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Abstract
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ABSTRACT

A total of ten tree-ring chronologies of Scots pine, Pinus sylvestris L., was constructed

between the Vesterålen archipelago and the Finnmarksvidda in order to investigate the

regional variability of radial growth and climate response of pine. The longest tree-ring

chronology, located in Forfjorddalen in Vesterålen, was highly significant back to AD

1354. The study area was divided into three dendroecological zones; the coast, the inner

Scandes and the Finnmarksvidda. In all regions, July temperature was the most

important growth-determining factor. At the coast, pine showed a significant positive

response also to August temperatures. A partial study in the inner Scandes showed that

the radial growth at north-facing slopes was enhanced by high June temperatures, most

likely due to the influence of the midnight sun. Evidence of environmental stress due to

global warming was seen in reduced growth during periods of warm-moist mid winters

at the coast and, particularly in the warm 1930s, in the Scandes. Also, there were

indications of drought stress in summer in the intra-alpine valleys of the Scandes and at

the edaphically dry coastal site, Stonglandseidet.

On the basis of the tree-ring chronologies, July temperatures were reconstructed back to

AD 1800 for northern Norway 69°N and July-August temperatures along the coast back

to AD 1358. The 20th century since 1915 was a period of above-average temperatures

and growth. In the present reconstruction, a comparable warm period occurred

previously only AD 1470-1540. In the 19th century, cool summers prevailed about AD

1810, in the 1830s and from the late 1860s to 1910. The 17th century, the coolest

interval of the ‘Little Ice Age’, experienced three intervals of cool summers around AD

1605, 1640 and 1680. There was evidence of a lack of pine regeneration in the first half

of the 17th century. Major regional temperature differences were observed around AD

1760 with extraordinarily warm summers east of the Scandes, but average temperatures

at the coast, and about AD 1800, when the coast was warm, but the inland cooling. An

exploratory reconstruction of June temperatures from growth differences between north-

and south-facing slopes demonstrated the potential of site-related growth responses for

refined climate reconstructions.
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INTRODUCTION

CLIMATE CHANGE AND PALAEOCLIMATOLOGY

The earth’s climate is a dynamic system. In pre-industrial times, climate variations were

mainly caused by changes in solar irradiation and by aerosols from explosive volcanic

eruptions (Sear et al., 1987; Rind and Overpeck, 1993; Sarachik et al., 1996). However

today, by emitting large quantities of greenhouse gases and sulphate aerosols, also man

plays an active role in the earth’s climate (Schimel et al., 1996; Tett et al., 1999). Since

the late 19th century, the global mean temperature has increased by about 0.3°C to 0.6°C

(Jones and Briffa, 1992; Parker et al., 1994; Nicholls et al., 1996). Major challenges in

climate research are the attribution of causes for this temperature trend (Santer et al.,

1996), the prediction of future climate change (Kattenberg et al., 1996), its spatial and

temporal variability and its potential impact on the human environment.

The instrumental climate record shows that the northern hemisphere warmed stepwise in

the 1920s and since the 1970s, interrupted by a distinct cooling from the 1940s to the

late 1960s (Jones and Briffa, 1992). Generally, the warming was strongest in the high

latitudes and during winter. However, temperature changes in the regions bordering the

North Atlantic Ocean were less representative of the hemisphere mean trends (Briffa

and Jones, 1993). For instance, there was no significant warming trend during the 20th

century in northern Europe. Spatially and seasonally varying trends also were observed

within Norway (Hanssen-Bauer and Nordli, 1998). The months contributing most to the

annual warming were June to August in the north and the autumn months, particularly

October, in the south. A summer-autumn temperature maximum in the early 1920s was

restricted to northern Norway. Furthermore in the late 19th century, the northern coast

was colder than the northern inland (Hanssen-Bauer and Nordli, 1998). Such differences

are due to the large latitudinal range of the country as well as its topography and

proximity to the North Atlantic Ocean which cause steep east-west gradients and local

climates. Monitoring these patterns of climate change is of high scientific significance

because they are an expression for changes in the atmospheric circulation and sea

surface temperatures over the northern North Atlantic which is the area of main heat

transfer between low latitudes and the Arctic. Furthermore, the positive temperature

anomaly sustained by heat advection by the North Atlantic Drift has large socio-

economic implications in northern Europe.

Long series of climate information are necessary to gain insight into the natural

variability of climate and their causes. The timescales and amplitudes of regular
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variations as well as the frequency and severity of extreme weather events such as

storms, summer frosts, droughts or catastrophic rain falls can be studied from relatively

numerous instrumental records back to the 1870s. Longer series are rare and their geo-

graphical distribution is restricted. The world’s longest series of temperature measure-

ments from central England reaches back to AD 1659 (Jones and Bradley, 1992). In

Scandinavia, the first climate stations were established in AD 1756 in Stockholm and AD

1761 in Trondheim. Further information on climatic or climate-related events may be

extracted from historical documents reporting, for instance, crop yields (Fjærvoll, 1961),

glacier advances (Eide, 1955), severe winters (Pfister et al., 1998) and ice conditions

(Ogilvie, 1992; Vesajoki and Tornberg, 1994).

Other information on past climate must be derived from natural climate proxy data,

contained within biological, sedimentological and glaciological ‘archives’ (Bradley,

1999). Each type of climate proxy has its strengths and weaknesses concerning record

length, dating accuracy, time resolution, replication, geographical coverage and the

climate signal. Annual resolved proxy-records such as ice layers (Tarussov, 1992;

Grootes, 1995; Mosley-Thompson et al., 1996), corals (Cook, 1995), speleothems

(Lauritzen and Lundberg, 1999a; 1999b), varves (Wohlfarth et al., 1998; Snowball et

al., 1999) and tree rings (Fritts, 1976; Cook and Kairiukstis, 1990; Kalela-Brundin,

1999; Lindholm et al., 1999) are of high value for the extension of the instrumental

climate series (Bradley and Jones, 1995a; Jones et al., 1998). The majority of sediments

provide climate and environmental information on decade to century timescales which is

‘archived’ in their sedimentological, mineralogical or chemical properties and their

fossil content such as pollen, diatoms, chironomids and macrofossils (Eronen and

Huttunen, 1987; Berglund et al., 1996; Hyvärinen and Mäkelä, 1996; Barnekow, 1999;

Eronen et al., 1999; Olander et al., 1999). Further climate information on various

timescales can be gathered from fluctuations of glaciers (Karlén, 1988; Ballantyne,

1990; Dahl and Nesje, 1994; 1996), lake levels (Eronen et al., 1999) and tree lines

(Kullman, 1989; 1996). Limitations of single climate proxies may, at least partly, be

overcome by multi-proxy syntheses.

TREE RINGS AND CLIMATE

Tree rings are a unique source of climate information (Fritts, 1976; Cook and

Kairiukstis, 1990). Tree-ring analysis offers absolute time resolution on an annual or

seasonal timescale and is applicable over a large part of the globe, i.e. in climate regions

where woody plants experience a distinct period of dormancy due to a cold or dry

season. Tree rings are formed by the vascular cambium, a cell tissue between the wood
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(xylem) and bark (phloem) (Larson, 1994). In the first part of the vegetation period, the

cambium of conifers creates large cells with thin cell walls (earlywood) and, at the end

of the growing season, narrow cells with thick cell walls (latewood). The interannual

variability of radial increment is predominantly determined by the climate of the

vegetation period. Because tree rings to a large degree reflect the annual changes of the

regional climate, the tree-ring patterns of trees of the same stand and climate region are

similar. Tree-ring series are particularly characterised by the narrow rings which reflect

climate events close to the tree’s tolerance limit (Fritts, 1976).

Apart from the regional tree-ring signal, each tree shows an individual response to

climate events due to subtle differences in their habitat or ecotype. During extremely

unfavourable growing conditions, the annual ring may only develop on parts of the

stem, which on an increment core or stem disc might appear as a ‘missing ring’ (Larson,

1994). Such missing rings are detected by comparing the tree-ring patterns of several

samples of the same tree and of several trees from the same site (Stokes and Smiley,

1968; Fritts, 1976). This crossdating procedure is the central principle of dendro-

chronology and ensures that all rings are recognised and assigned to the correct calendar

year. In other words, tree ring counts on single trees are not sufficient for use in dendro-

chronology. Generally, only mean tree-ring series comprising at least ten crossdated

individuals are recognised as a tree-ring chronology (Grissino-Mayer and Fritts, 1997),

and only its well-replicated part is applicable for dating and applied tree-ring research.

Because tree species differ in their climate response, separate chronologies must be

established for each species. Also, the correlation between tree-ring series decreases

with distance and each climate region requires its own tree-ring chronologies (Bartholin,

1987; Thun, 1987).

In the same way as climate causes synchronous growth of trees and thus enables

dendrochronological dating, tree-ring analyses allow the reconstruction of past climate

(Fritts, 1976; Cook and Kairiukstis, 1990). Dendroclimatology aims to detect and maxi-

mise the climate signal for the purpose of climate reconstruction. In practical dendro-

climatological work, the tree may be considered as a ‘black box’ between the climate

parameter measured at a meteorological station and the tree-ring width measured on the

sample. However, a number of biological and meteorological factors should be

considered when interpreting tree-ring chronologies. In addition to the autocorrelation

component, the total variability in tree-ring series might be divided in the age-related

growth trend, the regional climate signal, standwide exogenous and local endogenous

disturbances, and remaining unexplained ‘noise’ (Cook, 1990).
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The term ‘age trend’ refers to the fact that the ring widths gradually decline from the

innermost towards the outermost rings. Typically in solitary trees in undisturbed

environments, this trend can be described by a negative exponential or hyperbola

function (Bräker, 1981; Cook et al., 1990). This trend is partly a geometrical function of

the increasing radius of a stem. Also, the ring width is related to the distance between

the location of photosynthesis in the needles and of wood production in the cambial

zone. Particularly when considering a sample extracted near the stem base, this distance

increases as the tree grows in height and successively changes its crown structure. Also,

the needle mass appears to decrease with tree age and causes a reduction of assimilates

available for wood production (Jalkanen et al., 1994).

By removing the age trend, differences in the general growth rate of trees also are

removed. This is necessary in order to prevent the tree-ring pattern of fast-growing

individuals from dominating the interannual variability of the chronology. Differences

in the general growth rate are normally related to site conditions such as soil moisture,

light and nutrients. Due to the detrending process, most standardised chronologies fail to

show low-frequency variations (Cook and Briffa, 1990; Cook et al., 1990; Sheppard,

1991; Briffa et al., 1996). A chronology is composed of tree-ring series from individual

trees and radii, each detrended and standardised to the same mean value. Thus, the

remaining low-frequency variability cannot exceed the average sequence length of the

radius series, a fact known as the ‘segment length curse’ (Cook et al., 1995). In practice,

most chronologies do not show climate fluctuations of wavelengths of more than about

two to three centuries. Alternative methods that preserve more low-frequency variability

such as the ‘regional curve standardisation’ RCS (Briffa et al., 1992; 1996; Cook et al.,

1995) depend on a large sample size with all age groups equally represented.

The tree-ring width of a given year is an expression of the energy balance of the whole

tree and its functions. In the first instance, the energy budget depends on the climate of

the current vegetation period. However, the climate does not only affect the tree ring

directly, but also other compartments of the tree such as needles, annual shoots and

roots. The state of the photosynthetic apparatus and roots as well as the amount of stored

assimilates determine the amount of assimilates available for radial growth of the

following year. Apart from potential time lags in the climate system, this is a major

reason for autocorrelation between tree rings. In addition, the climate of the previous

vegetation period might determine the photosynthesis rate by physiological pre-

conditioning (Fritts, 1976; Kozlowski et al., 1991).
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In northern Fennoscandia, the temperatures of June to August determine the length,

thickness and chlorophyll content of the needles as well as the number of needles per

shoot for the next season (Hustich, 1969; Junttila and Heide, 1981). The needles stay on

the branch for five to six years (Jalkanen, 1996). Although the needles are capable of

assimilation already at the end of June, they contribute little to photosynthesis in their

first year. In the second season, the needles reach their maximum assimilation capacity,

which then gradually declines. Climate events which cause heavy needle shed reduce the

radial growth of pine during several of the subsequent seasons (Jalkanen, 1996).

Because Scots pine is a species with fixed growth, its shoot length also is determined by

the climate of the previous summer (Hesselmann, 1904; Wallén, 1917; Mikola, 1950;

1962; Junttila and Heide, 1981; Junttila, 1986). Height growth of Scots pine in

northernmost Finland proceeds from late May to mid July, which is earlier than radial

growth, 20th June to mid August (Hustich, 1956).

Stand-related influences due to gap dynamics after storm-felling of dominant trees or

forest fires might be expressed in decadal-scale growth pulses in single trees or groups

of trees (Cook, 1990). Also reproductive functions contribute to the error component in

dendroclimatic modelling. After the bud is initiated in the previous year, Scots pine

flowers from the end of June to early July. The cone swells between the 10th of June and

mid August of the following summer (Hustich, 1956). Because a successful seed year

requires three consecutive warm summers, this process is very sensitive to climate

conditions. The allocation of assimilates to flowering and particularly seed ripening

might compete with radial growth (Sirén, 1961).

TREE-RING RESEARCH IN NORWAY

The first tree-ring study on Scots pine, Pinus sylvestris L., from Norway was performed

by Andrew E. Douglass (1919). On his search for cyclicity in climate and sun spots, he

analysed samples from the Oslo region and western Norway as well as one pine from

Mo i Rana in Nordland and another from the inner coast at “latitude 68°45'N”. The first

Norwegian dendroclimatological investigation was carried out by Erling Eide (1926) on

material from a forest inventory in eastern Norway. Already then, he applied correlation

analysis on summer temperatures and the ring widths of 1906-1922 of Norway spruce

(Picea abies Karst.). Eide was interested in the influence of stand density and soil

moisture on radial increment, and aimed to estimate the annual wood production on the

basis of June-July temperatures. He could refer to earlier Swedish and Finnish investi-

gations on the effect of summer temperature on tree growth (Hesselmann, 1904; Wallén,

1917; Laitakari, 1920; Kolmodin, 1923; Romell, 1925).
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In Solør, south-eastern Norway, the botanist Sigurd Aandstad (1934) investigated the

influence of climate on Scots pine, Pinus sylvestris. He analysed the climate-growth

relationship by the method of ‘percent parallel variation’, later introduced as Gleich-

läufigkeit (Eckstein and Bauch, 1969). Due to its significance for dating accuracy and

prediction of forest yield, Aandstad studied the cyclic variability of tree-ring series and

summer temperatures. He also successfully dated timber in wooden buildings and

thereby became Norway’s first dendrochronologist. Successively, he extended his

master-chronologies to the period AD 1350-1930 (Aandstad, 1938; 1960; 1980). He also

developed the first multi-centennial northern Norwegian chronology (Aandstad, 1939)

comprising samples of 12 Scots pines in Steigen, Nordland, AD 1561-1932.

The forest scientist Asbjørn Ording (1941b) combined Aandstad’s Steigen chronology

with two new chronologies to the Steigen-Sørfold chronology (AD 1396-1936). This site

represented the northernmost locality of Ording’s latitudinal transect from northern to

eastern Norway. Other pine chronologies in northern Norway were located at Korgen

(AD 1661-1937) and Namdalseidet (AD 1621-1937). Ording further developed the data

of Aandstad and worked on methodological aspects. He advocated the use of correlation

coefficients for confirmation of dates in addition to visual analysis, but rejected the

applicability of the skeleton-plot method in Scandinavia (Douglass, 1919). Ording

stressed the importance of series length and replication and species choice in dendro-

chronology, and thereby strongly questioned the dates obtained by Ebba Hult DeGeer

from correlation of Norwegian wood with the North American Sequoia chronology

(DeGeer, 1938; 1939). The general rising interest in dendrochronology in Norway in the

late 1930s is apparent in the articles of Kierulf (1936) and Schulman (1944), the

investigation of wood, excavated from Raknehaugen (DeGeer, 1938; Ording, 1941a;

Johnsen, 1943), as well as in the foundation of a dendrochronological commission

‘Trekronologikommisjonen’ in Oslo, November 1939 (Høeg, 1944).

Already before Aandstad’s and Ording’s work in northern Norway, the forester Tollef

Ruden (1935) investigated the regional growth variability of Scots pine 1901-1933 in

Porsanger, Finnmark, with references to the tree-ring series from Sølor (Aandstad,

1934) and Sodankylä in Finish Lapland (Boman, 1927). His general aim was the

standardisation of tree-ring analysis for the use in forest taxation. He continued Ording’s

discussion of dendrochronological methodology (Ruden, 1945) and assessed tree-ring

parameters such as resin ducts, latewood percent and latewood density and their relation

to climate in the Oslofjord region (Ruden, 1955) and in Vesterålen, northern Norway

(Ruden, 1987).
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Per Eidem (1943) investigated the climate response and periodicity of tree rings of

Norway spruce, Picea abies, at nine localities in South-Trøndelag, applying hand-drawn

curves for tree-ring standardisation and Gleichläufigkeit for the analysis of the climate-

growth response. He assessed the regional variability and the growth differences bet-

ween species on 15 and 11 localities of Norway spruce and Scots pine, respectively, in

North- and South-Trøndelag (Eidem, 1953). Eidem worked as a dendrochronologist in

the Trondheim region (Eidem, 1943; 1944b; 1944a; 1953), in Valdres (Eidem, 1955)

and Numedalen (Eidem, 1956a; 1956b; 1956c; 1959). His pine and spruce master

chronologies from Selbu in Trøndelag covered the period AD 1424-1940 (ten trees since

AD 1595) and 1461/1523-1937, respectively (Eidem, 1953) and his pine chronology

from Numedalen AD 1383/1536-1954 (Eidem, 1959).

Whereas the studies of Aandstad, Johnson and Eidem were initiated by Jens Holmboe, it

was Ove Arbo Høeg (1944; 1956a; 1956b; 1958) who became the main promotor of

dendrochronological research in Norway in the late 1940s. Holmboe and Høeg were

professors of botany at the University of Oslo. Under Høeg’s supervision, much of the

southern part of Norway was systematically covered by dendrochronological investi-

gations in Hallingdalen (Eiklid, 1952), Setesdalen and along the southern coast (Dams-

gård, 1952; 1998), Gudbrandsdalen (Slåstad, 1957), near Oslo (Brandt, 1958), in

Ryfylke (Sørensen, 1965) and near Bergen (Brandt, 1975). The topics of these studies

were related to the regional variability of tree rings, the influence of site conditions, the

comparison of Scots pine and Norway spruce, and the development of chronologies for

dating purposes. During this period of high dendrochronological research activity, tree-

ring analyses also were applied to assess the fertilising effect of nitrogen emissions on

spruce (Strand, 1950), the effect of fruiting on radial increment (Ljunes and Nesdal,

1954) and the predictability of sea-fishery yields (Ottestad, 1942; 1960). Elias Mork at

the Norwegian Forest Research Institute did important work on wood anatomy (Mork,

1926; 1946) and the relationship of tree growth, climate and reproduction at the upper

tree line (Mork, 1941; 1942; 1957; 1960). Mork (1960) and Majda Zumer (1969a;

1969b) also studied cambial activity.

Tree-ring research at the University of Trondheim began in the 1970s, at first on 14C-

isotopes in tree-rings of Scots pine at the laboratory of radiological dating in Trondheim

(Glad, 1977; Glad and Nydal, 1982). A dendrochronological laboratory was established

at the Department of Botany for dating of the large amount of timber excavated from

medieval Bergen and Trondheim (Thun, 1980; 1984). Here, Terje Thun developed

several 1200-year long chronologies (Thun, 1987), including pine chronologies for
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Trøndelag back to AD 552 (Thun, 1998), for south-eastern Norway back to AD 829 and

for western Norway back to AD 883 (Storsletten, 1993). In the recent years, the Trond-

heim laboratory also worked on drift wood of the Arctic and northern Norway

(Johansen, 1998; 1999), including a dendroclimatological analysis of Dahurian larch,

Larix gmelinii (Rupr.) Kuzen. (Johansen, 1995).

In the early 1980s, a renewed interest in dendrochronology arose in northern Norway.

The Steigen chronology was updated (Briffa et al., 1986) and Fritz-Hans Schweingruber

collected samples for chronologies in Saltdalen, near Narvik, Lødingen and Skibotn

(Schweingruber, 1985; Schweingruber et al., 1987; 1991; Briffa et al., 1988b). Pre-

sumably due to the discovery of Norway’s oldest living Scots pine, Ruden constructed

the first pine chronology for Forfjorddalen, Vesterålen, and interpreted the climate of AD

1700-1850 (Ruden, 1987). Thun and Vorren (1992; 1996) produced a second For-

fjorddalen chronology as well as short tree-ring series from lower Kirkesdalen in Måls-

elv, Troms, and Hamarøy in Nordland. A third, now well-replicated chronology from

Forfjorddalen was developed at the Department of Biology at the University of Tromsø

(Kirchhefer and Vorren, 1995). Also in parts based in Tromsø, the present author

studied pointer years of pine and birch (Betula sp. L.) AD 1871-1990 in Alta, Finnmark,

considering climate, soil moisture and slope aspect (Kirchhefer, 1992; 1996; 1998), and

another master thesis was carried out on the climate response of Alaskan White spruce,

Picea glauca (Moench) Voss (Skoglund, 1993; Skoglund and Odasz, 1998).

A tree-ring laboratory also was founded at the Archaeological museum in Stavanger.

Here, Maarit Kalela-Brundin (1996; 1999) developed pine chronologies for south-

western and eastern Norway. The pine chronology from Femundsmarka, eastern

Norway, extends back to AD 1120 and was applied for the reconstruction of July-August

temperatures back to AD 1500. Furthermore, historical and tree-ring data were compared

(Pedersen and Kalela-Brundin, 1998). Living oak (Quercus sp. L.) as well as Viking age

and medieval oak timber along the coast of southern and western Norway has been

investigated at the National Museum in Copenhagen (Bonde and Christensen, 1993;

Christensen, 1993; Bonde, 1994; Hylleberg Eriksen, 1994; Christensen and Havemann,

1998).

Several studies applied tree rings in the context of glaciology (Matthews, 1976; 1977).

Planning a significant extension of this work, Innes (1987) established a sampling net-

work of Scots pine from 39 localities, mainly in the Svartisen-Okstindan and Jostedals-

breen-Jotunheimen areas. Ballantyne (1990) applied tree-ring counts in birch in order to

date glacier advances in Lyngen, northern Norway. Birch has been the subject of a
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number of exploratory investigations (Zumer, 1969a; Millar, 1980; Treter, 1982;

Staschel, 1989; Kirchhefer, 1996). An example of the application of tree rings in

forestry and environmental research is the report on acid precipitation of Strand (1980).

The status of dendrochronological research in Norway in the early 1990s is documented

by reports from meetings in Oslo 1991 (Storsletten and Thun, 1993) and Stavanger 1993

(Griffin and Selsing, 1998).

DENDROCLIMATOLOGY IN NORTHERN FENNOSCANDIA

Dendroclimatological research in northern Norway should be seen in a Fennoscandian

context. Tree-ring research in Sweden and Finland has been an inspiration for work in

Norway and Fennoscandian tree-ring chronologies have been used for dating purposes

across the national borders. Most important for dendroclimatology is the fact that

climate reconstructions in the climatically heterogeneous region of Fennoscandia must

be interpreted in the light of climate modifications due to the Scandes and the North

Atlantic Ocean.

In Sweden, Henrik Hesselmann (1904) conducted a pioneering study on the influence of

climate on tree-rings of Scots pine 1895-1904, with the northernmost site near Gälli-

varre. Aarne Boman (1927), who mainly was interested in the analysis of periodicity in

radial growth, developed five 150-260 year long tree-ring chronologies near Sodankylä,

Finland, north of the Polar Circle. Both authors used between four and six trees per

locality. Stellan Erlandsson (1936) studied tree rings and climate near Lake Torneträsk

(AD 1464-1931), Kiruna (AD 1578-1931) and Karesuando (AD 1772-1931), Sweden,

including Boman’s Sodankylä series (AD 1701-1919).

Using the material from the second Finnish forest inventories, intensive comparative

studies have been carried out on radial increment, reproduction, and needle growth of

pine and spruce along latitudinal, altitudinal and climatic gradients in relation to soil

conditions, stand density and age classes (Eklund, 1944; 1954). Partly based on this

material, Mikola (1950) studied the climate-growth response of Scots pine and con-

structed a pine chronology for Lapland AD 1750-1947. Later, he reviewed results on tree

growth and climate in northernmost Finland until 1957 and presented tree-ring chrono-

logies for Pallastunturi, Ivalojoki, Lemmenjoki, Inarinjärvi, Naatamojoki and Kevo

1890-1957 (Mikola, 1962). Hustich and Elfving (1944) studied the ring widths of 1890-

1939 in Utsjoki/Kevujoki, northernmost Finland. Hustich (1945) assessed the effect of

climate, ripening years and autocorrelation on tree-ring width and made regional com-

parisons. Successively, he developed series of observations on height growth, needle
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length and female flowering until 1977 (Hustich, 1956; Hustich, 1958; Hustich, 1969;

Hustich, 1978). Also in Kevo, Kärenlampi (1972) performed a small-scale dendro-

climatic study on pine growth in the 1960s.

Gustav Sirén (1961; 1963; Sirén and Hari, 1971) developed a northern Finnish chrono-

logy for AD 1181-1960, assessed the history of summer temperatures and pine regenera-

tion and made predictions of forest yields. Subfossil pine logs were sampled along the

northern tree line of Scots pine in Finland (Eronen and Huttunen, 1987). Based on a

tree-ring series which continuously extends back to 165 BC (Zetterberg et al., 1994), a

standardised chronology has been published back to AD 50 (Lindholm et al., 1999). A

floating, radiocarbon-dated chronology from subfossil wood covers the period 5000-500

BC (Zetterberg et al., 1994; Eronen and Zetterberg, 1996; Zetterberg et al., 1996).

Based on pine chronologies elaborated by Matti Eronen and Jouko Meriläinen, the

regional variability of pine growth and climate-growth response along the northern tree

line in Finland has been assessed mainly by Markus Lindholm (Eronen et al., 1994;

Lindholm, 1996; Lindholm et al., 1996a).

In Sweden in the late 1970s, Wibjörn Karlén started collecting pine samples for a multi-

millennial pine chronology at five sites near Lake Torneträsk, Sweden, which was

developed in co-operation with the dendrochronological laboratory in Lund (Bartholin

and Karlén, 1983). Already at an early stage of work, the continuous part of the Torne-

träsk chronology covered the period AD 436-1980. A preliminary dendroclimatological

analysis showed the correlation with July temperatures, and the chronology was com-

pared with glacier advances (Bartholin and Karlén, 1983). Climate-growth response

functions on four of the Torneträsk sites and a climate reconstruction back to AD 1680

were computed by Aniol and Eckstein (1984). In the following years, the continuous

chronology was extended back to AD 402 and a floating, radiocarbon-dated chronology

back to 6000 BP (Bartholin, 1987). This material was analysed radiodensitometrically

at the Swiss Forest Research Institute, and climate reconstructions were computed at the

Climate Research Unit, University of East Anglia (Briffa et al., 1990; 1992).

Apart from the multi-millennial chronologies in northern Finland and Sweden, a number

of shorter chronologies have been established in northern Fennoscandia (Figure 1;

Schweingruber, 1985; Schweingruber et al., 1987; Briffa et al., 1988a; Lindholm et al.,

1996b). Generally, chronology networks are better suited to show the regional mean

patterns of tree growth and past (Fritts, 1991; Cook et al., 1994). Advanced analyses

aim at reconstructing circulation patterns (Bradley and Jones, 1993; Hirschboeck et al.,

1996). In Fennoscandia, Schove (1950; 1954) made the first attempts to reconstruct
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prevailing circulation patterns from a compilation of information from tree-ring, 
historical and instrumental data. Today, the chronology network is denser and the 
opportunities for such research is considerably improved enabling, for instance, 
reconstructions of July-August temperatures for Finland and Fennoscandia back to AD 
1700 (Briffa et al., 1988a), April-August temperature for northern Fennoscandia and 
Europe back to AD 1750 (Briffa et al., 1988b) as well as maps of annual summer 
temperatures in Europe for 1750-1975 (Schweingruber et al., 1991).  
 
 
 
 

 

Figure 1: Map of Fennoscandia north of 66°N showing the location of tree-ring chronologies. 
Crosses: Lake Torneträsk localities (Bartholin and Karlén, 1983), dots: tree-ring density 
chronologies in northern Norway (Schweingruber, 1985; International Tree-Ring Data 
Bank), squares: tree-ring network analysed by Briffa et al. (1988a), diamonds: chronology 
network of Lindholm et al. (1996b), stars: sites investigated in the present thesis. This map, 
a polar stereographic projection, was created by GMT-OMC version 4.1 (The General 
Mapping Tools-Online Map Creation) provided by GEOMAR, Kiel, at the web-site 
<http://www.aquarius.geomar.de/omc> (Wessel and Smith, 1995). 
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Recently, Fennoscandian tree-ring chronologies were applied to reconstruct the climate

of the Arctic (Overpeck et al., 1997), the North Atlantic Ocean (D'Arrigo et al., 1993;

D'Arrigo and Jacoby, 1993) and hemispheric and global temperatures (Briffa et al.,

1996; Jones et al., 1998; Mann et al., 1998; 1999). In several of these studies, the

Torneträsk chronology has been the only representative for northern Fennoscandia. This

reflects the fact that most dendroclimatological efforts have been made in the

climatically relatively homogeneous region east of the Scandes, whereas the western

slope of the Scandes in Norway was represented by few sites only. Until the early 1980s,

the Steigen-Sørfold chronology was the only tree-ring series available in northern

Norway for east-west comparisons in northern Fennoscandia. Of Schweingruber’s

chronologies, only the Narvik and Lofoten/Lödingen series were applied to temperature

reconstruction.

Furthermore, although the Lake Torneträsk chronology comprises trees from several

sites, it might not be representative for entire northern Fennoscandia. Thus several

parallel series must be developed which match the length and quality of the Lake

Torneträsk series and the recently published northern Finnish chronology (Lindholm et

al., 1999). This is particularly important in the light of the fact that “traditional

inferences on global and hemispheric mean temperature change based on regional

proxies originating around the margins of the northern North Atlantic must be viewed

with some caution” (Briffa and Jones, 1993). The existing coastal chronologies were

placed along a south-north axis and did not allow a systematic investigation of pine

growth and climate response in relation to the steep gradient of oceanity. Therefore, a

more systematic coverage of the western slope of the Scandes and the Norwegian coast

seemed to be required.

Reasons for work on dendroclimatology, other than the further development of the

chronology network and long chronologies, is the monitoring of boreal forest growth

under changing environmental conditions. Several studies have revealed changes in the

climate-growth response of conifers in high latitudes (Jacoby and D'Arrigo, 1995; Briffa

et al., 1998a; 1998b; Vaganov, 1999). Briffa and Jones (1993) pointed out that “indeed

there are potential dangers in assuming that high-latitude (or high-altitude) trees res-

pond exclusively to summer temperatures”. On this basis, as well as due to its potential

implications for climate reconstruction, the investigation of the importance of site

conditions for the climate-growth response of Scots pine in northern Norway is here

considered to be a significant aspect of tree-ring research.
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THE AIMS OF THE STUDY

Aim 1: Development of tree-ring chronologies from Scots pine along the Atlantic

coast of northern Norway and reconstruction of coastal climate.

These series aimed to contribute to the number of coastal chronologies and

palaeoclimate records. Ideally, these should be of 500 years length in order to cover the

‘Little Ice Age’. Sampling at the most oceanic pine localities aimed to facilitate the

assessment of growth and climate response of pine at sites climatically most different

from the localities east of the Scandes and strongly affected by oceanic factors.

Aim 2: Analysis of the spatio-temporal variability of pine growth, climate-growth

response and past climate along the gradient of continentality from the coast of

northern Norway to the inland east of the Scandes.

From earlier investigations it was known that tree rings of Scots pine along the northern

Norwegian coast reflect the temperatures during a longer vegetation period than those

pines growing east of the Scandes (Schweingruber et al., 1987; Briffa et al., 1988a). The

present thesis aimed at systematically documenting changes of pine growth and its

relation to climate on the basis of a denser chronology network than previously

available. This network should be homogeneous in terms of site selection and the

methods of tree-ring standardisation.

Aim 3: Assessment of the influence of slope aspect on the climate-growth response of

Scots pine.

Although summer temperatures are known to be the principal growth-determining factor

at the northern and alpine tree line, site conditions modify this general growth response.

A single-year analysis in Alta, Finnmark, showed that the slope aspect affects the length

of the vegetation period of pine as reflected in the tree rings (Kirchhefer, 1992; 1998).

This partial study aims to shed further light on the importance of site selection, and the

slope aspect in particular, for dendroclimatological work in northern Fennoscandia.
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METHODOLOGY

The present investigation applied standard methods of dendrochronology and dendro-

climatology as described by Fritts (1976), Hughes et al. (1982) and Cook and

Kairiukstis (1990) and software of the International Tree-Ring Data Base Program

Library ITRDBproglib, particularly COFECHA for the crossdating and ARSTAN for the

tree-ring standardisation and chronology computation (Holmes et al., 1986), and 3Pbase

/PPPhalos for the climate-growth response analysis and climate reconstruction (Guiot

and Goeury, 1996). Further details are given in Papers 1-3.

THE MAIN RESULTS

The three aims are addressed in separate papers. The main results were as follows:

Paper 1: July-August temperatures at the coast of northern Norway were reconstructed

back to AD 1358, based on ring-width chronologies of Scots pine from

Forfjorddalen (AD 1354-1994), Stonglandseidet (AD 1544-1995) and Vikran (AD

1699-1992). The 20th century was conspicuous as a long-lasting period of above-

average temperatures, only precedented by the period AD 1470-1540. The 17th

century, regarded as the coolest interval of the ‘Little Ice Age’ (Bradley and

Jones, 1993), experienced three temperature cycles of approximately 40-year

length and minima around AD 1605, 1640 and 1680. In the 19th century, cool

summers prevailed about AD 1810, in the 1830s and during the 1860s-1910. In

contrast to inner Fennoscandia, coastal summer temperatures were not

particularly high around AD 1760, but a warm interval occurred about AD 1800.

Paper 2: At all eight investigated localities between Vesterålen and Finnmarksvidda,

July temperature was the most important growth-determining factor of pine

growth. Whereas inland pines reacted predominantly to July temperatures,

coastal pines responded significantly positively also to August temperatures, but

negatively to warm-moist mid winters. During the temperature optimum of the

20th century, the inner Scandes sites represented a separate dendroecological zone

with reduced growth due to the oceanic winters of the 1930s and enhanced

growth due to high late-winter to spring precipitation ∼1950. Three climate

reconstructions were obtained back to AD 1800: July temperatures for northern

Norway, July temperatures for the inland region and July-August temperatures

for the coastal region.
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Paper 3: In Målselvdalen and Dividalen in the inner Scandes, a positive growth

response to June temperatures was observed at north-facing slopes, in addition to

the dominant influence of July temperatures. July temperatures were

reconstructed back to AD 1799, based on the regional mean chronology. On an

experimental basis, June temperatures were reconstructed back to AD 1776, based

on the growth differences between north- and south-facing slopes. The latter

reconstruction shows that slope-related differences in radial growth of pine can

be used for refining the picture of past summer temperatures. However, firm

conclusions require a higher site replication, long local climate series and

independent verification.

DISCUSSION

The three papers enclosed in the present thesis were written independently of each other

and cross-references were avoided. For practical editorial reasons, each paper refers only

to results from the data set under investigation. Therefore several partial results

supplemented each other when synthesising the individual papers. Others appeared to be

contradictory. Such cases will be discussed in the following section.

TREE-RING CHRONOLOGIES

A major achievement of the present study was the compilation of a northern Norwegian

network of tree-ring chronologies at about 69°N. The data set comprised eleven new

ring-width chronologies of Scots pine, Pinus sylvestris, distributed across eight main

localities and covering the gradient of continentality from the Atlantic coast to the Finn-

marksvidda. Where previous tree-ring series existed (Forfjorddalen: Ruden, 1987; Thun

and Vorren, 1996; Målselvdalen: Thun and Vorren, 1996; Skibotndalen: Schwein-

gruber, 1985; Karasjok: Lindholm et al., 1996b), the presented chronologies are based

on entirely new samples1. Whereas at Karasjok no significant improvement was gained

in relation to Lindholm’s chronology, the total length of the tree-ring records of

                                                

1 with the exception of the re-measured ring-width series of the second oldest Scots pine of Norway AD

1275-1979 from Forfjorddalen (Thun and Vorren, 1996)

Forfjorddalen, Målselvdalen and Skibotndalen was extended by about 420, 41 and 194

rings back to AD 877, AD 1637 and AD 1579, respectively.
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In the present study, only those chronology sequences comprising at least eight to eleven

trees have been applied for the dendroclimatological analyses2. All following dates of

first years of chronologies refer to this criterion. Therefore, the shortest chronology

restricted the common analysis period to the years 1800-1992 (Paper 2). The three

coastal chronologies extend back to at least AD 1705 (Forfjorddalen, Stonglandseidet,

Vikran; Paper 1) and will potentially contribute to temperature reconstructions such as

the northern Finnish reconstruction back to AD 1720 based on four chronologies

(Lindholm et al., 1996b) and the reconstruction of Briffa et al. (1988a) back to AD 1700

based on 12 northern Fennoscandian chronologies. The chronologies from Forfjorddalen

and Stonglandseidet extend back to AD 1358 and 1548, respectively (Paper 1) and thus

contribute to knowledge on ‘Little Ice Age’ climate (Bradley and Jones, 1995a; Briffa et

al., 1999). The Forfjorddalen chronology FF2 (Paper 1) is the longest single-site

chronology in Norway, slightly longer than the recently published pine chronology from

Femundsmarka, south-eastern Norway (Kalela-Brundin, 1999). Such tree-ring

chronologies of 500 years length or more are in high demand by the palaeoclimatology

community (Bradley and Jones, 1995a). The Forfjorddalen chronology is here

considered to be particularly high in scientific value because it represents a marginal

area at the north-western edge of the Eurasian continent and thus potentially monitors

climate changes of the North Atlantic Ocean and the Arctic.

THE GENERAL TREE-RING SIGNAL

Paper 2 showed, that approximately two thirds of the tree-ring variability were in

common among the STANDARD and ARSTAN chronologies and as much as three quarters

among the RESIDUAL chronologies (Paper 2). This means that the year-to-year variability

of ring width was more homogeneous in the region than the low-frequency variability.

In accordance with previous knowledge on tree growth in high northern latitudes

(Mikola, 1962), the largest portion of the annually resolved tree-ring variability was

determined by July mean temperatures at all sites and across the entire study area (Paper

2). This indicates a relatively high thermal and dendroecological homogeneity of

northern Fennoscandia. Although the Scandes strongly affect the spatial pattern of

precipitation, they do not cause totally different regimes of summer temperature on their

oceanic and continental side, respectively. This in turn justified the validity of the

                                                

2 This refers to the numbers of trees required to reach a level of 85% expressed population signal EPS
(Wigley et al., 1984) in STANDARD and ARSTAN chronologies. Only six to seven trees were required for
the RESIDUAL chronologies in Paper 3.

reconstruction of July temperatures covering the study area at large which explained

56% variance of the observed July temperatures (Paper 2).
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REGIONAL VARIABILITY

The present study showed that 25-33% of the tree-ring variability differed between the

sites. Nearly 10% of the ring-width variability was related to the west-east gradient

(Paper 2). Hypothetically, therefore, if every tenth ring is significantly different between

east and west, this might have considerable implications for dating accuracy across the

northern Scandes in terms of the regional significance of master chronologies in the

east-west direction and the requirements for chronology length. In terms of July

temperatures and atmospheric circulation patterns, a more detailed analysis might yield

information over the frequency of summers with predominantly cyclonic or anti-

cyclonic weather situations over northern Fennoscandia (Paper 2).

The availability of only eight tree-ring localities was too sparse to define regional groups

by numerical means. Therefore, the observed climate-growth responses provided the

initial subdivision of northern Norway into dendroecological zones, resulting in a

coastal zone with a response to July-August temperature and an inland zone with a July-

temperature response (Figure 2, Paper 2). This conforms with the results of the principal

component analysis which implied that the major variability occurred in the east-west

direction. On the other hand, the visual comparison of the chronologies revealed that

also other clusters occurred, but that these groups varied in time. The most remarkable
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Figure 2: Climate-growth response functions computed from the regional climate series and
the first principal components of the ARSTAN tree-ring chronologies for the coastal
(Forfjorddalen, Stonglandseidet, Vikran, Målselvdalen) and the inland region (Dividalen,
Skibotndalen, Nordreisa National Park, Karasjok) according to Table 6 in Paper 2.
Regression coefficients for climate of previous (a) to current August (A) and the ring
widths of the five prior years. Lines: response to mean temperatures; bars: response to
precipitation. Two standard deviations are indicated.
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decadal-scale pattern appeared in the inner Scandes in the 1930s to 1950s (Målselv,

Dividalen, Skibotn; Figure 3), which justifies the classification of the inner Scandes as a

dendroecological zone of its own, separate from the coast and the Finnmarksvidda east

of the Scandes (localities Nordreisa and Karasjok).

The present study showed that the eastern chronologies yielded the strongest tree-ring

signal as measured, for instance, by the signal-to-noise ratio, SNR. This is likely to be

caused by the short, intensive vegetation period in continental climate of northern

Norway. The hypothesis that the northern exposition of the Karasjok site did influence

these results (Paper 2), could not be confirmed when directly investigating the effect of

slope aspect in the inner Scandes (Paper 3). Another regional trend in statistical para-

meters was a decreasing low-frequency variability along the coast towards the most

oceanic south-west, where also the temperature amplitudes are lowest (Paper 1). On the

other hand, the highest ring-width amplitudes were observed in Dividalen in the inner

Scandes, where the climate is dry and strongly determined by radiation (Paper 2).

The strongest growth response to July temperatures were obtained at Vikran and

Karasjok. Again, Paper 3 could not confirm that the north-facing exposition caused this

signal (Papers 1 and 2). Provided that the results from the inner Scandes (Paper 3) are

representative also for the coast and the Finnmarksvidda, this supported the hypothesis

that the strong July response at Vikran and Karasjok is related to the latitudinal gradient.

As a third alternative, the proximity to the long-operative climate stations at Tromsø and

Karasjok might affect the results. Karasjok is the only representative of the regional
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Figure 3: Mean growth AD 1800-1992 of the three dendroecological zones in northern Norway,
computed from the ARSTAN chronologies. Coast: Forfjorddalen, Stonglandseidet and
Vikran; Inner Scandes: Målselvdalen, Dividalen and Skibotn; Finnmarksvidda: Nordreisa
and Karasjok (Paper 2).
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inland climate series prior to 1913 (Sihcajavri), and Tromsø represents one of three

coastal series prior to 1916 (Røst, Bodø) and one of two series prior to 1890 (Bodø)

(Hanssen-Bauer and Nordli, 1998)

At the coast, tree-ring width responded to August temperatures, in addition to July

temperatures (Papers 1 and 2). However, this August-temperature signal might be of

less regional significance than expressed in Paper 2. Vikran displayed a rather weak

August signal (Paper 1) and, in fact, the Målselvdalen chronologies did not show the

July-August temperature response when applying local climate data (Paper 3). The

results in Paper 2 were biased due to autocorrelation in the coastal temperature data. The

correlation coefficients between July and August temperatures at the coast were r = 0.47

(Tromsø) to r = 0.48 (Skrova fyr), but inland r = 0.29 (Karasjok) to r = 0.24 (Sihcajavri),

only (Førland and Nordli, 1993). This means that the response function reflected the

autocorrelation between July and August temperatures rather than a true relation

between ring width and local August temperatures.

These findings imply that the dendroecological east-west division of northern Norway

with the border along the highest summits of the Scandes is an artefact caused by the

application of the regional climate series (Hanssen-Bauer and Nordli, 1998). Instead, the

border of the inland region should be moved west of the Målselvdalen sites, i.e. to the

sub-oceanic climate region. The dendroecological chronology groups of the inner

Scandes and the Finnmarksvidda both display an inland type response function, but the

inner Scandes differ in the particular 20th century growth pattern.

However, it should be emphasised that this regional division is mainly a means to

describe the spatial patterns of pine growth and climate response observed during the

recent 120 years, and the 1930s to 1950s in particular. It might help to select chrono-

logies or new localities for the evaluation of certain dendroecological or dendroclimato-

logical questions such as the reconstruction of past climate and the prediction of global

change effects on northern pine forests. It is hoped that in particular syntheses of

chronologies and climate reconstructions from different zones contribute to

understanding past climate of northern Fennoscandia. The limits of these zones might

vary in time due to changing continentality.

SLOPE ASPECT AND JUNE TEMPERATURES

Inland, a June-temperature signal occurred in Målselvdalen, Dividalen, Skibotn and

Karasjok in the residual chronologies (Paper 2) and/or at north-facing slopes (Figure 4
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and Paper 3). In Paper 2, the slope influence was obscure, because the June response

occurred at both north-facing (Karasjok) and south-facing sites (Skibotn). Also the

results from Dividalen might appear contradictory, because in Paper 2, the south-west

facing slope shows a growth response to June temperatures, but in Paper 3 this is not the

case. The reason for this is that Paper 3 is based on a subsample (Devdiselva DEV) of

the Dividalen chronology (DIV). Although the general inclination of the sample area is

south-west, it receives abundant light from the north-west and north-east in summer,

except at Devdiselva (DEV) which receives no direct light from the north-east. This

implies that the angle of the horizon is more important than the local slope.

An assessment of the climate-growth responses and light conditions at dendroclimato-

logical sites east of the Scandes investigated earlier (Briffa et al., 1988a; Lindholm et

al., 1996b) might answer the question of whether the June response occurs only in the

inner Scandes or also on the northern Fennoscandian peneplains north of the Polar

Circle and under which slope and light conditions this phenomenon occurs. The sole

north-facing locality at the coast, Vikran, does not indicate any June temperature

response3 which might imply that this response is restricted to the inland zones.
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Figure 4: Climate-growth response functions for the south- and north-facing slopes in the inner
Scandes, computed from the Bardufoss-Dividalen climate mean 1947-1992 and slope-mean
chronologies (Table 3 in Paper 3). Regression coefficients for mean temperature (lines) and
precipitation (bars) of previous (a) to current August (A). Two standard deviations are
indicated.

                                                

3 except in the response function for the early calibration period (AD 1875-1915) which, however, is
suspicious due to the absence of a significant response to July temperatures
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TWENTIETH CENTURY CLIMATE CHANGE

Tree growth was relatively consistent between the study localities in the 19th century

(Papers 1-3). This implies that summer temperatures were the main growth-limiting

factor during that period. Since AD 1910, however, the growth trends of the individual

sites diverged, suggesting responses to additional climate factors during this warm

period. One possible factor is drought stress during the vegetation period (Jacoby and

D'Arrigo, 1995). Indirect evidence was seen at the steep south-facing site of Stonglands-

eidet (Paper 1) and in Dividalen (Paper 3), where Scots pine did not show the usually

negative response to summer precipitation. In the inner Scandes and the Finn-

marksvidda, increasing late winter/early summer precipitation appeared to improve

growth on a decadal timescale around 1950 (Papers 2 and 3).

Also, there was evidence for physiological stress due to high December-to-February

temperatures and precipitation. This factor apparently modified coastal pine growth

constantly (Paper 1) and growth in the inner Scandes particularly in the 1930s (Papers 2

and 3). During this period of exceptionally warm summers (Briffa and Jones, 1993) and

weakened influence of western air masses (Tuomenvirta et al., 1998), the assumption of

a linear relationship between tree-ring widths and summer temperatures was, to a certain

degree, violated. This raises the question of whether such situations occurred also

previously and whether such events can be recognised in the tree-ring records. In terms

of global warming scenarios, these results implicate that warming summers in

combination with increasing winter temperatures do not enhance pine growth in this

region. The same will be true if warm summers are associated with a larger risk of

drought stress. Thus northern forest may not act as a carbon sink under climate

warming.

Other responses to climate outside the vegetation period were observed in the inner

Scandes. In Målselvdalen, there were indications that snow-free conditions in early

winter (November) caused deeply frozen ground and reduced growth in the following

season (Paper 3). In late winter, a positive response to March temperatures occurred at

south-facing slopes in the second half of the 20th century and might be interpreted in

terms of more frequent south-western air masses and higher cloudiness reducing the risk

of needle damage related to frost-drought, extreme diurnal temperature amplitudes and

strong insulation during below-zero temperatures (Paper 3). On the other hand, higher

cloudiness in June might reduce the vitality of pine at north-facing slopes.
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However as seen earlier, not every significant regression coefficient in the response

functions may be meaningful in an ecological sense. Statistical artefacts may occur due

to autocorrelation between climate parameters, inhomogeneities in the climate series or

due to tree-ring standardisation. For this reason, and because these papers primarily

aimed at reconstruction of the strongest climate signal, individually occurring responses

outside the vegetation period have been ignored in Papers 1 and 2.

CLIMATE-GROWTH CALIBRATION

The most significant climate reconstruction was obtained when calibrating the main

growth pattern, i.e. the first principal component of the eight chronologies in the

regional network, with the main climate signal as represented by mean July

temperatures for northern Norway (Paper 2). This reconstruction explained more than

half of the observed temperature variance (R2
adj = 56%). Lower R2

adj values were

obtained when integrating chronologies and climate over smaller areas (Paper 2: coastal

July-August temperatures R2
adj = 45% and inland July temperatures R2

adj = 48%; Paper

3: inner Scandes July temperatures R2
adj = 38%). Reconstructions based on single

chronologies and climate stations along the coast yielded between R2
adj = 29% and R2

adj

= 49% (Paper 1). The reconstruction of June temperatures, i.e. a climate parameter that

is not the main source of tree-ring variability, accounted for only 26% of the observed

climate variability (Paper 3).

Thus, the calibration results clearly depended on the regional integration of ring width

and climate data. The more chronologies included and the larger the climate region, the

higher the explained variances. Also, the results were inversely related to the distance

between climate station and chronology, and positively related to the length of the

calibration period. Furthermore, changing climate affected the calibration results. In the

cooler period around the turn of the 20th century, tree growth at the coast and in the

Scandes depended more on the year-to-year variability of summer temperatures than

during the warm period since the 1920s (Papers 2 and 3). Here, one might see an

example of the violation of the principal of uniformity in palaeoclimatology. Therefore,

climate data from the second half of the 20th century might not be optimal for calibration

and reconstruction purposes. Thus, homogenising of the early part of the long climate

series deserves continued priority in climate research (Hanssen-Bauer and Førland,

1994; Frich et al., 1996; Nordli, 1997). Correction of the long climate series at the coast

of northern Nordland and Troms county is likely to improve the calibration results for

the multi-centennial chronologies at Forfjorddalen and Stonglandseidet.
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As discussed in Paper 3, the applicability of the slope-related climate signal for climate

reconstruction depends on a higher number of sites, long climate records close to the

chronology sites, and the possibility of independent verification, for instance, from

historical documents.

SUMMER TEMPERATURES OF NORTHERN NORWAY SINCE AD 1358

The present thesis provided several reconstructions of summer temperatures back to AD

1800 (Papers 2 and 3) and for the coastal region back to AD 1358 (Paper 1). Thereby, the

northern Norwegian temperature record is extended by minimum 67 and 510 years,

respectively, in relation to the longest instrumental temperature measurements from

1867 at the coast (Tromsø, Andenes), and 1871 (Alta) and 1877 in western Finnmark

(Karasjok), respectively. In addition, a June temperature reconstruction of experimental

character is computed back to AD 1776. Detailed descriptions of these reconstructions

are given in Papers 1-3.

All obtained reconstructions of summer temperatures showed above-average

temperatures since around AD 1915 and low temperatures for most of the 19th century

except around AD 1830, 1850-65 and, at the coast, the 1870s. The variations in summer

temperatures during AD 1800-1910 during the late part of the ‘Little Ice Age’ have been

similar on both sides of the Scandes. On the other hand, the coastal temperatures

recovered earlier after the extremely cold summers of 1812 and 1815, 1837 and 1868.

Synthesising the relatively large number of tree-ring chronologies in northern

Fennoscandia covering the period since AD 1800 might enable a more detailed, annually

resolved, picture of spatial variability of summer temperatures during the 19th century.

Summer temperatures before AD 1800 were reconstructed only for the coast (Paper 1)4.

The comparison with the July-August temperature reconstruction for northern Fenno-

scandia, mainly representing the Torneträsk and Lake Inari regions (Briffa and Schwein-

gruber, 1992) revealed that on both sides of the Scandes, temperatures were close to the

long-term average in the second half of the 18th century, but slightly below average

during its first half (Figure 5). Major discrepancies were the growth maxima at about AD

1760 and 1800, which were restricted to the inland and the coast, respectively. Paper 1

proposed that these east-west differences were related to certain atmospheric circulation

patterns during summer. A final explanation of the two growth maxima of Scots pine re-

                                                

4 except the June-temperature reconstruction for inner Troms back to AD 1776 (Paper 3)
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Figure 5: Two reconstructions of northern Fennoscandian July-August temperatures, displayed
as standard deviations SD from the mean of AD 1875-1976. Coast: Forfjorddalen-
Stonglandseidet mean temperatures AD 1550-1989 (Paper 1); ‘inland’: northern Fenno-
scandian temperatures (Briffa and Schweingruber, 1992), predicted by chronologies from
Lake Inari, Lake Torneträsk, Muddus, Öst Fröstsjöåsen (62°20'N), Steigen and Lofoten/
Lødingen. The smooth curve represents 10-year low-pass filtered data.

quires a synopsis of the available northern Fennoscandian tree-ring chronologies as well

as other palaeoclimate proxies, and remains a challenge for future palaeoclimate studies.

Much of the recent interest in palaeoclimatology has focused on determining the tempo-

ral limits of the ‘Little Ice Age’ and describing its climate character (Bradley and Jones,

1993; 1995a). In the present thesis (Paper 1) the lowest temperatures were reconstructed

for the AD 1450s, 1540s, ∼1605, ∼1640, ∼1680, ∼1810 and 1880-1910. Thus, the

summers of the 17th century, which is regarded as the most severe part of the ‘Little Ice

Age’ (Bradley and Jones, 1993), experienced three strong fluctuations in summer

temperatures. At Lake Torneträsk, the onset of low temperatures was earlier at around

AD 1570 and the three first decades of the 18th century were cooler than at the coast

(Briffa et al., 1992). In part, this might result from differences in the standardisation

techniques. The ‘regional curve standardisation’ (RCS) applied at Torneträsk (Briffa et

al., 1992; Briffa et al., 1996) accounted for more low-frequency variability than the

fitting of individual curves as applied on the present material. This question must

remain open until a sufficient amount of samples has been collected for the early part of

the coastal chronologies in order to facilitate the application of the RCS-method.
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Also, the trend in the severity of the temperature minima in the 17th century differed

between the reconstructions, i.e. ascending in northern Sweden and Forfjorddalen, but

descending at Stonglandseidet. Final conclusions about climate severity and

interdecadal trends during this period of the ‘Little Ice Age’ must take into account the

effect of the proposed logging activity in Forfjorddalen and climate-induced population

dynamics. This demonstrates that temperature reconstructions should not be based on

single tree-ring chronologies, only.

An amelioration of growth and climate comparable to the 20th century’s occurred from

AD 1470-1540 as shown by the Forfjorddalen chronology. This feature is found also in

northern Sweden (Briffa et al., 1992), eastern Norway (Kalela-Brundin, 1999) and

western Europe (Briffa et al., 1999). Although the Forfjorddalen chronology has no

independent replicate at the coast of northern Norway, and in spite of the signs of

human impact on pine growth at this locality in later times, this signal may be

considered as real and as a European-scale phenomenon. On the other hand, due to the

limitations of tree rings regarding the expressed low-frequency variability (Briffa et al.,

1996), no conclusions can be made on the absolute temperatures of this period in

relation to the 20th century mean. For instance, Bradley and Jones (1995b) offer two

alternatives, with the first showing temperatures comparable to the present mean and the

second showing the period AD 1470-1540 as an interruption of a general cooling trend

towards the 17th century.

FUTURE STUDIES

A major task of palaeoclimatology is to provide long climate-proxy series. Samples

presently at hand will yield three additional 500-year long chronologies at Forfjorddalen

(FF1), Dividalen and Nordreisa. With only little sampling efforts, it is likely that the

coastal chronologies can be extended back to ∼ AD 1250 (Forfjorddalen) and ∼ AD 1400

(Stonglandseidet), respectively. A continuous 1,500-year chronology comparable with

those in northern Finland and Sweden, but exclusively based on pine and pine remains

on dry forest ground, appears to be achievable in Dividalen5. High priority should be

assigned to the construction of multi-millennial chronologies from subfossil pines in

lakes of the coastal region.

                                                

5 In Dividalen, the present sample distribution in time resembles the state of the chronology at Lake
Torneträsk in the 1980s (Bartholin and Karlén, 1983), with the oldest ring dating to AD 403, abundant
material for AD 700-1000, but only few samples for the period AD 1000-1500.
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Because there has been no continuous dendroclimatological research activities in

Norway in the recent decades, the list of possible and required tasks is extensive:

1. Synthesis of the recently developed pine chronologies in northern Fennoscandia and

detailed study of the regional variability of pine growth and climate;

2. Further search for optimal localities for dendroclimatological research in the present

study area, for instance for an improved documentation and characterisation of the

dendroecological zones;

3. Extending the network to the northern pine-forest outliers of Nordreisa, Kvænangen,

Alta and Porsanger;

4. Systematic investigation of Nordland with its steep gradient of continentality,

thereby also bridging the gap to localities in northern Trøndelag presently under

investigation (Bård Solberg, University of Trondheim, pers. comm. 1999);

5. Application of more advanced spatial analyses (Fritts, 1991; Cook et al., 1994) on

the growing Fennoscandian tree-ring network;

6. Investigation of latewood width (Kalela-Brundin, 1999), maximum latewood density

(Schweingruber et al., 1988; Schweingruber, 1990) and stable isotopes (Hemming et

al., 1998; McCarroll and Pawellek, 1998) which in most cases are superior over ring

width in terms of the chronology and climate signal;

7. Improving the climate data set by homogenising additional long climate series and

application of climate data from northern Sweden and Finland;

8. Calibration of pine growth with additional important parameters of climate change

such as cloudiness, wind velocity, snow cover and extreme temperatures on various

timescales (daily, pentadal, seasonal, annual);

9. Assessing the signal of sea surface temperatures, the North Atlantic Oscillation,

NAO (Van Loon and Rogers, 1978; D'Arrigo et al., 1993; Cook et al., 1998), as well

as regional air pressure indices such as the zonal Hammerodde-Bodø and the

meridional Bergen-Helsinki indices (Tuomenvirta et al., 1998);

10. Synthesising palaeoclimate information from various tree-ring parameters, historical

and other high-resolution proxy records;

11. Further analysis of site-related growth responses, in particular slope aspect and soil

moisture as well as the climate-growth response of Scots pine at lake shores and in

bogs, i.e. candidates for future subfossils;
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12. Study on population dynamics and tree-line fluctuations of pine as sources for

information about long-term climate trends (Sirén, 1961; Kullman, 1996);

13. field measurements of cambial activity, ecophysiological functions as well as local

and microclimate, accompanied by phytotron experiments and phenological

observations.
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