and their TSA (Transcriptome Shotgun

Assembly) IDs are provided in the following column. The gene query matches with the highest

similarity and its corresponding transcript and unigene IDs from the two V. myrtillus transcriptomes

datasets were shown in the next two columns. The homologous genes with other related species are

shown in next column with identities expressed in percentages. The last column represents the

subcellular localization of all the identified isoforms of invertases using Plant mSub-P tool. The

likelihood scores for cellular localization are shown in brackets in the range of 1 (NA-not applicable).

Sequence_ID SRA_ID Unigene_ID Related | Sub-
from TSA (V.myrtillus) | (V.myrtillus) | species | Cellular
Gene name \[/)i?tzg?;e) (v. identity | localizatio
9 and identity | and identity match n (Plant-
match (%) match (%) (%) mSubP)
Cell wall invertase 1 TRINITY_DN2977_c | NCO034011(P | Cell wall (0.7)
. . persica)
2_g1_i2 (98%
(CWINV1) GGABO10728721 | 729392 (97%) 0112 (98%) (66%)
Cell wall invertase 2 TRINITY_DN58605_ | NW02102537 | Cell wall (0.9)
c0_gl i1 (98%) 5(C. sinensis)
(CWINV2) GGAE01109889.1 976747 (97%) - (82%)
Cell wall invertase 3 TRINITY_DN17376_ | NC012010(Y | Cell wall (0.3)
c0_gl_i10 (96%) - Vinifera)
(CWINV3) GGAE01121540.1 | 1364501 (99%) —- (64%)
Neutral invertase 1 (NINV1) TRINITY_DN2901 ¢ | KF718860(C | Plastid (0.5)
0_gL il (99%) . sinensis)
GGAE01022874.1 1523998 (99%) e 0 (84%)
Neutral invertase 2 (NINV2) TRINITY_DN7461_c | CM014052( | Plastid (0.6)
. M.
0_91_i1 (93%) domestica)
GGAE01119103.1 783733 (95%) (76%)
Neutral invertase 3 (NINV3) TRINITY_GG_15949 | NC_012012( | Cytoplasm
0 ol il (99% V. vinifera)
GGAE01011826.1 1386518 (99%) | —C0-91.i1 (99%) (79%) (0.2)
Neutral invertase 4 (NINV4) TRINITY_DN141831 | KP053405(C | Plastid (0.6)
c0_gL i1 (100% - sinensis)
GGAE01062287.1 1278054 (98% —c0_g1_i1 (100%) (88%)
Neutral invertase 5 (NINV5) TRINITY_GG_11522 | NCO034016(P | Cytoplasm
76_g1_il (90% - persica)
GGAE01030565 1057615 (99%) | —C76-91.i1 (90%) (86%) (0.2)
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https://www.ncbi.nlm.nih.gov/nuccore/GGAB01072872.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286471.729392.1&RID=XNS2F4KS01R&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAE01109889.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286471.976747.1&RID=XNSBKDH201R&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAE01121540.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286470.1364501.1&RID=XNSGVETZ01R&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAE01022874.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286471.1523998.1&RID=XNT0C6GE01R&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAE01119103.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286471.783733.1&RID=XNT3WH7V01R&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAE01011826.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286470.1386518.1&RID=XNT7CEZY01R&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAE01062287.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286470.1278054.1&RID=XNTAK9SB01R&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAE01030565
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286470.1057615.1&RID=XNTE3KDG01R&display=reads

Vacuolar invertase 1
(VINV1)

Vacuolar invertase 2
(VINV2)

Hexokinase 1 (HK1)

Hexokinase 2 (HK2)

Hexokinase 3 (HK?3)

Hexokinase 4 (HK4)

Fruktokinase 1 (FK1)

Fruktokinase 2 (FK2)

Fruktokinase 3 (FK3)

Fruktokinase 4 (FK4)

Fruktokinase 5 (FK5)

Sucrose synthase (SS)

Sucrose-phosphate
phosphatase 1 (SPP1)

Sucrose-phosphate
phosphatase 2 (SPP2)

GGAE01006295.1

505506 (97%)

GGAB01063390.1

1675652 (98%)

GGAE01107266.1

1301214 (100%)

GGAE01118471.1

1529550 (99%)

GGAE01031242.1

GGAB01088020.1

1137583 (99%)

GGAEQ01074415.1

1269317 (100%)

GGAB01032707.1

1052446 (98%)

GGAB01048669.1

232383 (97%)

GGAB01032403.1

1177935 (99%)

GGAB01084714.1

1423238 (96%)

GGAE01053339

826437 (97%)

GGAE01112488.1

664663 (99%)

GGAB01063835.1

1470994 (96%)
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TRINITY_DN4663_c
0_gl_i3 (78%)

TRINITY_DN4663_c
0_gl_i3 (97%)

TRINITY_DN381_c0
_g3_i3 (99%)

TRINITY_DN381_c0
_03_i3 (85%)

TRINITY_DNG6805_c
0_g2_i7 (99%)

TRINITY_DN6900_c
1_gl_i3 (99%)

TRINITY_GG_25277
_c0_g1_il (98%)

TRINITY_DN1834_c
1_g3_i2 (99%)

TRINITY_DN28664_
c0_g2_i3 (99%)

TRINITY_GG_8267_
c0_gl_il (98%)

TRINITY_GG_983_c
0 gl il (97%)

TRINITY_GG_1104_
c141_g1_i1 (99%)

TRINITY_DN6169_c
0_gl_il (99%)

TRINITY_DN43187_
c0_gl_i1 (98%)

KU884473(C
. sinensis)
(76%)

NC012022.3(
V. vinifera)
(67%)

NC034015(P
. persica)
(83%)

AM456450.2
(V. vinifera)
(83%)

JIN118545.1(
V. vinifera)
(82%)

NC041799(M
. domestica)
(72%)

NW02102611
4(C. sinensis)
(78%)

XM00837827
9(M.
domestica)
(84%)

JX067537(A.
chinensis)
(85%)

JX067535(A.
chinensis)
(90%)

NC012011(V
. vinifera)
(86%)

NC041805(M
. domestica)
(77%)

AY509994(A.
chinensis)
(87%)

NC012014.3(
V. vinifera)
(68%)

Vacuole (0.7)

Vacuole (0.7)

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA



https://www.ncbi.nlm.nih.gov/nuccore/GGAE01006295.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286470.505506.1&RID=XNSPN47N01R&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAB01063390.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286470.1675652.1&RID=XNSV3W6701R&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAE01107266.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286470.1301214.1&RID=4UZBK1H2014&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAE01118471.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286470.1529550.1&RID=42TZM1KX014&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAE01031242.1
https://www.ncbi.nlm.nih.gov/nuccore/GGAB01088020.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286470.1137583.1&RID=42VR0VFZ014&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAE01074415.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286470.1269317.1&RID=42XU1YXP016&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAB01032707.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286471.1052446.1&RID=4XDCCKPH014&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAB01048669.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286470.232383.1&RID=42Z38UKK016&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAB01032403.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286470.1177935.1&RID=4XJRY898016&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAB01084714.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286471.1423238.1&RID=4XMXVBFZ016&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAE01053339
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286470.826437.1&RID=504RZ3TG014&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAE01112488.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286470.664663.1&RID=4XVUWGSP016&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAB01063835.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286471.1470994.1&RID=4XWMAT00016&display=reads

Sucrose-phosphate synthase
1 (SPS1)

Sucrose-phosphate synthase
2 (SPS2)

Sucrose-phosphate synthase
3 (SPS3)

GGAE01109516.1

554516 (99%)

GGAB01078977.1

324571 (99%)

GGAE01036876.1

1146340 (97%)

TRINITY_GG_21764
c3_gl_il (99%)

TRINITY_GG_1633_
cl4_gl_i2 (99%)

TRINITY_GG_12565
_c121_gl_il (99%)

AF318949(A.
chinensis)
(85%)

NC012017(V
. vinifera)
(78%)

ONI128760.1(
P. persica)
(82%)

NA

NA

NA
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https://www.ncbi.nlm.nih.gov/nuccore/GGAE01109516.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286470.554516.1&RID=4SHRHPC5016&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAB01078977.1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?run=SRR6286470.324571.1&RID=43MVXADE014&display=reads
https://www.ncbi.nlm.nih.gov/nuccore/GGAE01036876.1

Supplementary Table 2. List of primers used in gqRT-PCR analysis.

Gene Forward primer sequence Reverse primer sequence
VMCWINV1| GTGGACCGAAGCCAAACAACCT |GCCCAGTCTTCGATGTCTCGAT
VMCWINV2 | CTCTGATGCAACCAGTTCCTCT CTCCTGAGGGAAAGCTTCTTGT
VMCWINV3 | GGCTTCAGTCGTTTCCAAGMC CCACCCTTGAGCTCTGTATCAT
VmVINV1 | TGATGACCTCTTGAAGGGTTGG AGCAGGGAATTCAGTACCGTTC
VmVINV2 | TTGCTCAAGGAGGGAGAACAGT | TATAAGCCGAGTCCATCGACCA
VmNINV1 |GGCCTGCATTAAGATGAAGAGG | TTCCCTACAAATCTCCCACTGC
Vm NINV2 |GAAGTCCTAGACCCAGATTTCG CCAGTTACCTTCCCATAAGCAC
Vm NINV3 | GAAGGCGAGGAGTGGAGAATTA | TGCGTCTCTCGGCTATCTTAAC
Vm NINV4 |CCGTTAGACAGTTGGCCTGAAT TCCTCCCAGTACAGCAAAGAAG
Vm NINV5 |GAGTGGTTAAGCGTCTTCATGC |TCCATTCAGGGAGAGAATCAGG
VmFK1 GCACAACTAGCTGAGGATGACA |ATTGCACCTCTCTCCTTGACAG
VmFK?2 CTGAAGGGTCAGATGGTTGCAGA | AATGCATCACCAGCACCAGTCG
VmFK3 TTTACCAGGACGAGGAGCGATT |CTTTCGTCGGTAAGGCAGGAAT
VmFK4 ACCGCTGATGAACTCAATCTCG |ACCTCCATCGCCTTTAAGTGAG
VmFKS CCAGGCTGAAGTGATAAAGGTG |CACCAATGGTCACAAGGAGAAG
VmHK1 GGAGGCAGATACTACGACTCAA |AGGTAGTAGACCATGCCACTTG
VmHK2 GGGCACTCTCGTTAAATGGACA |CACACGCATATCGAGACCAACT

VmHKS3

TGTCTGCCCTGGTCAATGAT

TACTCTGGCATCCATGTCC
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VmHK4

GAAGTTGAGAAGAACGGTCGTG

GATTTCAGTCACGGCTTCATCC

VmSPS1 GGCATGGTCAAAGGGTGTTCTA |CTCCTCAACGCTGGGAATTTAC
VmSPS2 AGGAGGCTTTAATCCTGTGGAC |CGGAAGACTCACCTTCTGAGTT
VmSPS3 GAGCTGCTTAGAACAGCTGGAA |CTTCGCTTCTGCATTGGTGTAG
VmSPP1 AGCACTAAGTCTTCCGTCCTGT |TGACTTGATCTACCCACACTCG
VmSPP2 GTTTGACAAGTGGGAGCTGTCT |ATACGAGCCCATCTGGTACTTC
VmSS CGGGGTCTCTGGTTTTCACAT CCCGTACAAAGATCCCATGTTC
VmMGAPDH | CAAACTGTCTTGCCCCACTT CAGGCAACACCTTACCAACA
VmActin TTCCCTGGGATTGCTGATAG GGTCTTGGCAATCCACATCT
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