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Abstract 

Escherichia coli is one of the most established bacterial hosts for genetic devices, partially due 

to the available knowledge and tools for ease of manipulation. However, there is an incentive 

to increase the current number of available recipients. For instance, marine bacteria are being 

recognized for their potential as microbial "chassis" due to their rich genetic and metabolic 

diversity. With this in mind, tools for simulating the behavior of genetic devices would help 

synthetic biology expand its reach to untraditional hosts. Hence, here in this study, the effect of 

recipient on the performance of a genetic switch, the "chassis" effect, was estimated across 

different bacteria with an aim to indicate the possibilities of marine microorganisms as hosts. 

The device considered in this study was assembled from two sub-parts 1) L-arabinose-inducible 

PBAD promoter that expresses tetR and gfp genes encoding production of the TetR repressor and 

GFP fluorescent protein; and 2) anhydrotetracycline (aTc)-inducible PTet promoter that controls 

araC and mKate expression, which codes for the AraC repressor and mKate fluorescent protein. 

AraC protein is a repressor of the PBAD promoter, while TeR represses PTet. The dynamic 

behavior and stability of this device was simulated by a mathematical model based on a system 

of ordinary differential equations (ODEs) that predicted possible "chassis" effect and compared 

its strength across selected bacterial hosts. 

To further our understanding of the performance of a genetic switch, a dynamic modeling 

framework was established, and a behavior was simulated for a set of marine bacteria and E. 

coli. This was done by building a mathematical model that included system of already 

parametrized non-linear ODEs which were solved using the R programming language. The 

parametrization of ODEs by a non-linear model resulted in the Hill (n) and activation (K) 

coefficient estimates. The non-linear regression was performed on a GFP fluorescence data 

collected from the induction study with E. coli. This assay estimated GFP-, GFP/OD600 signals 

and GFP rates from the cells induced with L-arabinose. 

The simulated dynamic response was quantified by a response time (𝑇1/2), a limiting factor for 

designing efficient gene circuits. The simulation estimated the fastest response of Vibrio 

natriegens and the slowest of Pseudomonas oceani. This outcome has indicated high potentials 

of V. natriegens for future applications in the synthetic biology. The "chassis" effect predicted 

by the model was estimated as a direct consequence of the specific growth rate (𝜇). 

Keywords - synthetic biology, marine bacteria, chassis effect, genetic toggle switch, model 
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1 Introduction 

The idea of engineering microorganisms to perform predictable and programable functions has 

been present among biologist for more than a half century (Andrianantoandro et al., 2006). 

During 1990s when the genomic revolution happened, a new scientific arena was discovered, 

that is now called synthetic biology (Cameron et al., 2014).  

This approach connects biologist and engineers with same ambition, to build unique 

components, pathways, and networks, that will be further used to design, build, and test 

biological machines (Cameron et al., 2014). Current and future applications for (re-)engineered 

microorganisms are immense, from drug discovery in pharmaceutical industry to food 

biotechnology and renewable fuel synthesis (Cameron et al., 2014). Additionally, synthetic 

biology is already having a major impact on modern medicine such as mRNA vaccines and 

cancer treatment (Ruder et al., 2011) and is expected to deliver novel therapies or cheaper 

commercial drugs in future (Khalil, A.S., & Collins, J.J., 2010).  

A cellular host that is used as a recipient of engineered biological systems is called a “chassis”. 

The main role of a chassis is to propagate genetic information, express genes and perform 

programed biological functions (Kim et al., 2016). The most commonly used organism for these 

purposes is Escherichia coli, however, huge potential lays in marine bacteria which are 

considered to have broad metabolic diversity that can result in numerous biotechnological 

applications. 
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1.1 Main objectives 

The aim of this work was to develop a framework that has ability to simulate and compare 

performance of an engineered genetic device expressed from a diverse set of marine bacteria 

and E. coli. This was done by building a mathematical model that accounts for the effect of 

species-specific growth rate within a system of non-linear ordinary differential equations. 

Seven bacterial strains were chosen for this purpose as displayed in Table 1. 

 
Table 1 List of bacterial species used in this study 

Species Reference 

Escherichia coli DH5𝛼 Anton, B. P., & Raleigh, E. A., 2016 

Pseudomonas aestusnigri VGXO14 Sanchez et al., 2014; Gomila et al., 2017a  

Pseudomonas deceptionensis M1 Carrión et al., 2011; Carrión et al., 2015 

Pseudomonas oceani KX20 
García-Valdés et al., 2018; 

Wang, M.-q., & Sun, L., 2016 

Pseudomonas pachastrellae KMM330 Gomila et al., 2017b  

Pseudomonas taeanensis MS-3 Lee et al., 2010 

Vibrio natriegens ATCC 14048 Maida et al., 2013 

 

An additional goal was to perform a species-specific parameterization of associated Hill 

functions from gene induction curve data to comparatively quantify differences in device 

performance between selected strains.  
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2 Background 

2.1 Synthetic biology - history and development 

Synthetic biology has started to develop as unique scientific field with work of Jacob and 

Monod in 1960s when cellular regulation by molecular networks was discovered (Jacob et al., 

1960). This event was followed with appearance of advanced molecular cloning techniques in 

later years. A period between 1980 and 1990 was marked with the rise of 'omics' sciences. 

During 1990s automated DNA sequencing become widespread which has led to complete 

genome sequencing of Saccharomyces cerevisiae and Escherichia coli. In January 2000, the 

first synthetic circuits were reported: the toggle switch and the repressilator, where green 

fluorescent protein (GFP) expression was used as an output for monitoring behavior of each 

circuit. This discovery has led to introduction of autoregulatory negative feedback circuit 

(Cameron et al., 2014).  

In year 2004 at the Massachusetts Institute of Technology (MIT) in USA, Synthetic Biology 

1.0 (SB1.0) conference was held. This event brought together scientists from biology, 

chemistry, physics, engineering, and computer sciences. One of the goals of this conference 

was to obtain whole-genome engineering of biological systems. The Registry of Standard 

Biological parts (RSBP) was developed as a base that will serve as digital catalogue of genetical 

parts in 'BioBrick' standardized format. This format was later only used for assembly to 

International Genetically Engineered Machine (iGEM). RSBP was later translated to the 

computation language called Synthetic Biology Open Language (SBOL) which has 

standardized way of describing synthetic parts and circuit designs. The main purpose of SBOL 

was to decrease level of ambiguity among scientists in this area. As a forum for sharing 

protocols and host laboratory websites, OpenWetWare was developed (Cameron et al., 2014). 

During 2005 bacterial photography was possible in E. coli due to light-sensing circuit that was 

engineered. Progress was made in programming of ligand-controlled transcript regulation by 

RNA. Another conference, SB2.0 was held in 2006 at University of California, Berkeley and 

in years after this field spread worldwide which resulted in SB3.0 in Zurich, Switzerland and 

SB4.0 in Hong Kong, China. Some of the major discoveries in last decade were biofuel 

production using acid metabolism in E. coli, programmable microbial kill switch, creation of a 

bacterial cell with a synthetic genome, description of multiple input logic cascade, dynamic 
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control of metabolic flux for biodiesel production, production of artemisinin using engineered 

yeast strain on commercial scale and many others (Cameron et al., 2014).  

In recent period, the cell-free systems (CFS) became key platforms in synthetic biology (Tinafar 

et al., 2019; Cho, E., & Lu, Y., 2020; Fábrega et al., 2021). Traditionally, synthetic biology was 

oriented to technologies that were using the whole cell. These included different biosensors that 

have ability to detect broad spectrum of analytes. CFS contain enzymes that are active during 

transcription and translation, because of that, it is possible to maintain process of the cell dogma 

that is autonomous compared to a cell. They can be from different origins, such as eukaryotic 

or prokaryotic cells (Tinafar et al., 2019). 

CFS can include cell lysates, energy sources, purified proteins, amino acids, RNA, DNA which 

can be used for different purposes such as building of portable diagnostic devices, biomolecular 

manufacturing and can enhance discovery of unknown enzymes. Synthetic biology has had a 

major impact to a development of sensors, manufacturing of therapeutics, production of 

membrane proteins, macromolecular production, modification of proteins and codon tables, 

discovery of biomaterials and many more. It is believed that CFS will connect synthetic biology 

with electronics, computation, and machine learning (Tinafar et al., 2019). 

2.2 Biopart Assembly Standard for Idempotent Cloning (BASIC) 

One of the most important tasks in synthetic biology is to assemble DNA constructs quickly 

and reliably. Hence, the newly developed technologies are highly focused on obtaining a 

standardizable and scalable approach (Storch et al., 2015). BASIC DNA assembly represents 

orthogonal linker-based DNA assembly, and it is a standard that describes the design 

framework for linkers and a universal format for part storage. The assembly always includes 

formation of part-linker-part-linker bonds (Storch et al., 2017).  

The work of Storch et al., 2015 showed that the BASIC assembly allows efficient, parallel 

assembly with high accuracy. They have determined 93% and 99.7% accuracy of four-part 

assemblies with single and double antibiotic selection, respectively. Additionally, double 

antibiotic selection in seven-part assemblies resulted in 90% accuracy. This simple and robust 

method brings together six key concepts: standard reusable parts, single-tier format, idempotent 

cloning, parallel DNA assembly, size independence, automatability (Storch et al., 2015). 
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The principles of the BASIC physical DNA standard lay in the integrated prefix and suffix 

sequences (iP and iS) which are used to ensured compatibility with the creation of fusion 

proteins by optimizing the amino acid coding of both the short BASIC scars and the full iP/iS 

sequences (Storch et al., 2015).  

The integrated prefix iP is a 5'-TCTGGTGGGTCTCTGTCC-3' sequence and iS represents 5'-

GGCTCGGGAGACCTATCG-3' sequence. Both, iP and iS, contain BsaI recognition site. The 

main role of this site is to release the parts from storage vector resulting in different four base 

overhangs that are present at each end. Purpose of overhangs is to ligate half linkers that are 

prefix- and suffix-specific (Storch et al., 2017).  

To release the parts form from a storage vector, it is necessary to have two inward facing BsaI 

recognition sites which leaves a 4 bp scar on the prefix end and 6 bp scar on suffix. End-specific 

ligation is accomplished because of different digestion of 4 bp overhangs at the prefix and 

suffix. Ligation of BsaI and partially double-stranded oligonucleotide DNA linkers is 

performed at a same time. The nonligated linkers are removed in a purification step. The linker-

adapted parts are then placed in an ionic buffer on higher temperature to achieve the final 

assembly (Storch et al., 2015). 

2.3 The Genetic Toggle Switch 

A genetic toggle switch is a device that can achieve bistability (Gardner et al., 2000). It can be 

constructed from two repressible promoters that are arranged in mutually inhibitory network. 

A change between two stable states is induced by presence of a specific chemical or physical 

signal (such as temperature). In practical manner, this device acts like a synthetic, cellular 

memory unit that can be used in various applications such as biotechnology, biocomputing and 

gene therapy (Gardner et al., 2000).  

If a production of some protein is not regulated and it is produced at a constant rate under all 

conditions. This is known as constitutive expression, whereas a promoter that controls this 

expression is called constitutive promoter (Alon, U., 2019). On the other hand, inducible 

promoters are controlled by change of intracellular concentration of an inducer or a repressor 

(Alon, U., 2019). 

Some of frequently used inducible promotors are lactose (lac) promoter (PLac) and tetracycline 

(tet) promoter (PTet). A transcription from the PLac promoter is repressed by a lac repressor 
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(LacI) and tet repressor (TetR) acts on the PTet promoter. The repressors bind to a promoter 

region and inhibit transcription. These repressors can be bound to specific inducers, LacI binds 

to isopropyl-E-D-1-thiogalactopyranoside (IPTG) and TetR binds to anhydrotetracycline (aTc) 

(Alon, U., 2019; Lutz, R., & Bujard, H., 1997). 

Another widely used inducible promoter is a L-arabinose-inducible araBAD promoter (PBAD). 

In a presence of L-arabinose (inducer) transcription from the PBAD is turned on, while in its 

absence, transcription is present at a very low level. This promoter is repressed by AraC. The 

PBAD promoter has showed very fast induction rate and tight control of expression. The activity 

of promoter is under effect of several factors such as concentration of inducer used for 

induction, ability of bacterial strain to degrade arabinose and the physiological characteristics 

of the culture which are under effect of growth media and available carbon source in it (Guzman 

et al., 1995; Lutz, R., & Bujard, H., 1997).  

2.3.1 Design of genetic toggle switch circuits 

The toggle switch circuits can be schematically represented with SBOL (The Synthetic Biology 

Open Language). The SBOL data standard is a data exchange representation for synthetic 

biology designs. This standard ensures collaborative engineering of unique biological systems 

(Galdzicki et al., 2014). It is a proposed standard for exchanging designs among scientists with 

interests in synthetic biology. This format promotes exchange of synthetic biology data between 

software tools, research groups and commercial service providers. (Roehner et al., 2016).  

The design of simple toggle switch can be schematically described by two repressors and two 

inducible promoters. One promoter is inhibited by the repressor that is regulated by the other 

promoter, and vice versa. Hence, each promoter mutually inhibits the expression of the other. 

With this design, it is possible to obtain two stable states, a concept known as bistability 

(Gardner et al., 2000).  

These two distinct states can be produced by high expression of first promoter which leads to 

greater concentration of second repressor which represses second promoter, or by high 

expression of second promoter which leads to greater concentration of repressor for first 

promoter which represses it (Gardner et al., 2000). Another equilibrium that can be obtained is 

the state in which both of genes are expressed at low levels. This state is unstable and even if 

cells can potentially be in this state, any perturbation would push cells to one of two stabile 

states (Lugagne et al., 2017).  
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A scheme of a toggle switch that was considered in this study and its expected behavior 

depending on inducer presence is given in Figure 1. In the presence of L-arabinose, PBAD 

promoter is active (Guzman et al., 1995) and fluorescence of GFP reporter protein can be 

measured, on the other side, presence of anhydrotetracycline (aTc) initiates activity of PTet 

promoter (Lutz, R., & Bujard, H., 1997) which results in mKate signal. In a case that none of 

the inducers are present, none of the promoters show activity, neither tetR and araC genes are 

transcribed (Fontanarrosa et al., 2020) nor the response signals (GFP, mKate) are observable. 

If both of inducers are present, the behavior of presented toggle switch is unknown. 

 

 
Figure 1 Schematic drawing of the genetic toggle switch that consists of two inducible promoters (PTet, PBAD), 
two fluorescent proteins as signals of promoter activity (mKate-RFP and GFP), two genes that are transcribed (araC 
and tetR), two inducers (L-arabinose and anhydrotetracycline (aTC)) and two repressors (AraC and TetR). Possible 
states of genetic device caused by different inducer presence are represented in the table above the drawing. The 
performance of a presented toggle switch was simulated in this study. 
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2.4 The Hill function  

Transcription networks consist of two elements: genes and transcription factors (Alon, U., 

2019). According to central dogma, mRNA is translated to proteins, therefore the 

transcriptional factors affect the rate of protein production that has been encoded by the genes. 

Transcriptional factors (TF) are proteins that can activate or repress genes. Signals from the 

environment can activate specific TFs by altering their ability to bind with DNA or other DNA-

binding proteins. Hence, extracellular molecular signals can be used by synthetic biologists to 

control transcription rates of target genes and consequentially the rate of mRNA and protein 

production (Alon, U., 2019). 

If a TF increases the transcription rate, it is called activator, if opposite, in case that decreases 

the rate of transcription, it is called repressor. The production of all transcriptional factors, since 

they are proteins, is regulated by other TFs. This complex interaction between different TFs 

builds transcription network which describes all the regulatory transcription interactions within 

a cell (Alon, U., 2019). 

In the case that a TF increases the transcription rate after binding to a specific promoter that is 

called activation or positive control. In the opposite case, where a TF decreases the rate of 

transcription, the term that is used is repression or negative control. An input function describes 

the strength of the effect of TF. For a case of production of protein Y that is controlled by single 

TF X, transcription network can be described as 𝑋 → 𝑌 . If rate of production of protein Y is 

equal to a concentration of X in active form (𝑋∗), then: 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑌 = 𝑓(𝑋∗) (Alon, 

U., 2019). 

The Hill function is an empirical expression used to describe an input function and for an 

activator it is a hyperbolic curve that has rising trend from zero to a saturation point (Figure 2) 

and it is formulated in Equation 1. 

 

 
𝑓(𝑋∗) =

𝛽𝑋∗𝑛

𝐾𝑛 + 𝑋∗𝑛 

 
Equation 1 

Parameters for the Hill function are K, 𝛽 and n. The activation coefficient (K) represents the 

concentration of X* that is necessary to significantly activate expression and it is in 

concentration units. The maximal expression level of the promoter is represented by the 𝛽 
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parameter. The Hill coefficient (n) gives information about steepness of input function and 

usually it takes values between 1 and 4 (Alon, U., 2019). 

 
Figure 2 The Hill input function for an activator is a curve that rises from zero and approaches a maximal 
saturated level. A schematic representation of the input Hill functions shows increasing monotonic trend, and the 
larger n, the more step-like the input function. The Hill coefficient change from 1 to 4 is represented with moderately 
steep input functions and for n→∞ the Hill function becomes a step function (Alon, U., 2019). 

The saturation of the Hill function at high activator concentration is achieved because the 

probability that the activator binds the promoter cannot exceed 1, regardless the concentration 

of X* (Alon, U., 2019). 

The Hill function for a repressor is also a hyperbolic curve, but with decreasing trend as 

presented at Figure 3. The same parameters K, 𝛽, n act in equation for repressor (Equation 2) 

and final shape of the input function depends on them. In both cases, a half of the maximal 

expression level (𝛽
2

) is accomplished when 𝑋∗ = 𝐾 (Alon, U., 2019). 

 

 
𝑓(𝑋∗) =

𝛽

1 + (𝑋∗

𝐾 )
𝑛 

 

Equation 2 
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Figure 3 The Hill input function for a repressor is a curve with decreasing trend that starts at the maximal 
promoter activity, β, when the repressor does not bind the promoter at all (X* = 0). Schematic representation of the 
input Hill functions shows decreasing monotonic trend, and the larger n, the more step-like the input function. The 
Hill coefficient change from 1 to 4 is represented with moderately steep input functions and for n→∞ the Hill function 
becomes the step function (Alon, U., 2019). 

2.5 Mathematical models in synthetic biology 

Synthetic biology is in essence an engineering discipline that uses mathematical tools to 

program microbes to perform new functions while understanding cell mechanisms and 

processes. Mathematical modeling often aids in detailed design of biological circuits and in 

simulations that predict behavior. These simulations are often used with experiments that 

produce quantitative data, and further used to inspect the quality of model and its prediction. 

As a result of integration and quality cooperation between experimental and modeling data, it 

can be possible to use engineered microbes as a technological platform (Chandran et al., 2008).  

The unique role of modeling has been seen a crucial link between design and realization in 

engineering. The model should predict the dynamics of a system in various conditions which 

can lead to careful selection of optimal conditions for different processes that engineer the 

desired behavior of microbes. The undesired conditions can be easily avoided by searching for 

them in silico instead of running numerous experiments. Mathematical models should represent 

a bridge that connect conceptual design ideas with downstream biological realization (Zheng, 

Y., & Sriram, G., 2010).  
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On the other hand, modeling of biological systems can be challenging even though the 

structures and functions of many biomolecules are known, the vast majority of molecular and 

cellular mechanisms are not. The complexity of biological systems is present on various scales, 

such as a highly complex interaction among metabolites, metabolic fluxes, proteins, RNA, and 

genes network which can result in obtaining feedback or feedforward loops that respond in 

different time scales. There is also a high sensitivity of biological systems to external, 

environmental factors. These factors affect the predicted behavior and lead to uncertain 

response of biological systems. Unlike the mechanical and electrical systems, highly precise 

prediction of the output of a biological system is difficult to obtain but it can be simplified to 

offer the insights toward synthetic circuit construction (Zheng, Y., & Sriram, G., 2010). 

Models can be simplified by making different types of assumptions such as homogeneity 

assumption within the cell and a cell population. These systems can be modeled by ordinary 

differential equations (ODEs) while systems that include compartmentation, spatial segregation 

or intracellular gradients are commonly modeled by use of partial differential equations (PDEs). 

Other assumptions that are widely used in enzyme kinetics of transcriptional regulations are 

equilibrium, steady state, and quasi-steady state assumption. These tools are widely used for 

removing the time-dependency in the model, which transform ODE to simple algebraic 

equations that can be easily solved (Zheng, Y., & Sriram, G., 2010). 

Among many models that are present now, a scientist needs to choose the one best suited for 

their purposes. Since model selection differs from hypothesis testing, it is important to 

understand that model cannot be completely true in a sense of being a completely precise and 

accurate description of the selected process (Kirk et al., 2013).  

Two categories of mathematical models of biological systems can be described as deterministic 

and stochastic. A deterministic model includes a real system with analytical equations, typically 

ODEs and/or PDEs, which have numerical parameters and usually they are mass balances on 

cellular species and the model is reproducible. The stochastic models can sometimes better 

represent real systems that include random events. These usually examine fluctuations and 

noise effect on system dynamics. A deterministic model consists of interactions and parameter 

values that attempt to predict identical and rigid system dynamics for the same set of parameters 

and initial conditions. Biological systems are typically influenced by both stochastic and 

deterministic events and often become unpredictable with unexpected and irreproducible 

fluctuations (Zheng, Y., & Sriram, G., 2010). 
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2.6 Non-linear regression  

Non-linear regression is used to relate a response (Y) to a vector of predictor variables  

(𝑥 = (𝑥1,...,𝑥𝑘)𝑇). The starting assumption is that the prediction equation depends non-linearly 

on one or more unknown parameters. In the most cases, non-linear models rely on predictions 

that are between responses and their independent predictor variables that can be described as a 

function (Smyth, G. K., 2002). The non-linear regression models can be written in general form 

as:  
 

 

𝑓𝑖(𝑦𝑡, 𝑥𝑡, 𝛼𝑖) = 𝑢𝑖𝑡 

𝑖 = 1,2, … , 𝑛; 

𝑡 = 1,2, . . . , 𝑇 

 

Equation 3 

where 𝑦𝑡, 𝑥𝑡 and 𝛼𝑖 are vectors of endogenous variables, exogenous variables, and parameters; 

𝑢𝑖𝑡 represents unobservable error terms with zero mean (Amemiya, T., 1983). Thus, a simpler 

form of Equation 3 can be given as: 

 

 
𝑌𝑖 = 𝑓(𝑥𝑖, 𝜃) + 𝜀𝑖, 𝑖 = 1, . . . , 𝑛 

 
Equation 4 

 
where 𝑌𝑖  represents responses, 𝑓  is a known function of the covariate vector 𝑥𝑖 =

(𝑥𝑖1, . . . , 𝑥𝑖𝑘)
𝑇  and the parameter vector 𝜃 = (𝜃1, . . . , 𝜃𝑝)𝑇 . 𝜀𝑖  are random errors and usually 

they are assumed to be uncorrelated with mean zero and constant variance (Smyth, G. K., 2002). 

 

In the case when both predictor and response values are known and the function 𝑓 depends on 

some unknown parameter, the parameter estimate can be obtained by providing the best fit of 

the function 𝑓 to observations for response variable. The best fit is provided by minimalization 

of the residual sums of squares (RSS) with respect to 𝛽 according to Equation 5 (Smyth, G. K., 

2002). 

 

 
𝑅𝑆𝑆(𝛽) = ∑(𝑦𝑖 − 𝑓(𝑥𝑖, 𝛽))2

𝑛

𝑖=1

 

 

Equation 5 
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The process of minimization of RSS includes minimizing the least-squares criterion or least-

squares estimation. While minimizing RSS as a solution is obtained the least-squares parameter 

estimates, which is marked as 𝛽̂. The estimates 𝛽̂ are 𝛽 values applicable for function 𝑓, that 

make the smallest possible RSS, and this can be formulated that minimum of RSS(𝛽 ) is 

calculated when 𝛽 = 𝛽̂ . The mostly used algorithm for obtaining the nonlinear regression 

estimates is GaussNewton method (Smyth, G. K., 2002). 

 

The non-linear regression model fitting function that is used in R is nls() and it is a part of the 

package 'stats' (Ritz, C., & Streibig, J. C., 2008). As a parameter of fit quality, this function 

calculates the residual standard error (RSE) that is estimated as the square root of the residual 

sum of squares (RSS) divided by the residual degrees of freedom (Ritz, C., & Streibig, J. C., 

2008). 

2.7 Differential equations  

Differential equations (DEs) are present in various forms in divergent areas of science because 

of their ability to describe natural phenomena. It is essential to solve these equations in an 

accurate and precise way to obtain an appropriate representation of examined behavior. Unique 

for DEs is that numerous DEs cannot have analytical solution, and they are solved numerically 

instead (Soetaert et al., 2012). 

 

The simplest DEs are first order differential equations which can be represented with equation: 

 

 𝑦′ =
𝑑𝑦
𝑑𝑥 = 𝑓(𝑥, 𝑦) Equation 6 

where 𝑓 represents a given function of 𝑥 and 𝑦. In this case, independent variable is represented 

with symbol 𝑥 and 𝑦 = 𝑦(𝑥) is dependent variable. Presented type of equation is named a first 

order differential equation, since it does not contain higher derivatives than the first. This 

equation is also an ordinary differential equation as dependent variable, 𝑦, depends only on one 

independent variable, 𝑥 (Soetaert et al., 2012).  

A solution of Equation 6 is a differentiable function 𝑦(𝑥) for every 𝑥: 
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 𝑦′(𝑥) = 𝑓(𝑥, 𝑦(𝑥)). Equation 7 

If it is assumed that 𝑦(𝑥0) is known, the solution of Equation 7 in a defined interval [𝑥0, 𝑥1] is 

obtained by integrating both sides of Equation 7 with respect to 𝑥, which results in: 

 

 

 𝑦(𝑥) − 𝑦(𝑥0) = ∫ 𝑓(𝑡, 𝑦(𝑡))𝑑𝑡,
𝑥

𝑥0

 𝑥 ∈ [𝑥0, 𝑥1]. Equation 8 

 

If the integral presented on the right side of Equation 8 can be solved to give an equation for 𝑦, 

then an analytic solution can be determined. In every analytic solution, the free parameter, c, 

occurs and the solution is uniquely defined with initial conditions and regulatory conditions. 

On the other hand, many ODEs cannot be solved analytically, and it is necessary to estimate 

the solution by solving them numerically instead (Soetaert et al., 2012). 

ODEs can contain higher derivatives; therefore, for the second order it can be written: 

 

 

 𝑦′′(𝑥) = 𝑓(𝑥, 𝑦, 𝑦′). Equation 9 

 

For obtaining a solution of Equation 9, it is necessary to transform it to a system of first order 

equations. Conversion is done by defining an extra dependent variable such as the one that is 

equal to the first derivative of y, as displayed in two following equations (Equation 10). 

  

 
𝑦′ = 𝑦1 

𝑦1′ = 𝑓(𝑥, 𝑦, 𝑦1) 
Equation 10 

 

In a special case where the first derivative is absent from Equation 9 it is advised to derive 

special methods for the solution of Equation 11: 

 

 𝑦′′(𝑥) = 𝑓(𝑥, 𝑦), Equation 11 

instead of introducing the first derivative of y (y') in equation (Soetaert et al., 2012). 
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There is wide variety of numerical methods for solving ODEs. The simplest form of these 

methods usually includes subdivision of the domain of the independent variable, x, which 

results in several discrete points. These points have different purposes and in finite difference 

methods they serve to approximate values of the dependent variable, y, and to estimate the 

derivatives of y with respect to x only at these discrete points. The series of integration steps 

can be written as 𝑥0, 𝑥1, . . . , 𝑥𝑛 and numerical method creates a sequence of values 𝑦0, 𝑦1, . . . , 𝑦𝑛 

that follows statement written in Equation 12 (Soetaert et al., 2012). 

 

 𝑦𝑛 ≈ 𝑦(𝑥𝑛), 𝑛 ≥ 0 Equation 12 

   

where 𝑥𝑛 = 𝑥0 + 𝑛ℎ represents point where the estimated solution will be computed. 

Moreover, the analytic solution at 𝑥𝑛  is marked as 𝑦(𝑥𝑛)  and as 𝑦𝑛  is marked numerical 

solution that is approximated at 𝑥𝑛. The methods such as Euler and Implicit method are widely 

used numerical methods for solution of ODEs. The accuracy and convergence of numerical 

methods are always in question, and they are inspected with calculating the local truncation 

error, LTE, which is supposed to take small value if the method is accurate. Moreover, LTE 

can be decreased by lowering the size of the step-length of integration. Another concept that 

should be questioned while solving ODEs is stability. If small changes in function or in initial 

conditions induce large effects, the system is unstable or ill-conditioned. On the other hand, 

system is stable or well-conditioned only if small changes in the data initiate small changes in 

solution (Soetaert et al., 2012). 

 

Partial differential equations (PDEs) represent the DEs where dependent variable is a function 

of more than one independent variable. A second order PDE with two independent variables 

𝑥1, 𝑥2 can be presented with Equation 13 (Soetaert et al., 2012). 

 

 𝐹(𝑥1, 𝑥2, 𝑦,
𝜕𝑦
𝜕𝑥1

,
𝜕𝑦
𝜕𝑥2

,
𝜕2𝑦
𝜕𝑥1

2 ,
𝜕2𝑦
𝜕𝑥2

2 ,
𝜕2𝑦

𝜕𝑥1𝜕𝑥2
) = 0 Equation 13 

 

Differential algebraic equations (DAEs) occur as a specific mix of differential and algebraic 

equations. DAEs can be written as Equation 14. 

 

 𝐹(𝑥, 𝑦, 𝑦′) = 0 Equation 14 
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Delay differential equations (DDEs) are unique type of DEs which include past values of the 

dependent variables and/or their derivatives. Specific characteristic of these equations is that 

solving these types of problems requires to acknowledge initial history which includes sequence 

of values instead of initial value. DDEs can be formulated as presented in Equation 15 (Soetaert 

et al., 2012). 
 

 
𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏1), 𝑦(𝑡 − 𝜏2), … , 𝑦(𝑡 − 𝜏𝑛)) 

𝑦(𝑡) = Φ(𝑡) for 𝑡 < 𝑡0   
Equation 15 

 

Stability of systems of ODE can be determined by Liapunov and Jacobi stability analysis which 

are based on different concepts and in some cases, there might be points that Liapunov criteria 

is stable but Jacobi unstable or vice versa (Abolghasem, H., 2012). 

2.7.1 Numerical methods for solving ODEs and systems of ODEs  

The expected solution of differential equation is a function, not a number. In the majority of 

cases, it can be hard or even impossible to determine analytical solutions of differential 

equations, hence the numerical methods are based on simple ideas. These methods include 

initial condition 𝑥(𝑎) = 𝑥0 and series of approximations to the solution at a sequence points 

that are marked as 𝑡1, 𝑡2, 𝑡3, . . . , 𝑡𝑛  which belong to interval [a,b], as a result 

𝑎 = 𝑡0 < 𝑡1 < 𝑡2 < 𝑡3. . . < 𝑡𝑛 = 𝑏 . Because of its simplicity, the Euler's method has been 

widely used for solving the DEs. This method includes Geometric interpretation of differential 

equation: "The differential equation 𝑥′ = 𝑓(𝑡, 𝑥) describes a family of functions whose tangent 

at the point (𝑡, 𝑥) has slope 𝑓(𝑡, 𝑥). By adding initial condition 𝑥(𝑎) = 𝑥0, a particular solution, 

or solution curve, is selected from family of solution" (Mørken, K., 2017). 

It is assumed that differential equation is: 

 

 𝑥′ = 𝑓(𝑡, 𝑥), 𝑥(𝑎) = 𝑥0, Equation 16 

 

and main intention is to obtain a sequence of estimates (𝑡𝑘, 𝑥𝑘)𝑘=0
𝑛  to the solution which follow 

that 𝑡𝑘 = 𝑎 + 𝑘ℎ . The point of true solution is obtained by initial condition which makes 

(𝑡0, 𝑥𝑜) the starting point of the approximation. Solution at 𝑡1 is derived by computing the slope 
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of the tangent at (𝑡0, 𝑥𝑜) which is 𝑥0
′ = 𝑓(𝑡0, 𝑥𝑜) and the equation of the tangent is 𝑇0(𝑡) =

𝑥0 + (𝑡 − 𝑡0)𝑥0
′  (Mørken, K., 2017). 

Consequently, the approximation of 𝑥1 at 𝑡1 is: 

 

 𝑥1 = 𝑇0(𝑡1) = 𝑥0 + ℎ𝑥0
′ = 𝑥0 + ℎ𝑓(𝑡0, 𝑥0). Equation 17 

 

Presented equation gives the next approximate solution point (𝑡1, 𝑥1) and the same process is 

repeated. Generally, in Euler's method, an estimated solution (𝑡𝑘, 𝑥𝑘)  is advanced to 

(𝑡𝑘+1, 𝑥𝑘+1) by following the tangent:  

 𝑇𝑘(𝑡) = 𝑥𝑘 + (𝑡 − 𝑡𝑘)𝑥𝑘
′ = 𝑥𝑘 + (𝑡 − 𝑡𝑘)𝑓(𝑡𝑘, 𝑥𝑘) 

 
Equation 18 
 

at (𝑡𝑘, 𝑥𝑘) from 𝑡𝑘 to 𝑡𝑘+1 = 𝑡𝑘 + ℎ. Which is resulting in the approximation: 

 

 𝑥𝑘+1 = 𝑥𝑘 + ℎ𝑓(𝑡𝑘, 𝑥𝑘) Equation 19 

 

to 𝑥(𝑡𝑘+1) (Mørken, K., 2017). 

Another family of numerical methods belongs to Taylor methods and the simplest case is 

quadratic case, but the general principle of these methods is similar. Formulation of Quadratic 

Taylor method: "The quadratic Taylor method advances the solution from a point (𝑡𝑘, 𝑥𝑘) to a 

point (𝑡𝑘+1, 𝑥𝑘+1) by evaluating the approximate Taylor polynomial: 

 

 𝑥(𝑡) ≈ 𝑥𝑘 + (𝑡 − 𝑡𝑘)𝑥𝑘
′ +

(𝑡 − 𝑡𝑘)2

2 𝑥𝑘
′′ Equation 20 

at 𝑥 = 𝑡𝑘+1. The new value 𝑥𝑘+1 is given by: 

 

 𝑥𝑘+1 = 𝑥𝑘 + ℎ𝑥𝑘
′ ℎ2

2 𝑥𝑘
′′ Equation 21 

 

where the values 𝑥𝑘, 𝑥𝑘
′  and 𝑥𝑘

′′are obtained as derivatives and ℎ = 𝑡𝑘+1 − 𝑡𝑘" (Mørken, K., 

2017). Euler's midpoint method is defined as the method where solution is achieved from 

(𝑡𝑘, 𝑥𝑘) to (𝑡𝑘+1, 𝑥𝑘+1) in two steps:  
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1. approximation to the solution is estimated at the midpoint 𝑡𝑘 + ℎ/2 by using Euler's 

method with step length ℎ/2: 

 

 

2. solution is advanced to 𝑡𝑘+1  by following the straight line from (𝑡𝑘, 𝑥𝑘) with slope 

given by 𝑓(𝑡𝑘 + ℎ/2, 𝑥𝑘+1/2) as presented in Equation 23 (Mørken, K., 2017). 

 

The Runge-Kutta methods are derived as a generalization of midpoint Euler's method. These 

methods include several evaluations of f between each step to obtain higher accuracy. The 

second order Runge-Kutta methods are defined as: "The numerical method which advances 

from (𝑡𝑘, 𝑥𝑘) to (𝑡𝑘+1, 𝑥𝑘+1) for the differential equation 𝑥′ = 𝑓(𝑡, 𝑥) with initial condition 

𝑥(𝑎) = 𝑥0, according to the formula: 

 

 𝑥𝑘+1 = 𝑥𝑘 + ℎ ((1 − 𝜆)𝑓(𝑡𝑘, 𝑥𝑘) + 𝜆𝑓 (𝑡𝑘 +
ℎ

2𝜆 , 𝑥𝑘 +
ℎ𝑓(𝑡𝑘, 𝑥𝑘)

𝑎𝜆 )) 

 

Equation 24 

 

 

is 2nd order accurate for any nonzero value of the parameter 𝜆, provided f and its derivatives 

up to order two are continuous and bounded for 𝑡 ∈ [𝑎, 𝑏] and 𝑥 ∈ ℝ" (Mørken, K., 2017). 

 𝑥𝑘+1/2 = 𝑥𝑘 +
ℎ
2 𝑓(𝑡𝑘, 𝑥𝑘) Equation 22 

 

 𝑥𝑘+1 = 𝑥𝑘 + ℎ𝑓(𝑡𝑘 + ℎ/2, 𝑥𝑘+1/2). Equation 23 
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2.7.2 Solving differential equations in R with the ‘deSolve’ package 

R is a programming language and a software environment which can provide numerous 

statistical, computational, and graphical functions. The package ‘deSolve’ in R is widely used 

as a general solver for Initial Value Problems of Ordinary Differential Equations (ODE), Partial 

Differential Equations (PDE), Differential Algebraic Equations (DAE) and Delay Differential 

Equations (DDE) (Soetaert, K. & Petzoldt, T., 2011; Soetaert et al. 2010; 2012; 2015).  

This package contains different functions that solve initial value problems of a system of first-

order ODE, PDE, DAE and DDE. These functions have an interface to the FORTRAN 

functions Isoda, Isodar, Isode, Isodes of the ODEPACK (Hindmarsh, A. C., 1983) collection, 

to the FORTRAN functions dvode, zvode and daspk and a C-implementation of solvers of 

Runge-Kutta family with fixed or variable time steps. Additionally, package is designed to 

solve ODEs resulting from 1-D, 2-D, and 3-D PDEs that have been concerted to ODEs by 

numerical differencing (Soetaert, K. & Petzoldt, T., 2011). 

A numerical solution of a system of differential equations is often produced under certain 

assumptions and approximations that can lead to numerical errors. There are several sources of 

these errors such as a time step, accuracy order of the solver, arithmetic of floating point, 

properties of the differential system itself and the stability of the solution algorithm. The R 

solution output is an array that contains the time value in first column, then the values of all 

state variables and if any the ordinary output variables (Soetaert et al., 2010). 
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2.8 Dynamics of inducible expression within a toggle switch 

The chapter 2.3 has been dedicated to describing the design and functioning of a toggle switch. 

Scheme of the toggle switch design is presented at Figure 1. Dynamics of this system can be 

described by a system of two ordinary differential equations, as it is displayed in Equation 25 

(Alon, U., 2019). 
 

 𝑑𝑋
𝑑𝑡 = 𝑓(𝑌) − 𝛼𝑋 

𝑑𝑌
𝑑𝑡 = 𝑓(𝑋) − 𝛼𝑌 

 

Equation 25 

 

Term 𝑑𝑋
𝑑𝑡

 and 𝑑𝑌
𝑑𝑡

 are rate of change of protein X and Y concentration respectively. The 𝑓(𝑌) and 

𝑓(𝑋) are production rates and 𝛼 is removal rate (the sink term). The system consists of two 

repressors and the production rates (𝑓(𝑌), 𝑓(𝑋)) can be expressed as the Hill input functions 

for repressors (Alon, U., 2019). 

The rate of degradation (the removal rate) is a sum effect of degradation and dilution, 𝛼𝑑𝑒𝑔 and 

𝛼𝑑𝑖𝑙. The dilution term is equal to specific microbial growth rate (𝜇) and Equation 26 gives total 

degradation/dilution rate in units of 1
𝑡𝑖𝑚𝑒

 (Alon, U., 2019). 

 

 𝛼 = 𝛼𝑑𝑒𝑔 + 𝛼𝑑𝑖𝑙 = 𝛼𝑑𝑒𝑔  +  𝜇 Equation 26 

 

Many proteins are not actively degraded in growing cells ( 𝛼𝑑𝑒𝑔  = 0), meaning that the 

production of these proteins is balanced by dilution due to the increasing volume of the growing 

cell, 𝛼 = 𝛼𝑑𝑖𝑙 (Alon, U., 2019).  

By including the Hill function and under assumption that 𝛼𝑑𝑒𝑔  is negligible, 𝛼 = 𝜇 , the 

presented system (Equation 25) can be modified to a system of two ordinary differential 

equations and one non-differential equation that includes Monad kinetics and describes a 

change of specific growth rate (P) with a single growth substrate (S). The system of ODE 

consists of following equations (Alon, U., 2019). 
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𝑑𝑋
𝑑𝑡 =

𝛽

1 + (𝑌
𝐾)

𝑛 − 𝜇𝑋 

𝑑𝑌
𝑑𝑡 =

𝛽

1 + (𝑋
𝐾)

𝑛 − 𝜇𝑌 
Equation 27 

 

X and Y represent concentration of protein and parameters are 𝛽 , K, n and 𝜇 . Activation 

coefficient (K) is concentration of X and/or Y that is necessary to significantly activate 

expression. Maximal expression level of the promoter is represented by 𝛽 parameter and n is 

the Hill coefficient (Alon, U., 2019). 

A non-differential equation added to the system presented in Equation 27 estimates the specific 

growth rate (𝜇) as formulated in the Equation 28 that considers the effect of a limiting substrate 

(S) to the specific growth rate and follows Monod kinetics (Liu, S., 2017). 
 

 𝜇 =
𝜇𝑚𝑎𝑥𝑆
𝑘𝑠 + 𝑆 

 
Equation 28 

Maximal specific growth rate is 𝜇𝑚𝑎𝑥 and it is in units 1
𝑡𝑖𝑚𝑒

, while 𝑘𝑠 represents a saturation 

constant and it is in concentration units (Liu, S., 2017). 

The presented system (Equation 27) has three fixed points when 𝑛 > 1, where two of these 

points are stable and the whole system can be called as bistable. Each of the points present 

opposite gene expression states, one that results in higher production of protein X and another 

that is correlated to a high production of protein Y. Unstable state is the one where production 

of X and Y have similar values (Crawford, J. D., 1991; Strogatz, S. H., 2018; Gardner et al., 

2000). 
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2.9 Bacterial strains  

2.9.1 Escherichia coli 

E. coli is a Gram-negative bacterium from the family Enterobacteriaceae, and it is one of the 

most prevalent commensal inhabitants in the human's gastrointestinal tracts as well as the 

warm-blooded animals. E. coli triggers broad spectrum of diseases in humans and it is known 

as a common pathogen. Pathogenic types of E. coli can be divided in two groups: Enteric E. 

coli and Extraintestinal E. coli (ExPEC) (Allocati et al., 2013). 

E. coli is widely used in biotechnological purposes because its cells are easy to culture and to 

genetically manipulate, it has a short life cycle, well-known genetics, easy and fast 

transformation with endogenous DNA, fast growth kinetics and grows in inexpensive growth 

media. Common challenges with use of E. coli cells as a host organism are difficult or very low 

expression of a foreign gene and solubility of recombinant proteins for over expression. 

Expression of foreign gene in E. coli are under effect of mRNA's secondary structure, ability 

of protein to fold, its solubility, preferential codon use, toxicity of protein and need for post-

translational modifications. Strategies that can enhance expression and solubility of 

overexpressed protein include a change of vector or the host strain, changing the culture 

parameters of recombinant host strain or co-expression of other genes and altering the gene 

sequence without any change of the functional domain (Gopal, G. J., & Kumar, A., 2013). 

2.9.2 Pseudomonas genus 

The Pseudomonas genus was firstly described in late 19th century (Migula, 1894; 1900) and 

number of species that belong to this genus has grown up to more than 200 species (Wang, M.-

q., & Sun, L., 2016) and it is still growing. This group of organisms is highly heterogenous 

(Barbour et al., 2017), very large and widely dispersed (Nishimori et al., 2000). Pseudomonas 

has a high and unique adaptability to the different environmental conditions. The optimal 

growth is reached in a limited temperature range and hydrogen ion concentrations. Members of 

this genus are not a truly thermophilic or acidophilic (Palleroni, N. J., 2010). Most of the species 

that belong to Pseudomonas were isolated from marine environment and some were isolated 

from marine animals such as: P. pachastrellae (Romanenko et al., 2005), P. xanthomarina 

(Romanenko et al., 2005), and P. marnicola (Romanenko et al., 2008). Directly from seawater 

were isolated P. pseudoalcaligenes (Palleroni, N. J., 1984), P. alcaliphilia (Yumoto et al., 

2001), and P. litoralis (Pascual et al., 2012). Isolates of P. balearica (Bennasar et al., 1996) and 
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P. deceptionensis (Carrion et al., 2011) have been found in marine sediment. Isolates have also 

been obtained from seashore environments, such as P. aestusnigri (Sánchez et al., 2014), P. 

sabulinigri (Kim et al., 2009), and P. taeanensis (Lee et al., 2010). In the study of Spröer and 

co-workers (Lang et al., 2010) it has been determined that presence of the hydroxylated acids 

such as C10:0 3-OH and C12:0 3-OH is vital for Pseudomonas genus. Palleroni (2015) has 

revealed that species of Pseudomonas genus have 58-69 mol% of the genomic G+C content 

(Wang, M.-q., & Sun, L., 2016). The cells of Pseudomonas species have a rod shape, they are 

polarly flagellated, aerobic, and Gram-negative (Palleroni, N. J., 1984). 

2.9.2.1 Pseudomonas aestusnigri  

Cells of P. aestusnigri are Gram-negative, rod-shaped (Palleroni, N. J., 1984), their length can 

vary between 1.6-2.0 Pm and width from 0.6-0.7 Pm. P. aestusnigri cells are non-pigmented 

with catalase-positive, oxidase-positive characteristics, strictly aerobic and non-fermentative. 

The characteristics of colonies include round convex shape and beige bright color with white 

margins of 1-3 mm diameter on Luria broth (LB) plates after incubation for 48h at 30q C. 

Growth of this species is present at 18-42q C with optimal temperature between 25-30q C at pH 

6-10 and with 2-10% (w/v) NaCl. P. aestusnigri is positive for assimilation of capric acid, 

adipic acid, utilization of Tween 40, Tween 80, pyruvic acid methyl ester, D,L-lactic acid, 

sebacic acid and L-alanine (Sanchez et al., 2014). 

In the study of Molitor et al. (2020) of this marine bacterium has showed a polyester degrading 

activity. The polyester hydrolase (PE-H) that belongs to a type IIa polyethylene terephthalate 

(PET) hydrolases, has been found in this species and it shows activity toward PET as a substrate 

(Bollinger et al., 2020). 

2.9.2.2 Pseudomonas deceptionensis  

P. deceptionensis is a Gram-negative, oxidase-positive, non-spore forming, strictly aerobic 

microorganism with characteristic rod-shaped cells (0.8 x 1.5-2.0 Pm). This species does not 

produce any fluorescent pigment on King´s B medium. During incubation on TSA medium at 

20q C for 72 h colonies are 1.5-2.0 mm in diameter with slightly convex shape, white colored, 

round and mucous. Optimal conditions for growth are between -4 and 34q C with pH value 

from 5 to 10. Tolerance for NaCl is up to 6% (w/v). Under anaerobic conditions on MA, growth 

is very poor. Cells are positive for catalase, oxidase, and hydrolysis of urea, but negative for 
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hydrolysis of aesculin, Tween 80, gelatin, casein, starch, and lecithin. P. deceptionensis neither 

produce indole nor hydrogen sulfite and does not reduce nitrate (Carrion et al., 2011). 

2.9.2.3 Pseudomonas oceani 

P. oceani cells of strain KX 20T are Gram-negative, strictly aerobic, rod-shaped, and non-

pigmented. Dimensions of the cells are between 0.4-0.6 µm wide and 2.1-2.6 µm long. The 

cells are motile by a single flagellum. Cell growth can occur in temperature ranges from  

4-41 °C, and pH 6.0-10.0 with 0-10 % (w/v) NaCl. The whitish colonies show circular shape, 

and they are not pigmented, smooth and transparent. In a King B medium there is no production 

of fluorescent pigments. The cells are positive for oxidase and catalase activities, moreover they 

show positive reaction for hydrolysis of Tween 20 and 40. On the other hand, cells are negative 

for hydrolysis of gelatin, starch, and DNA. The type strain KX 20T was isolated from deep 

seawater and the G+C content of the genomic DNA of this strain is 62.9 mol% (Wang, M.-q., 

& Sun, L., 2016). 

2.9.2.4 Pseudomonas pachastrellae 

P. pachastrellae cells are Gram-negative, aerobic, non-pigmented, encapsulated, and rod-

shaped. Their typical dimensions are from 1.4-1.6 μm in length and with 0.4–0.5 μm diameter. 

The cells are motile by a single flagellum and show positive activity to oxidase and catalase. 

Colonies of P. pachastrellae cells are not pigmented, whitish color and transparent with circular 

form, and smooth structure with 2–3 mm in diameter on TSA and MA. Pyocyanin is not 

produced on King A medium and fluorescent pigments on King B medium were not produced. 

During growth of strain KMM 330T on King A medium it has been notices a slightly yellowish 

diffusible pigment (Romanenko et al., 2005). 

The cell growth occurs at temperatures from 7-41 °C in 0-10 % (w/v) NaCl. The cells are 

positive for hydrolysis of Tween 40 and Tween 80 but negative for hydrolysis of starch and 

gelatin. It can well tolerate 8% NaCl. Additionally, the strain is negative for denitrification, 

arginine dihydrolase, urease, lysine decarboxylase, ornithine decarboxylase, acetoin 

production, H2S production, indole production, aesculin and DNA hydrolysis. The type strain, 

KMM 330T, was isolated from the sponge Pachastrella sp., which was collected from the 

Philippine Sea at a water depth of 750 m (Romanenko et al., 2005). 
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2.9.2.5 Pseudomonas taeanensis 

P. taeanensis is bacterium that grows in aerobic conditions, it is Gram-negative, and cells are 

non-pigmented. The rod-shaped cells of this species have dimensions of 1.8-2.5 μm in length 

and 0.8-1.0 μm width. The cells are motile with a single flagellum. P. taeanensis grows in 

colonies that are smooth in texture and they are not pigmented, mostly whitish and translucent. 

Colonies can be between 2-3 mm in diameter. On King A medium there is no noticeable 

production of pyocyanin and fluorescent pigments on King B medium were not detected. The 

growth conditions for this bacterium are 0-5 % (w/v) NaCl, at 4-30 °C (with optimum 

temperature 25-28 °C) and at pH 6.0-9.5 (optimum pH 6.5-8.0). Cells show positive reaction 

with catalase and oxidase, but they are negative for urease and DNase. There is present 

reduction of nitrate to nitrite, but nitrite is not further reduced. The cells are positive for 

hydrolyzation of Tween 20, Tween 40, Tween 60, and Tween 80. The type strain, MS-3T was 

isolated from crude oil-contaminated seawater in the Taean area of Korea (Lee et al., 2010). 

Recent studies show that P. taeanensis MS-3T is capable of degrading petroleum oils including 

gasoline, diesel, and kerosene (Lee et al., 2014). There is also a potential of using this strain for 

the wastewater treatment for the phosphorus (P) removal in process of activated sludge (Cai et 

al., 2007; Li et al., 2012). P. taeanensis MS-3T was inspected for inhibitory effects of single 

treatments of heavy metals: Cd, Cu, Zn, Pb, and Ni and Cd showed the most toxic activity to 

the cell (Yoo et.al., 2018).  

2.9.2.6 Vibrio natriegens 

V. natriegens is a Gram-negative bacterium from the marine environment that doesn't show any 

pathogenic properties and it was firstly isolated from salt marshes (Payne et al., 1961). 

Independent studies of Eagon and Cenedella’s group have shown that this species can be the 

one of the fastest growing organisms with its generation time that is less than 10 minutes 

(Eagon, R. G., 1962; Maida et al., 2013). The immense potential for different applications in 

molecular biology and biotechnology lays in this species because of its very low doubling time. 

Various genetic tools and methods are developed to engineer these strains for common 

biotechnological processes (Weinstock et al., 2016). 

A study of Hoffart et al. (2017) showed that characteristics of this bacterium fulfill basic 

requirements for applications in biotechnology. On glucose as substrate, the growth rate is two 

times higher than with E. coli, Bacillus subtilis, Corynebacterium glutamicum and yeast. V. 
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natriegens is prototrophic and its metabolism is versatile with ability to metabolize various 

substrates (Hoffart et al., 2017). 

V. natriegens has several mechanisms that enable high capacity for ribosome synthesis which 

results in high growth rates: high rRNA gene dose and stimulation of promoter activity by UP 

elements and Fis. Regulation of rRNA transcription might be regulated with similar 

mechanisms as present in E. coli because of similarities of rRNA promoter sequences of these 

two species (Aiyar et al., 2002). The cell volume of exponentially growing cells is  

3.50 µm3 cell−1 and stationary growing cells have volume of 0.93 µm3 cell−1 (Thoma, F., & 

Blombach, B., 2021). 

2.10 The Open Science Framework (OSF) 

OSF is a platform established to enhance communication between scientists and researchers all 

over the world. The main purpose of this tool is to establish open and centralized workflows by 

capturing various aspects of a research lifecycle such as research idea, design of study, 

analyzing, collecting, and storing of research data and lastly writing and publishing research 

work (Foster, E. D., & Deardorff, A., 2017).  

The Center for Open Science (COS), as a nonprofit organization, founded OSF to support 

researchers by developing tools and infrastructure for saving and managing their research. An 

idea of OSF is to practice open science and to preserve integrity and reproducibility of scientific 

research. This network has ability to create and develop projects which are available for diverse 

audience. OSF promotes reproducibility, transparency, and management of research data 

(Foster, E. D., & Deardorff, A., 2017). A detailed protocol for OSF users with functions and 

opportunities of the framework is summarized in work of Sullivan, I., DeHaven, A. C., & 

Mellor, D. T., (2019). 
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3 Methodology 

3.1 BASIC assembly  

BASIC assembly was performed through three steps: the BASIC clip reaction, BASIC clip 

purification and BASIC clip assembly. The BASIC clip reaction was performed in 200 μl PCR 

tube. The following reagents were added: 23 μl dH2O, 3 μl 10 x Promega T4 buffer, 1 μl prefix 

linker, 1 μl suffix linker, 200 nmol of BASIC biopart DNA, 1 μl BsaI-HF®v2 (New England 

Biolabs, R3733) and 0.5 μl T4 ligase (New England Biolabs, M0202L). The total volume of 

mixed solution for this reaction is 30 μl. The PCR tube was placed in a PCR thermal cycler, 

and incubated with the following program: [37 qC for 2 minutes, 20 qC for 1 minute] x 20 

cycles, 60 qC for 20 minutes and stored at 4 qC. 

The clipped parts were further purified by performing the BASIC clip purification, which is a 

magnetic bead purification method. Mag-Bind TotalPure NGS was used to purify restriction-

ligation reactions (Omega Bio-Tek, M1378-01). Firstly, the 70% EtOH was prepared, and it 

was used 0.5 ml per BASIC reaction. The magnetic beads that were stored at 4 qC were placed 

into homogeneous mixture that was vortexed for 1 minute to warm to a room temperature. The 

volume of 54 μl of magnetic beads was mixed the 30 μl BASIC restriction-ligation solution 

that was obtained in previous step. The mixture was well mixed with pipetting up and down 

without making the bubbles. The magnetic beads were left to bind to DNA for 5 min and then 

placed on magnetic stand for 2 minutes. The solution was removed with a 200 μl pipette tip and 

wash step was performed.  

190 μl of 70% EtOH was added and incubated at room temperature for 30 seconds and the 

solution was then removed. 190 μl of 70% EtOH was then added again for 30 seconds, and 

solution was removed from each well. The plate was left for 5 min without the lid (under the 

protection of a laminar flow hood) to let the magnetic beads to dry. Solution was removed from 

magnet and 32 μl of dH2O. The DNA was left for 1 minute to elute and again placed on 

magnetic stand which allowed the magnetic beads to form an immobilized ring and the solution 

became clear in a minute. 30 μl of dH2O was pipetted from the wells with eluted DNA into a 

fresh 1.5 ml micro-tube.  

Then the BASIC clip assembly was performed and for each reaction in a 200 μl PCR tube that 

had 10 μl total volume of: 1 μl 10 x NEB CutSmart buffer, 1 μl each part and filled with dH2O 

to 10 μl. The solution was mixed by pipetting up and down and it was incubated in thermocycler 
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with the BASIC assembly program that included temperature of 50 qC for 45 minutes and stored 

at 4qC overnight. After the reaction, the cells were transformed via heat-shock. A volume of 50 

μl of previously prepared competent cells of E. coli DH5𝛼 was used to transform 5 μl of each 

BASIC assembly. The competent cells that were stored at -80 qC were thawed on ice for 5 to 

10 minutes and 5 μl of BASIC assembly was cooled on ice in 1.5 ml Eppendorf tube. In the 

BASIC assembly was added 50 μl of competent cells and incubated on ice for 20 minutes. Then 

the tube was placed in water bath for 45 second at 42 qC. In tube was added 200 μl of SOC 

medium and it was incubated with shaking at 37 qC for 1 h. The cells were spread on agar plate 

with antibiotic and left at 37 qC overnight. 

For the verification of successful BASIC assembly, colony PCR was performed. Firstly, in a 

96-well plate, a 15 μl of mixture was made: 7.5 μl of Taq Plus DNA PolymeraseMaster Mix 

(VWR, 733-2597), 0.5 μl LMP_F, 0.5 μl LMP_R and 6.5 μl of dH2O. The colony was picked 

with pipette tip and the tip was placed in well of 96-well plate. On well was placed lid and it 

was centrifuged. The plate was left in thermocycler on the program: 95qC for 7.5 minutes, 25 

x [95 qC for 30 seconds, 58 qC for 1 min/1 kbp, 72 qC for 7 minutes], 72 qC for 7 minutes and 

stored at 4 qC. Then the electrophoresis was performed in 0.8-1% agarose gel. Solution was 

placed in microwave to boil, and 5 μl of ethidium-bromide was added in it and let to dry for 10 

minutes. Loading dye was added in sample, 1 μl of dye to 5 μl of the sample and samples were 

inserted in wells. The program was set on 150 V for 30 minutes. 
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3.2 The induction study 

3.2.1 Preparation of the E. coli cells and LB media 

The volume of 7.5 ml of LB buffer was transferred into tube and it was added 7.5 μl of antibiotic 

(kanamycin). The frozen cells of E. coli BB23-S4 from glycerol stock were scraped on the top 

of the micropipette tip and used to inoculate LB with 50 μg/mL kanamycin. The tube with 

inoculated culture was placed in shaker at 37qC and left overnight. Inoculation of cells was 

performed under sterile conditions in the laminar flow hood. 

The LB growth medium was made by mixing 10 g of peptone, 5 g of yeast, 10 g of NaCl and 

filled with distillated water to a volume of 1 l. Mixture was stirred on magnetic stirrer and 

autoclaved at 121qC. 

3.2.2 The induction assay 

The induction study was performed on E. coli cells (BB23-S4) using LB media supplied with 

antibiotic (kanamycin). L-arabinose was added in every tube to obtain desired concentrations, 

the tubes were shaken and the 96 well plate with black and clear bottom for BioTek Synergy 

H1 modular multimode microplate reader was prepared according to Table 2.  

Column 12 on Table 2 represents negative control, in other words, cells of E. coli were not 

inoculated these wells. A volume of 200 μl of LB media with antibiotic was added in wells 

marked with blank and NI (NI - no induction), then 200 μl of LB buffer with selected amount 

of L-arabinose and kanamycin was pipetted in other wells and lastly, the cell culture was 

inoculated using 96 pin replicator in every well except ones with the blanks. Four of the samples 

were marked with NI, which represents wells without L-arabinose. 

The plate was placed in BioTek Synergy H1, and temperature was set on 30qC. Three 

parameters were measured: optical density at 600 nm (OD600), GFP (Ex/Em 484/515 nm) and 

mKate (Ex/Em 585/615 nm) for 48 hours. The sfGFP was measured for further use in the non-

linear models in R. 
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Table 2 Selected concentrations of L-arabinose and their spatial organization in 96 well plate that was placed in 
BioTek Synergy H1 modular multimode microplate reader, NI represents samples without L-arabinose and blank 
wells are the ones without cells. 

 1 2 3 4 5 6 7 8 9 10 11 12 

A NI 0.1 0.2 0.4 0.6 0.8 1.0 1.20 1.40 1.60 1.80 blank 

B NI 0.1 0.2 0.4 0.6 0.8 1.0 1.20 1.40 1.60 1.80 blank 

C NI 0.1 0.2 0.4 0.6 0.8 1.0 1.20 1.40 1.60 1.80 blank 

D NI 0.1 0.2 0.4 0.6 0.8 1.0 1.20 1.40 1.60 1.80 blank 

E 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 9.0 10 blank 

F 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 9.0 10 blank 

G 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 9.0 10 blank 

H 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 9.0 10 blank 

 

The GFP was measured in relative fluorescence units and incorporated as unitless measure in 

Equation 29 while the parameters such as constant K, n and GFPmax were estimated with non-

linear models. The data that included normalized GFP signal with OD600 was incorporated in 

Equation 30. 𝐴𝑅𝐴𝑐𝑜𝑛𝑐  represents concentration of L-arabinose and parameter K is in 

concentration units while n is unitless.  

 

 
𝐺𝐹𝑃(𝐴𝑅𝐴) ≅

𝐺𝐹𝑃𝑚𝑎𝑥𝐴𝑅𝐴𝑐𝑜𝑛𝑐
𝑛

𝐾𝑛 + 𝐴𝑅𝐴𝑐𝑜𝑛𝑐
𝑛  

 

Equation 29 

 

 
𝐺𝐹𝑃(𝐴𝑅𝐴)/𝑂𝐷600 ≅

𝐺𝑃𝐹/𝑂𝐷600𝑚𝑎𝑥𝐴𝑅𝐴𝑐𝑜𝑛𝑐
𝑛

𝐾𝑛 + 𝐴𝑅𝐴𝑐𝑜𝑛𝑐
𝑛  

 

Equation 30 

 

Non-linear model given in Equation 29 can be slightly modified to include an unitless constant 

K, instead of estimating the parameter in concentration units. Dividing the numerator and 

denominator with 𝐴𝑅𝐴𝑐𝑜𝑛𝑐𝑚𝑎𝑥
𝑛 , which represents the lowest concentration of L-arabinose that 

gives saturation, and with simple mathematical modifications of the Equation 30, we can obtain 

Equation 31. A dimensionless parameter K is calculated as 𝐾
𝐴𝑅𝐴𝑐𝑜𝑛𝑐𝑚𝑎𝑥

. In further text, as 

synonym for the Equation 31 will be used nondimensionalized Hill function. 
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𝐺𝐹𝑃(𝐴𝑅𝐴) ≅

𝐺𝐹𝑃𝑚𝑎𝑥 ( 𝐴𝑅𝐴𝑐𝑜𝑛𝑐
𝐴𝑅𝐴𝑐𝑜𝑛𝑐𝑚𝑎𝑥)

𝑛

𝐾𝑛 + ( 𝐴𝑅𝐴𝑐𝑜𝑛𝑐
𝐴𝑅𝐴𝑐𝑜𝑛𝑐𝑚𝑎𝑥)

𝑛  

 

Equation 31 

Three previous equations (Equation 29, 30 and 31) are used for building non-linear models in 

R. For these purposes, a nls() function from the 'stats' package (Ritz, C., & Streibig, J. C., 2008) 

was used. 

Instead of a simple GFP signal, non-linear models can include rates of GFP change over time. 

The model that is based on GFP rates is displayed in Equation 32.  
 

 
𝐺𝐹𝑃𝑟𝑎𝑡𝑒(𝐴𝑅𝐴) ≅

𝐺𝐹𝑃𝑟𝑎𝑡𝑒𝑚𝑎𝑥𝐴𝑅𝐴𝑐𝑜𝑛𝑐
𝑛

𝐾𝑛 + 𝐴𝑅𝐴𝑐𝑜𝑛𝑐
𝑛  

 

Equation 32 

A symbol R can be used instead of 𝐺𝐹𝑃𝑟𝑎𝑡𝑒𝑚𝑎𝑥, the highest rate of GFP change over and 

Equation 32 can be modified resulting in Equation 33. 

 

𝐺𝐹𝑃𝑟𝑎𝑡𝑒(𝐴𝑅𝐴) ≅
𝐴𝑅𝐴𝑐𝑜𝑛𝑐

𝑛 𝑅
𝐾𝑛 + 𝐴𝑅𝐴𝑐𝑜𝑛𝑐

𝑛  

 

Equation 33 

 
 

 

The nondimensionalized form of Equation 33 can be obtained analogously as for simple GFP 

signal by dividing 𝐴𝑅𝐴𝑐𝑜𝑛𝑐 with 𝐴𝑅𝐴𝑐𝑜𝑛𝑐𝑚𝑎𝑥. The parameter K estimate from this model is 

unitless and it is approximated by a non-linear model given in Equation 34.  

 

 

𝐺𝐹𝑃𝑟𝑎𝑡𝑒(𝐴𝑅𝐴) ≅
𝑅 ( 𝐴𝑅𝐴𝑐𝑜𝑛𝑐

𝐴𝑅𝐴𝑐𝑜𝑛𝑐𝑚𝑎𝑥)
𝑛

𝐾𝑛 + ( 𝐴𝑅𝐴𝑐𝑜𝑛𝑐
𝐴𝑅𝐴𝑐𝑜𝑛𝑐𝑚𝑎𝑥)

𝑛 

 

 

Equation 34 

3.3 Solving differential equations in R 

Ordinary differential equations (ODEs) and system of ODEs can be solved with package 

'deSolve' in R (Soetaert et al., 2015). ODEs and systems of ODEs presented in this study were 

solved in R by a code that is published as a part of a project in OSF (https://osf.io/39j5f/). 

 

https://osf.io/39j5f/
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3.4 Methodology of a dynamic response of L-arabinose 
activated gene expression across host specific growth rates 

Chapter 3.2 explained that in every well of 96 well plate OD600, GFP and mKate signals were 

measured for 48 hours. The GFP signal that was measured during experimental time, served to 

estimate different GFP-time curves and slope of the linear part of the curve represents the rate 

of GFP change over time.  

The slope was calculated by performing simple linear regression using R function 

all_easylinear() from a 'growthrates' package. The highest rate estimate is labeled as R, and it 

is in units of ( 1
𝑡𝑖𝑚𝑒

) . The dynamic response of L-arabinose-activated expression can be 

represented as simple ODE: 

 

 
𝑑𝐺𝐹𝑃

𝑑𝑡 =
𝐺𝐹𝑃𝑚𝑎𝑥𝐴𝑅𝐴𝑐𝑜𝑛𝑐

𝑛 𝑅
𝐾𝐴𝑟𝑎𝐶

𝑛 + 𝐴𝑅𝐴𝑐𝑜𝑛𝑐
𝑛 − 𝛼𝐺𝐹𝑃 

 
Equation 35 

where GFP represent GFP signal, 𝑑𝐺𝐹𝑃
𝑑𝑡

 is change of GFP signal over time in units ( 1
𝑡𝑖𝑚𝑒

), 

GFPmax is maximal GFP signal from the late log phase, R is the highest rate estimate in units 

( 1
𝑡𝑖𝑚𝑒

), 𝐴𝑅𝐴𝑐𝑜𝑛𝑐 is concentration of L-arabinose, 𝐾𝐴𝑟𝑎𝐶 is the activation coefficient that has 

concentration units, n is Hill coefficient, unitless, and 𝛼 is a removal rate in units ( 1
𝑡𝑖𝑚𝑒

). 

If cells are actively growing, the removal rate is approximated only by dilution rate (𝛼𝑑𝑖𝑙) that 

is equal to specific growth rate (𝜇). The Equation 35 can be modified to include the growth rate 

in the sink term which is presented as: 
 

 
𝑑𝐺𝐹𝑃

𝑑𝑡
=

𝐺𝐹𝑃𝑚𝑎𝑥𝐴𝑅𝐴𝑐𝑜𝑛𝑐
𝑛 𝑅

𝐾𝐴𝑟𝑎𝐶
𝑛 + 𝐴𝑅𝐴𝑐𝑜𝑛𝑐

𝑛 − 𝜇𝐺𝐹𝑃 

 
Equation 36 

where 𝜇 is specific microbial growth rate that is unique for every strain, and it is measured in 

( 1
𝑡𝑖𝑚𝑒

). A left side of Equation 35 and both terms on the right side of Equation 35 are in reverse 

time dimensions. The specific growth rates of wild type strains of species selected for this thesis 

were estimated in a study of PhD candidate at UiT, Dennis Tin Chat Chan. 
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If the term 𝐺𝐹𝑃𝑚𝑎𝑥𝐴𝑅𝐴𝑐𝑜𝑛𝑐
𝑛 𝑅

𝐾𝐴𝑟𝑎𝐶
𝑛 +𝐴𝑅𝐴𝑐𝑜𝑛𝑐

𝑛  is named as 𝑓(𝐴𝑅𝐴), then the simplified Equation 35 is formulated 

as: 
 

 
𝑑𝐺𝐹𝑃

𝑑𝑡 = 𝑓(𝐴𝑅𝐴) − 𝜇𝐺𝐹𝑃 . 
 

Equation 37 

The term 𝑓(𝐴𝑅𝐴) can be modified to estimate 𝐾´ = 𝐾𝐴𝑟𝑎𝐶
𝐴𝑅𝐴𝑐𝑜𝑛𝑐𝑚𝑎𝑥

 and nondimensionalized form 

of the Equation 35 is: 

 

                    
𝑑𝐺𝐹𝑃

𝑑𝑡 =
𝐺𝐹𝑃𝑚𝑎𝑥 ( 𝐴𝑅𝐴𝑐𝑜𝑛𝑐

𝐴𝑅𝐴𝑐𝑜𝑛𝑐𝑚𝑎𝑥)
𝑛

𝑅

𝐾´𝑛 + ( 𝐴𝑅𝐴𝑐𝑜𝑛𝑐
𝐴𝑅𝐴𝑐𝑜𝑛𝑐𝑚𝑎𝑥)

𝑛 − 𝜇𝐺𝐹𝑃 .  Equation 38 

 

The response time (𝑇1/2) can be estimated from Equation 39. A symbol 𝜇 represents specific 

growth rate in ( 1
𝑡𝑖𝑚𝑒

) dimensions and 𝑇1/2 is expressed in time dimensions. 

 

 𝑇1/2 =
𝑙𝑜𝑔(2)

𝜇   Equation 39 
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3.5 Mathematical model of a synthetically constructed toggle 
switch 

The toggle switch performance was modeled for a device presented in Figure 1. The device 

consists of two promotors: PTet that can be induced with anhydrotetracycline (aTc) and PBAD 

that can be induced with L-arabinose. The activity of PBAD promoter can be monitored by 

measuring the GFP signal fluorescence and activity of PTet promoter can be detected and 

measured by a mKate fluorescence.  

A production of a protein (in this case: AraC or TetR) is dependent on two processes: protein 

degradation and dilution. Under assumption that a degradation rate, 𝛼𝑑𝑒𝑔, is negligible, 𝛼 = 𝜇, 

where 𝜇  represents the specific growth rate in ( 1
𝑡𝑖𝑚𝑒

), a mathematical model of the toggle 

switch can be described with following equations (Equation 40 and 41) that rely on Equation 

27 (Alon, U., 2019). 

 

 

 

𝑑𝐶𝐴𝑟𝑎𝐶

𝑑𝑡 =
𝛽𝐴𝑟𝑎𝐶𝑅

1 + (𝐶𝑇𝑒𝑡𝑅
𝐾𝑇𝑒𝑡𝑅

)
𝑛𝐴𝑟𝑎𝐶

− 𝜇𝐶𝐴𝑟𝑎𝐶 

 

Equation 40 

 

 𝑑𝐶𝑇𝑒𝑡𝑅

𝑑𝑡 =
𝛽𝑇𝑒𝑡𝑅𝑅

1 + (𝐶𝐴𝑟𝑎𝐶
𝐾𝐴𝑟𝑎𝐶

)
𝑛𝑇𝑒𝑡𝑅

− 𝜇𝐶𝑇𝑒𝑡𝑅 

 

 

Equation 41 

 

 

Terms that act in Equation 40 and 41 are 𝐶𝐴𝑟𝑎𝐶, 𝐶𝑇𝑒𝑡𝑅 that are intracellular concentrations of 

AraC and TetR respectively, terms 𝛽𝐴𝑟𝑎𝐶𝑅 or 𝛽𝑇𝑒𝑡𝑅𝑅 represent maximum synthesis rates of 

proteins, and they are a product of factor 𝛽 that shows maximal expression level of promoter 

(PBAD for AraC and PTet for TetR) estimated in concentration units, and factor R that is the 

highest GFP rate estimate from the induction study (measured in ( 1
𝑡𝑖𝑚𝑒

)), therefore 𝛽𝑅 term 

has (𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
𝑡𝑖𝑚𝑒

)  dimensions. 𝐾𝐴𝑟𝑎𝐶  and 𝐾𝑇𝑒𝑡𝑅  are the effective equilibrium dissociation 

constants of these repressors to their binding sites in the promoter region (the activation 

coefficients) in concentration units, 𝑛 is effect of cooperative repression of the promoters (the 

Hill coefficient), unitless, and 𝜇 is specific growth rate measured in ( 1
𝑡𝑖𝑚𝑒

). 
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The protein production can be modeled with the Hill term formulated as ( 𝛽𝐴𝑟𝑎𝐶𝑅

1+(𝐶𝑇𝑒𝑡𝑅
𝐾𝑇𝑒𝑡𝑅

)
𝑛𝐴𝑟𝑎𝐶) and 

( 𝛽𝑇𝑒𝑡𝑅𝑅

1+(𝐶𝐴𝑟𝑎𝐶
𝐾𝐴𝑟𝑎𝐶

)
𝑛𝑇𝑒𝑡𝑅), while the dilution of the proteins can be represented with the sink term 

𝜇𝐶𝐴𝑟𝑎𝐶 and 𝜇𝐶𝐴𝑟𝑎𝐶 (Equation 40 and 41). 

If a concentration of AraC protein derived from araC gene is proportional to the intensity of 

mKate signal, consequentially the TetR protein concentration synthetized by the activity of tetR 

gene is proportional to intensity of GFP signal. For experimental purposes, the system can be 

represented as: 

 

 

𝑑𝐺𝐹𝑃
𝑑𝑡 =

𝛽𝐴𝑟𝑎𝐶 𝑅

1 + (𝑚𝐾𝑎𝑡𝑒
𝐾𝑇𝑒𝑡𝑅

)
𝑛𝐴𝑟𝑎𝐶 − 𝜇𝐺𝐹𝑃 

 

Equation 42 

 

 𝑑𝑚𝐾𝑎𝑡𝑒
𝑑𝑡

=
𝛽𝑇𝑒𝑡𝑅𝑅

1 + ( 𝐺𝐹𝑃
𝐾𝐴𝑟𝑎𝐶

)
𝑛𝑇𝑒𝑡𝑅

− 𝜇𝑅𝐹𝑃 

 

 

Equation 43 

 

where CAraC ∝ mKate and CTetR ∝ GFP. 

If it is assumed that: 

 

 𝑢 =
𝐶𝐴𝑟𝑎𝐶

𝐾𝐴𝑟𝑎𝐶
 𝑎𝑛𝑑 𝑣 =  

𝐶𝑇𝑒𝑡𝑅

𝐾𝑇𝑒𝑡𝑅
, Equation 44 

 

it is possible to nondimensionalize Equation 40 and 41 by dividing both sides with 𝜇 , the 

specific growth rate, and activation constant, 𝐾𝐴𝑟𝑎𝐶 or 𝐾𝑇𝑒𝑡𝑅. The terms 𝑢 and 𝑣 are unitless. 

Nondimensionalized system of ODEs is represented by Equation 45. This mathematical model 

is based on work of Gardner, T., Cantor, C. & Collins, J. (2000).  
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 𝑑𝑢
𝑑𝜏 =

𝛼𝐴𝑟𝑎𝐶

1 + (𝑣)𝑛 − 𝑢 

 

𝑑𝑣
𝑑𝜏 =

𝛼𝑇𝑒𝑡𝑅

1 + (𝑢)𝑛 − 𝑣 

 

Equation 45 

Unitless terms 𝛼𝐴𝑟𝑎𝐶 and 𝛼𝑇𝑒𝑡𝑅 are calculated as 𝛼𝐴𝑟𝑎𝐶 = 𝛽𝐴𝑟𝑎𝐶𝑅
𝜇𝐾𝐴𝑟𝑎𝐶

 and 𝛼𝑇𝑒𝑡𝑅 = 𝛽𝑇𝑒𝑡𝑅𝑅
𝜇𝐾𝑇𝑒𝑡𝑅

 where 𝛽 

is maximal expression level, R is the highest rate estimate from the induction study, K is 

activation constant, n is the Hill coefficient, 𝜇 specific growth rate and 𝜏 is respective time 

obtained as multiplied time variable with the specific growth rate, 𝜏 = 𝑡𝜇.  

 

3.6 Open science and reproducibility 

In an effort to make this thesis project open and reproducible, a code that has been written for 

the analysis performed in this study is supplied in a form of OSF project found on the following 

link: https://osf.io/39j5f/. The code is published as a RMarkdown file (.Rmd) and HTML-

rendered file. 

The data incorporated in the R code, including the induction study and the specific growth rate 

data, can be found in Data folder of the OSF project. 

 

https://osf.io/39j5f/
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4 Results 

4.1 Parametrization of the Hill function 

The experimental data from the induction study with E. coli cells was used to parametrize the 

Hill function and to estimate specific parameters presented in Equation 29 and 30. The method 

of a non-linear regression was chosen for this purpose. The analysis included estimation of at 

least one of two parameters, n and/or K.  

The GFP fluorescence, OD600 and mKate fluorescence were measured for 48 hours during 

induction assay to collect the data from all stages of bacterial cell growth. The data selected for 

non-linear models with GFP and GFP/OD600 signals was estimated from the cells that have 

reached the late log phase. This was done by selecting a time point for the late exponential 

phase by looking at resulting growth curves from every well. It has been approximated that 11 

hours 50 minutes and 46 seconds after cell inoculation on 96 well plate with black and clear 

bottom, cell have reached desired state. The effect of L-arabinose induction was predicted by 

monitoring the intensity of the GFP and GFP/OD600 signals from the cells in the late exponential 

phase. The effect is graphically presented in Figure 4 and 5. The GFP and GFP/OD600 signals 

were used as indirect measure of promoter activity in examined cells.  

The 𝐺𝐹𝑃𝑚𝑎𝑥  value was estimated from a data collected in the induction curve study as an 

average GFP value of the samples in saturation part of the curve presented at Figure 4 and the 

standard deviation was calculated. A similar procedure was performed to estimate 
GPF/OD600max value (Figure 5). In the following models, GFPmax and GPF/OD600max were 

used as constant parameters and Table 3 shows their estimates with standard deviation. 

Table 3 GFPmax and GFP/OD600max estimates and their standard deviation. Both parameters were calculated as 
average value from data collected from a saturation part of curves shown in Figure 4 and 5. 

 𝐆𝐅𝐏𝐦𝐚𝐱 𝐆𝐏𝐅/𝐎𝐃𝟔𝟎𝟎𝐦𝐚𝐱 

Estimate average value 2643.500 4622.374 

Standard deviation 591.330 797.673 

 

A maximal concentration of L-arabinose (𝐴𝑅𝐴𝑐𝑜𝑛𝑐𝑚𝑎𝑥) used in a non-dimensional analysis 

was estimated as the lowest concentration of L-arabinose that results in saturation. By observing 



Modeling the "microbial chassis effect" on the performance of a genetic switch 

Results 38 

Figure 4 and 5 concentration that gives saturation in all four replicates is 3 M 

(𝐴𝑅𝐴𝑐𝑜𝑛𝑐𝑚𝑎𝑥 =  3 𝑀). 

 

 
Figure 4 The effect of L-arabinose concertation on GFP signal is manifested as increasing intensity of GFP 
fluorescence with inducer concentration until saturation is achieved. This effect was estimated in the late log phase 
of cell growth. Selected time point was 11 hours 50 min and 46 minutes from the beginning of the experiment (cell 
inoculation) which should represent the time when the cells have reached the late log phase. The y-axis represents 
GFP signal and L-arabinose concentration is displayed on x-axis. 

 
Figure 5 The effect of L-arabinose concertation on GFP/OD600 signal is manifested as increasing intensity of 
GFP/OD600 signal with inducer concentration until saturation is achieved. This effect was estimated in a late log 
phase of cell growth. Selected time point was 11 hours 50 min and 46 minutes from the beginning of the experiment 
(cell inoculation) which should represent the time when the cells have reached the late log phase. GFP signal is 
divided by optical density at 600 nm and presented on y-axis while L-arabinose concentration is given on x-axis. 
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4.1.1 The effect of different n-values on a non-linear model 

4.1.1.1 The effect of different n-values on a non-linear model with GFP data 

The estimation of the n-value effect on non-linear model formulated in Equation 29 with 

experimental GFP data was performed. The n parameter value was varied from 1 to 4. This 

study resulted in a better model fit for lower n ( 𝑛 = 1  or 𝑛 = 2 ), which is graphically 

represented by a regression line on every diagram in Figure 6.  

The analogous effect was predicted by the residual graphs presented in Figure 7. The results 

presented in Figure 7 show similar shape of deviation for any selected n. However, the residuals 

of non-linear models for 𝑛 = 3 and 𝑛 = 4, are distributed further from zero compared with 

model residuals when n was assumed as 1 or 2. 

These models (Figure 6) predicted an increase of a residual standard error (RSE) as a result of 

higher Hill coefficients implemented in the model. The lowest RSE was calculated in the 

simulation when n-value was equal to 1. 

 

 
Figure 6 The effect of different Hill coefficients is estimated as a poorer quality of a model fit and a lower model 
accuracy for higher n-values (as confirmed by a higher residual standard error estimate). The comparison of the 
effect of n-value to a fit of non-linear regression was simulated for GFP signal data. Red regression line represents 
non-linear model with n = 1, orange regression line is for non-linear model with n = 2, blue regression line is non-
linear model with n = 3 and purple regression line is for non-linear model including n = 4. Estimated residual standard 
errors for the models are shown in headings in the top part of the graphs. 
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Figure 7 The effect of different Hill coefficient on residuals from simulated non-linear models is estimated as 
further distributed residuals from zero for higher n estimates. Different colors are used to represent different n-
values: red for n = 1, orange for n = 2, blue for n = 3 and purple for n = 4. Simulations of presented non-linear 
models were performed with simple GFP signals.  

4.1.1.2 The effect of different n-values on non-linear model with GFP/OD600 data 

The n-value effect on a non-linear model (Equation 30) with experimental GFP/OD600 data was 

simulated. A better model fit was predicted when the lower values of n were incorporated in 

the equation. The graphical representation (Figure 8) shows that the estimated residual standard 

errors (RSEs) of the non-linear models containing GFP/OD600 data were higher than previously 

approximated with the simple GFP signals (Figure 6). 

The residual graph (Figure 9) indicates that increase of n-value affects the distribution of 

residuals that is seen as a further dislocating of residuals from zero. The same figure presents a 

better model fit for lower values of n, such as 𝑛 =  1, which is additionally supported by the 

RSEs showed in Figure 8. These RSEs suggested that the lowest error is predicted for 

approximation of the Hill coefficient as 1. Furthermore, the residuals from this model are 

further distributed from zero compared to a simulation with the GFP data (Figure 6 and 7). 
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Figure 8 The effect of different Hill coefficient is predicted as a poorer quality of a model fit and a lower model 
accuracy for higher n-values (as confirmed by a higher residual standard error estimate). The comparison of the 
effect of n value to a fit of non-linear regression was simulated for the GFP/OD600 data. Red regression line 
represents non-linear model with n = 1, orange regression line is for non-linear model with n = 2, blue regression 
line is non-linear model with n = 3 and purple regression line is for non-linear model including n = 4. Estimated 
residual standard errors for the models are shown in headings in a top part of the graphs. 

 

Figure 9 The effect of different Hill coefficient on residuals is predicted as further distributed residuals from 
zero for higher n estimates in the simulated non-linear models. Different colors are used to represent different n-
values: red for n = 1, orange for n = 2, blue for n = 3 and purple for n = 4. Simulations of presented non-linear 
models were performed on GFP/OD600 data. 
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4.1.2 Estimation of n and K parameters for GFP data 

The non-linear model from the Equation 29 was applied to estimate n and K values. GFPmax 

was calculated previously (Table 3) and incorporated as a constant parameter in this model. 

The output of nls() function in R for this this model included estimated values for n and K 

together with statistical parameters (Table 4). P-values for both estimates were lower than 0.05, 

meaning that estimated p-values were significant. This indicates strong evidence against the 

null hypothesis and approximated estimates are considered significantly different from zero. 

Table 4 The Hill (n) and activation coefficient (K) estimates from the non-linear model supplied with the GFP 
data and statistical parameters: standard errors, t-value and p-value.  

 Estimate Standard Error t-value p-value 

n 0.72318 0.11719 6.171 2.46e-08 

K 0.13215 0.04015 3.292 0.00147  

 

The results of this model are graphically represented in Figure 10, which shows the fit of non-

linear model with a red regression line and predicted residuals. 

 

 
Figure 10 The non-linear model fit of the Hill function estimated with the GFP data on the left (A) and residuals 
on the right (B). The model estimated values for the Hill coefficient (n) and activation coefficient (K). The regression 
line from the model is marked in red (A). The residual graph (B) shows uneven distribution of residuals around zero 
and a lower deviation of residuals is estimated for intermediate GFP signals. 
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4.1.3 Estimation of n and K parameters for GFP/OD600 data 

The Hill function was fitted to a GFP/OD600 data which resulted in n and K coefficient estimates 

according to a model presented in Equation 30. The 𝐺𝐹𝑃/𝑂𝐷600𝑚𝑎𝑥  was incorporated in a 

model as a constant parameter calculated beforehand (Table 3). The model showed similarly 

distributed residuals with a slightly higher deviation of data points compared to the ones from 

the model with GFP data (Figure 10). The graphical representation of the non-linear model fit 

is given in Figure 11. The nls() function output, including estimated n and K values with their 

statistical parameters, is presented in Table 5. P-values for both estimates were significant  

(p < 0.05).  

Table 5 The Hill (n) and activation coefficient (K) from the non-linear model supplied with the GFP/OD600 data 
and statistical parameters: standard errors, t-value and p-value. 

 Estimate Standard Error t-value p-value 

n 0.74454 0.11847 6.285 1.4e-08 

K 0.11311 0.03401 3.326 0.00132 

 
 

 
Figure 11 The non-linear model fit of the Hill function estimated with the GFP/OD600 data on the left (A) and 
residuals on the right (B). The model estimated values for the Hill coefficient (n) and activation coefficient (K). The 
regression line from the model is marked in red (A). The residual graph (B) shows uneven distribution of residuals 
around zero and a lower deviation of residuals is estimated for intermediate GFP/OD600 signals. 
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4.1.4 Parameter K estimate for GFP data 

In this model, the constant K from the Equation 29 was estimated by the nls() function in R. 

The parameter n was approximated as a constant value that equals 1. GFPmax value was derived 

from the Table 3. The model fitted experimental GFP signal data resulting in a non-linear 

model output presented in Table 6. The p-value for K estimate is significant and reduced 

compared to the preceding model (Table 4). The residuals are not equally distributed around 

zero and show a higher deviation then in section 4.1.2. The non-linear model fit with residuals 

is graphically represented in Figure 12. 

Table 6 The activation coefficient (K) from the non-linear model supplied with the GFP data for n = 1 and statistical 
parameters: standard errors, t-value and p-value 

 Estimate Standard Error t-value p-value 

K 0.19823 0.0396 6.404 8.61e-09 

 

 

 
Figure 12 The non-linear model fit of the Hill function estimated with the GFP data on the left (A) and residuals 
on the right (B). The model estimated value for the activation coefficient (K). The regression line from the model is 
marked in red (A). The residual graph (B) shows uneven distribution of residuals around zero and a lower deviation 
of residuals is estimated for intermediate GFP signals. 
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4.1.5 Parameter K estimate for GFP/OD600 data 

The K parameter value (Equation 30) was predicted with nls() function in R. In this analysis, 

the parameter n was proposed to be a constant and equal to 1. GPF/OD600max was assumed as 

constant (Table 3). Fitting the GFP/OD600 data to a non-linear model resulted in the estimate 

shown in Table 7. The p-value for the K estimate is significant and decreased compared with 

previous model (Table 5). 

The residual distribution is not uniform around zero, but further dislocating from zero is not 

present compared with the model in section 4.1.3. The non-linear model fit and residuals are 

graphically represented in Figure 13. 

Table 7 The activation coefficient (K) estimate from the non-linear model supplied with the GFP/OD600 data for  
n = 1 and statistical parameters: standard errors, t-value and p-value. 

 Estimate Standard Error t-value p-value 

K 0.16279 0.02523 6.452 6.97e-09 
 

 

 

 
Figure 13 The non-linear model fit of the Hill function estimated with the GFP/OD600 data on the left (A) and 
residuals on the right (B). The model estimated value for the activation coefficient (K). The regression line from 
the model is marked in red (A). The residual graph (B) shows uneven distribution of residuals around zero and a 
lower deviation of residuals is estimated for intermediate GFP/OD600 signals. 
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4.1.6 Parameter K estimate for GFP data predicted with a 
nondimensionalized non-linear model  

In this simulation, a non-linear model for nondimensionalized Hill function from Equation 31 

has been supplied with the GFP data to estimate K parameter. Analogous as in previous models, 

the GFPmax value was constant (Table 3). 𝐴𝑅𝐴𝑐𝑜𝑛𝑐𝑚𝑎𝑥 was selected to be 3 M and 𝑛 =  1. 

The output of nls() function in R for current model is presented in Table 8. The results showed 

a significant p-value for K estimate equal the one from a dimensional analysis (Table 6). The 

graphical representation of the model fit in Figure 14 displays unequal distribution of residuals 

around zero with similar trends as in foregoing model (chapter 4.1.5).  

Table 8 The activation coefficient (K) estimate from the nondimensionalized non-linear model supplied with the 
GFP data for n = 1 with statistical parameters: standard errors, t-value, and p-value. The parameter K predicted by 
the simulation is unitless. 

 Estimate Standard Error t-value p-value 

K 0.06608 0.01032 6.404 8.61e-09 

 

 

 
Figure 14 The non-linear model fit of the nondimensionalized Hill function estimated with the GFP data on 
the left (A) and residuals on the right (B). The model estimated value for the activation coefficient (K) and the Hill 
coefficient was 1. The parameter K was considered unitless dimension and 𝐴𝑅𝐴𝑐𝑜𝑛𝑐𝑚𝑎𝑥 was 3 M. The regression 
line from the model is marked in red (A). The residual graph (B) shows uneven distribution of residuals around zero 
and a lower deviation of residuals is estimated for intermediate GFP signals. 
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4.1.7 Parameter K estimate with a nondimensionalized non-linear model 
for GFP/OD600 data 

The estimation of K parameter with the GFP/OD600 data by the non-linear model for 

nondimensionalized Hill function included small changes of the Equation 31. Instead of GFP 

parameter from the Equation 31, it was used GFP/OD600, while the GFPmax value was replaced 

with the GPF/OD600max(Table 3). The n value was equal to 1 and 𝐴𝑅𝐴𝑐𝑜𝑛𝑐𝑚𝑎𝑥 = 3 𝑀. The 

data and parameters were incorporated in R (function nls()), which resulted in K parameter 

estimate presented in Table 9. A significant p-value for K estimate, the same as in a dimensional 

analysis for GFP/OD600 data (Table 7), was predicted. The model fit given in Figure 15 shows 

unequally distributed residuals around zero but similarly located as in the model from the 

section 4.1.4.  

Table 9 The activation coefficient (K) estimate from the nondimensionalized non-linear model supplied with 
the GFP/OD600 data for n = 1 with statistical parameters: standard errors, t-value, and p-value. The parameter K 
from the simulation is considered unitless. 

 Estimate Standard Error t-value p-value 

K 0.05426 0.00841 6.452 6.97e-09 

 

 
Figure 15 The non-linear model fit of the nondimensionalized Hill function estimated with the GFP/OD600 
data on the left (A) and residuals on the right (B). The model estimated value for the activation coefficient (K) and 
the Hill coefficient was 1. The parameter K was considered unitless and 𝐴𝑅𝐴𝑐𝑜𝑛𝑐𝑚𝑎𝑥was 3 M. The regression line 
from the model is marked in red (A). The residual graph (B) shows uneven distribution of residuals around zero and 
a lower deviation of residuals is estimated for intermediate GFP/OD600 signals. 
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4.2 Parametrization of the Hill function with the rate of GFP 

signal change 

The slope of linear part of the induction curve was calculated for every of 96 GFP-time curves 

by running a linear model. This was performed using the all_easylinear() function from 

'growthrates' package in R. The estimated slope represented the rate of change of GFP signal 

over time.  

A distribution of the corresponding rates to L-arabinose induction is presented in Figure 16. 

The effect of L-arabinose concentration on the cells from the induction study is considered as 

an increasing rate trend with increasing L-arabinose concertation until a saturation point. The 

curve itself has a hyperbolic or saturation shape.  

A maximal rate (R) estimate from the induction assay with E. coli cells was further used to 

approximate coefficients for the models in following chapters. These parameters were applied 

for simulations of a dynamic response of L-arabinose activated gene expression across host-

specific growth rates and for predictions of the genetic toggle switch performance. R was 

considered as a maximal estimated rate from all of the samples (𝑅 =  0.3237 ℎ𝑜𝑢𝑟−1). 

 
Figure 16 Estimated GFP rates for corresponding L-arabinose concentration. The increase of L-arabinose 
concentration is followed by a higher resulting GFP rate estimate until saturation is reached.  
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The effect of L-arabinose concentration (𝐴𝑅𝐴𝑐𝑜𝑛𝑐) on cell growth was simulated by estimating 

a maximal specific growth rate (Pmax) for every sample. The Pmax was approximated as a slope 

of linear part of every OD600-L-arabinose curve. The calculated Pmax values were fitted to a 

regression line from a linear model which resulted in parameters from Table 10 and it is 

graphically presented in Figure 17. P-value for the slope is much greater than 0.05 (p = 0.51) 

which suggest that slope is not significantly different from zero, consequentially, the growth is 

not responsive to L-arabinose. 

Table 10 The linear model output with statistical parameters: standard errors, t-value, and p-value; correlated 
variables are concentration of L-arabinose and Pmax, the maximal specific growth rate. 

 Estimate Standard Error t-value p-value 

Intercept 0.2950 0.0054 54.514 < 2e-16 

ARAconc  0.0008  0.0012  0.661 0.51 

 

 
Figure 17 Graphical representation of the linear regression model between L-arabinose concentration and Pmax 
shows that the cell growth is not responsive to L-arabinose induction. The model predicted that estimated maximal 
specific growth rates (Pmax) are not correlated with the L-arabinose concentration. A dashed red line represents a 
linear regression line and blue dots show estimated Pmax values. The slope was approximated to 0.0008 hour-1 and 
corresponding p-value was insignificant, which suggest that the slope is most likely to be zero and no correlation 
between Pmax and L-arabinose was predicted. 

As there was no effect of L-arabinose on the cell growth estimated (Table 10, Figure 17), it 

was unnecessary to consider GFP/OD600-change-over-time (estimated as a rate of GFP signal 

normalized with OD600). Hence, only the rates of GFP-change-over-time were taken into 

account in following non-linear models. 
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4.2.1 The effect of different n-values on non-linear model (GFP rates) 

The calculated GFP rates were used to parametrize new non-linear models according to 

Equation 33. A simulation of the effect of n-values on non-linear models supplied with GFP 

rates data predicted better model fit for lower n-values (Figure 18 and 19). The better fit for 

𝑛 =  1 and 𝑛 =  2 can be visually noticed by comparing different regression lines and how 

close data points are to the line. The model predicted a higher residual standard error (RSE) for 

elevated Hill coefficients as displayed in Figure 18.  

Use of GFP rates over GFP fluorescence data resulted in better model fits, whereas the residuals 

were distributed closer around zero. This outcome can be visualized by comparing the GFP rate 

model results displayed in Figure 18 and 19 to the GFP signal model results showed in Figure 

6 and 7. The RSEs of the non-linear models with GFP rates data (Figure 18) were remarkably 

lower than in a simulation with simple GFP signal (Figure 6). Residual graphs given in Figure 

19 show similar form of deviation. The residuals of the models that include low n-values are 

distributed closer around zero than the ones estimated for higher n-values.  

 
Figure 18 The effect of different Hill coefficients is estimated as a poorer quality of a model fit and a lower model 
accuracy for elevated Hill coefficients (as confirmed by a higher residual standard error estimate). The comparison 
of the effect of n value to a fit of non-linear regression was simulated for GFP rates data. Estimated residual standard 
errors with GFP rates are significantly lower than with the simple GFP signal. Red regression line represents non-
linear model with n = 1, orange regression line is for non-linear model with n = 2, blue regression line is non-linear 
model with n = 3 and purple regression line is for non-linear model including n = 4. Estimated residual standard 
errors for the models are shown in headings in a top part of the graphs. 
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Figure 19 The effect of different Hill coefficients on residuals is estimated as further distributed residuals from 
zero for higher n estimates in simulated non-linear models. Different colors are used to represent different n-values: 
red for n = 1, orange for n = 2, blue for n = 3 and purple for n = 4. Simulations of presented non-linear models were 
performed with the GFP rates data. 

4.2.2 Estimation of n and K parameters with GFP rates 

The GFP rate data was incorporated in the model presented in the Equation 33 and the constants 

n and K were estimated. The maximal rate (R) value was approximated as the maximum of the 

GFP rates from the induction study (Figure 16). The estimated parameters from the non-linear 

model given in Table 11 represent the output of the nls() function in R. P-values for both 

estimates were significant, and they were noticeably decreased than those from the previous 

model with the GFP fluorescence input (Table 4). 

Table 11 The Hill (n) and activation coefficient (K) estimates from the non-linear model supplied with the GFP 
rates data and statistical parameters: standard errors, t-value and p-value. 

 Estimate Standard Error t-value p-value 

n 0.48324 0.04619 10.46 < 2e-16  

K 1.47833 0.15777 9.37 8.68e-15  

 

A regression line from this model (Figure 20, red line) was predicted to lay closer to data points 

and residuals were distributed closer around zero (Figure 20) compared to the earlier model 

(Figure 10). 
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Figure 20 The non-linear model fit of the Hill function supplied with the GFP rates data on the left (A) and 
residuals on the right (B). The model estimated value for the Hill coefficient (n) and activation coefficient (K). The 
regression line from the model is marked in red (A). The residual graph (B) shows uneven distribution of residuals 
around zero and a lower deviation of residuals compared with the model supplied with GFP data. 

4.2.3 Parameter K estimate for non-linear model with rate of GFP  

The activation coefficient, K, (Equation 33) was estimated by a non-linear model supplied with 

the GFP rates data. The Hill coefficient, n, was 1. The output, including a K estimate and 

statistical parameters (Table 12), is a result of the nls() function in R. A p-value for the K 

estimate was significant. Compared to previous models (Table 6), that had the GFP and 

GFP/OD600 as inputs, a RSE of this model was extremely lower and the p-value was also 

decreased. The model fit and residuals are graphically represented in Figure 21. 

Table 12 The activation coefficient (K) estimate from the non-linear model supplied with the GFP rates data for 
n = 1 and statistical parameters: standard errors, t-value and p-value.  

 Estimate Standard Error t-value p-value 

K 1.6285 0.1332 12.23 < 2e-16 
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Figure 21 The non-linear model fit of the Hill function supplied with the GFP rates data on the left (A) and 
residuals on the right (B). The model estimated value for activation coefficient (K). The regression line from the 
model is marked in red (A). The residual graph (B) shows uneven distribution of residuals around zero and a lower 
deviation of residuals compared with the model supplied with GFP data. A lower deviation of residuals is estimated 
for lower and intermediate GFP rate estimates. 

4.2.4 Parameter K estimate with nondimensionalized non-linear model for 
the GFP rates data 

The nondimensionalized model presented in the Equation 34 has been used for estimation of K 

parameter. The n was considered as 𝑛 = 1. Previously calculated GFP rates and Equation 34 

were incorporated in the nls() function in R. The K estimate and statistical parameters from the 

nls() output are shown in Table 13. A significant and decreased p-value was predicted whereas 

the RSE (𝑅𝑆𝐸 =  0.0480) of this model was extremely reduced compared to previous model 

estimates (the GFP signal data) given in Table 8. 

Table 13 The activation coefficient (K) estimate from the nondimensionalized non-linear model supplied with 
the GFP rates data for n = 1 with statistical parameters: standard errors, t-value, and p-value. The parameter K 
from the simulation is unitless. 

 Estimate Standard Error t-value p-value 

K 0.5428 0.0444 12.23 < 2e-16 
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The model fit is graphically displayed in Figure 22 that shows a regression line of the model 

(red line) on the left and the residual graph on the right. Residuals are distributed closer around 

zero compared with previous model containing the simple GFP signal (Figure 14). 

 

 
Figure 22 The non-linear model fit of the nondimensional Hill function estimated with the GFP rates data on 
the left (A) and residuals on the right (B). The model estimated value for the activation coefficient (K) and the Hill 
coefficient was 1. The parameter K was considered unitless dimension and 𝐴𝑅𝐴𝑐𝑜𝑛𝑐𝑚𝑎𝑥 was 3 M. The regression 
line from the model is marked in red (A). The residual graph (B) shows uneven distribution of residuals around zero 
and a lower deviation of residuals is estimated for the lower and intermediate GFP rate estimates. 

Herein, we can conclude that the non-linear models with the GFP rates as inputs resulted in a 

better distribution of residuals, meaning that residuals were distributed closer around zero. 

Moreover, the models with GFP rates showed lower residual standard error and lower p-values 

compared to the models that have had GFP signal instead.  

A better model fit was estimated with the rates data, resulting in more data points closely 

distributed around a regression line. The effect of different n-values had weaker predicted 

impact on overall quality of model with GFP rates. 
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4.3 Dynamic response of L-arabinose-activated gene 
expression across host-specific growth rates 

The dynamic analysis was initially performed only for the cells of E. coli, as the maximal rate  

(𝑅 =  0.3237 ℎ𝑜𝑢𝑟−1) and the activation constant (𝐾 =  1.6285 𝑀, Table 12) were estimated 

through the non-linear models containing the induction study data collected for this bacterial 

strain. The activation coefficient was approximated through different non-linear models with 

the GFP, GFP/OD600 signal and GFP rates inputs from the induction assay performed with  

E. coli. The selected K parameter estimate for the dynamic response simulation was predicted 

by a non-linear model supplied with the GFP rates data. This model showed very low residual 

standard error (𝑅𝑆𝐸 =  0.0480) and high overall quality regarding the statistical parameters 

(Table 12) compared to all other models performed in this study. 

The specific growth rate ( 𝜇 ) for E. coli was previously experimentally estimated to be 

𝜇 = 0.0185 hour-1. The Hill coefficient was assumed as 1. A prediction of dynamic response of 

the one side of the switch was considered in the concentration range from 0.1 M to 10 M of  

L-arabinose (𝐴𝑅𝐴𝑐𝑜𝑛𝑐). 

A dynamic response of L-arabinose activated gene expression was simulated by the 

Equation 35 for the one side of the toggle switch. In this simulation, the activity of the PBAD 

promoter that controls expression of the tetR gene and a transcriptionally fused GFP as the 

reporter protein (signal) was modeled (Figure 1). 

Equation 35 was solved with the ode() function that is part of the 'deSolve' package in R, and 

resulted in Figure 23 presenting the change of GFP signal over time as a result of cell induction 

with 0.1 (red), 1 (orange), 5 (blue) and 10 M (purple) of L-arabinose. The response of gene 

expression in E. coli showed saturation trend of GFP signal change for every examined inducer 

concentration. The higher GFP response signals during time were estimated for the elevated 

𝐴𝑅𝐴𝑐𝑜𝑛𝑐 values.  

The result of performed simulation in the selected range of 𝐴𝑅𝐴𝑐𝑜𝑛𝑐 given in Figure 23 was 

that induced cells reach the saturation point after a certain time regardless the initial inducer 

concentration. The effect of different inducer concentrations affected the corresponding GFP 

signal intensity for the saturation state. The saturation point was estimated to be reached at 

higher GFP signals in the cases when the cells were induced with raised 𝐴𝑅𝐴𝑐𝑜𝑛𝑐. Estimated 

dynamic response curves displayed in Figure 23 have similar shape and trend, these include 
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initial uprise of GFP signal followed with further increase of signal and final stagnation of 

signal meaning that the saturation is achieved.  

 

 
Figure 23 The dynamic response simulation of the one side of the toggle switch in E. coli shows saturation 
trend of GFP signal over time regardless the inducer concentration (L-arabinose). The higher GFP response signals 
were estimated for induction with the higher concentrations of L-arabinose. Red line represents simulated dynamic 
response for 𝐴𝑅𝐴𝑐𝑜𝑛𝑐 = 0.1 M, orange line shows response with 𝐴𝑅𝐴𝑐𝑜𝑛𝑐 = 1 M, blue line is with 𝐴𝑅𝐴𝑐𝑜𝑛𝑐 = 5 M, 
and purple line is for induction with 10 M of L-arabinose. 

Under the assumption that the maximal rate (𝑅 =  0.3237 ℎ𝑜𝑢𝑟−1) and estimated activation 

coefficient (𝐾 =  1.6285 𝑀) approximated for E. coli are equivalent for all bacterial strains, it 

was possible to predict a dynamic response of L-arabinose-activated gene expression across 

host-specific growth rates that resulted in Figure 24. The assumptions were made to ensure that 

𝑓(𝐴𝑅𝐴) from the Equation 37 is equal in every model and that precited performance of model 

is only under effect of different microbial growth rates (𝜇).  

The incorporation of different 𝜇-values resulted in a different sink term being considered within 

the model which led to a change in the response curve appearance. The initial inducer 

concentration for the performed analysis was 1 M of L-arabinose (𝐴𝑅𝐴𝑐𝑜𝑛𝑐 = 1 𝑀). 

The primary result of the simulation indicated that every curve has a saturation tendency which 

includes initial uprise of GFP signal until the saturation point where it remains constant and 

under effect of dilution after some time it begins to decrease (Figure 24). For the simulated 

time frame (1 - 100 hours) this effect can be noticed completely for the dynamic response 
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simulated for V. natriegens (𝜇 = 0.0336 hour-1) that is presented by a pink line. The lowest 

growth rate, 𝜇, was approximated for the cells of P. oceani (𝜇 = 0.0052 hour-1), consequentially 

the response simulation for chosen time frame did not indicate reaching a saturation (red line).  

To question if all simulated curves achieve the saturation, the simulation of a dynamic response 

of bacterial strain with the lowest estimated 𝜇, P. oceani, was modeled for a longer period of 

time (t = 1-1000 hours). The performed analysis predicted a saturation point approximately 750 

hours after induction with 1 M L-arabinose. The GFP signal change over time in P. oceani was 

approximated with a dynamic saturation curve (red line) that is presented in the top left corner 

of Figure 24.  

 

 
Figure 24 The dynamic response simulation of L-arabinose-activated expression across host-specific growth 
rates shows a saturation tendency including initial uprise of GFP signal, saturation and final decrease under the 
dilution effect. GFP signal is presented on Y-axis, and it is unitless. Time is estimated in hours and presented on 
X-axis. Approximated response for E. coli is represented with blue line, orange for P. aestusnigri, green for  
P. deceptionensis, red for P. oceani, purple for P. pachastrellae, brown for P. taenensis and V. natriegens in pink 
color. The dynamic response simulation of L-arabinose-activated expression in P. oceani is presented in the top 
left corner and shows saturation tendency including initial uprise of GFP signal followed with later saturation that is 
achieved approximately 750 hours after induction with 1 M L-arabinose. 

Simulated dynamic curves show almost identical tendency for the bacterial strains with similar 

growth rate estimates, therefore the lines that represent response of P. deceptionensis (green 

line), 𝜇  = 0.0084 hour-1, and P. pachastrellae (purple line), 𝜇  = 0.0086 hour-1, are nearly 

indistinguishable in Figure 24. This is also supported with similar estimated responses for P. 

aestusnigri (orange curve), 𝜇  = 0.0144 hour-1, and P. taenensis (brown curve),  

𝜇 = 0.0136 hour-1. 
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A response time (𝑇1/2) was calculated according to Equation 39, and distribution of 𝑇1/2 among 

selected bacterial strains is displayed in Figure 25. The response time was considered as a time 

to reach half of the steady-state protein concentration. The 𝑇1/2 was assumed to be governed 

only by the removal rate hidden in the dilution term formulated as 𝛼 =  𝛼𝑑𝑖𝑙 = 𝜇. The fastest 

response was estimated from V. natriegens, and the slowest from P. oceani.  

The result of 𝑇1/2 prediction was that a higher response time was approximated for a slower 

estimated growth, and opposite, a lower response time was estimated for an elevated 𝜇-value. 

Therefore, predicted 𝑇1/2 for V. natriegens, bacterial strain with the fastest predicted growth 

rate (𝜇 = 0.0336 hour-1), was 20.61 hour (marked in pink in Figure 25). The highest response 

time, 𝑇1/2 = 132.2 hour (marked in red), was approximated for P. oceani as a result of estimated 

𝜇 that was 0.0052 hour-1, the lowest predicted growth rate among all selected strains.  

 
Figure 25 Distribution of the estimated response times among bacterial strains is governed by the species-
specific growth rate (presented in rectangles). The fastest response was estimated from V. natriegens, and the 
slowest from P. oceani. Approximated response time was higher for the bacterial strains that show lower growth 
abilities (lower 𝜇 estimates). The estimated 𝑇1/2 and 𝜇-values (in rectangles) are represented in blue color for E. 
coli, orange for P. aestusnigri, green for P. deceptionensis, red for P. oceani, purple for P. pachastrellae, brown for 
P. taenensis and V. natriegens in pink color. 
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A graphical representation of specific growth rate (𝜇) distribution for calculated response times 

( 𝑇1/2 ) is given in Figure 26. The higher the 𝜇  value, the faster response, and a lower 

approximated response time. The estimated 𝑇1/2 were predicted for the 𝜇-range that differed 

almost in order of magnitude between the lowest and highest 𝜇 estimate.  

 
Figure 26 Distribution of the estimated response times among the growth rates (𝝁) show the fastest response 
from V. natriegens, and the slowest from P. oceani. Approximated response time was higher for the bacterial strains 
that show lower growth abilities (lower 𝜇  estimates). The estimated 𝑇1/2  and 𝜇 -values (in rectangles) are 
represented in blue color for E. coli, orange for P. aestusnigri, green for P. deceptionensis, red for P. oceani, purple 
for P. pachastrellae, brown for P. taenensis and V. natriegens in pink color. 
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4.4 Simulation of a toggle switch performance  

In this chapter, a synthetically build toggle switch was modeled as a dynamic system. This 

network was described by a system of ODEs presented with Equation 40 and 41 for dimensional 

analysis and in Equation 44 for nondimensional analysis. The solution of the ODE system was 

estimated by a function ode() from package 'deSolve' in R. 

It was assumed that activation coefficients 𝐾𝐴𝑟𝑎𝐶 and 𝐾𝑇𝑒𝑡𝑅 are the same for every examined 

strain and that 𝐾𝐴𝑟𝑎𝐶 is equal to 𝐾𝑇𝑒𝑡𝑅. The transcriptional factors have very different modes of 

action, and it is not expected to obtain equal activation coefficient values for different promoters 

(PBAD and PTet), neither for the different hosts. The assumptions were made exceptionally for 

the simulation purposes in order to predict the behavior of the simplified model.  

In the previous analysis (chapter 4.1 and 4.2) the activation coefficient (𝐾𝐴𝑟𝑎𝐶) was estimated 

through different non-linear models supplied with the GFP, GFP/OD600 signal and GFP rates 

collected from the induction assay performed with E. coli. The selected K parameter for the 

simulation of a toggle switch performance was derived from the model with the GFP rates data 

(𝐾 =  1.6285 𝑀). A very low residual standard error (𝑅𝑆𝐸 =  0.0480), excellent quality 

regarding the statistical parameters (Table 12) and predicted non-linear fit together with 

distribution of residuals (Figure 21), supported selection of the K estimate from this model in 

further analysis. 

The simulation was performed under assumption that the Hill coefficient (n) is 1 and that the 

maximal expression level of promoter was obtained (𝛽 =  1). The rate of degradation was 

considered negligible 𝛼𝑑𝑒𝑔  ≈  0 with the intention to approximate the sink term (Equation 27) 

as equal to 𝛼 = 𝛼𝑑𝑖𝑙 = 𝜇.  

The performance of the toggle switch (Figure 1) was approximated by a model that simulated 

behavior of the device through the approximations of the repressors concentrations (AraC, 

TetR) that were considered as results of the promoter activity. The initial conditions for the 

simulation included that none of the repressors were present. Previously determined model 

parameters ensured approximation of the effect of the species-specific growth rates on a device 

behavior which resulted in curves given in Figure 27 (2D) and 28 (3D). By observing a time 

variable in the results graph, it is possible to visualize that in every case response of the device 

was predicted, but it varied in favor of production of AraC or TetR as displayed in Figure 28. 
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Figure 27 Simulated performance of the toggle switch in different species displays the effect of the species-
specific microbial growth rate on expression ability of bacterial strain that is approximated with the change of TetR 
and AraC. The predicted behavior was modeled for n = 1, K = 1.6285 M, and under the assumption that the maximal 
level of promoter is achieved, that the rate of degradation is negligible and that 𝐾𝐴𝑟𝑎𝐶  = 𝐾𝑇𝑒𝑡𝑅 = K. Production of 
AraC and TetR, proteins that are synthetized by the toggle switch, is presented on X and Y axis respectively and 
the dimensions are considered arbitrary. Bacterial strains are marked in different colors: blue for E. coli, orange for 
P. aestusnigri, green for P. deceptionensis, red for P. oceani, purple for P. pachastrellae, brown for P. taenensis 
and V. natriegens in pink color. 

 
Figure 28 Simulated performance of the toggle switch in different hosts approximates the effect of species-
specific growth rate on the expression ability of bacterial strain by estimating the production of AraC and TetR. The 
predicted behavior was modeled for n = 1, K = 1.6285 M, and under the assumption that the maximal level of 
promoter is achieved, that the rate of degradation is negligible and that 𝐾𝐴𝑟𝑎𝐶  = 𝐾𝑇𝑒𝑡𝑅 = K. Production of AraC and 
TetR, proteins that are synthetized by the toggle switch, is presented on X and Y axis respectively and the 
dimensions are considered arbitrary. The Z-axis shows time. Bacterial strains are marked in different colors: blue 
for E. coli, orange for P. aestusnigri, green for P. deceptionensis, red for P. oceani, purple for P. pachastrellae, 
brown for P. taenensis and V. natriegens in pink color. 
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The result of simulated performance of the device in P. pachastreallae, P. deceptionensis, P. 

aestusnigri and P. taenensis was recognized as a continuous increase of AraC and TetR 

concentration. As an outcome of the toggle switch behavior in V. natriegens, an initial uprise 

of AraC and TetR followed with further increase of AraC was predicted, on the other hand, the 

simulated trend of the TetR concentration was decreasing. The model presented initial synthesis 

of both repressors in E. coli and a further production of TetR, in contrast, AraC was consumed. 

The simulation of the toggle switch behavior in P. oceani showed an initial TetR and AraC 

production and later AraC consumption, whereas TetR concentration was estimated almost 

constant during the simulation time. 

Another approach for the simulation of the toggle switch behavior across different bacteria 

included a nondimensional analysis that relies on the Equation 45. Presented system of ODEs 

was implemented through R function ode() under the identical assumptions as beforehand. This 

analysis allows modeling the dynamic system in much more convenient way. The activation 

coefficient (K) used in this model was estimated in chapter 4.2.3 (Table 12). The activity of the 

promoter is represented by unitless quantities, such as u and v, that have a concentration of 

synthetized protein incorporated in them as Equation 44 shows.  

The primary result of the non-dimensional model was that the activity of the toggle switch was 

achieved in every host. This was approximated as a change of indirect measures, u and v 

(Figure 29 and 30). Due to the limitation of presenting the results in two dimensions, such as 

not visible simulated behavior for E. coli, the time variable needs to be considered in analysis 

(Figure 30). The unitless time variable in the 3D graph is a respective time, τ, estimated as 

product of a time and the specific growth rate, 𝜏 = 𝑡𝜇. The activity of the toggle switch was 

predicted by a model with a respect to u and v, regardless the change of 𝜇. 

The simulated performance among different hosts presented in Figure 29 and 30 is a direct 

result of the growth rate that affects expression ability of the bacterial strain. The higher the 𝜇 

is, the more rapid cell division is estimated. This results in higher dilution rates of proteins 

(TetR and AraC) and plasmid DNA per cell in the fast-growing hosts. The predicted decrease 

in protein concentration (TetR and AraC) in dimensional analysis, and analogously decrease of 

u and v in non-dimensional model were the results of the estimated dilution effect approximated 

by the specific growth rate. The chassis effect was predicted among selected bacterial strains, 

and it was simulated in the model environment which ensured that the parameters for the each 

host were kept constant and equal, except the growth rate.  
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Figure 29 Simulated performance of the toggle switch in different species with a nondimensional analysis 
shows the effect of the species-specific microbial growth rate on expression ability of bacterial strain approximated 
with u and v change. The predicted behavior was modeled for n = 1, K = 1.6285 M, and under the assumption that 
the maximal level of promoter is achieved, that the rate of degradation is negligible and that 𝐾𝐴𝑟𝑎𝐶  = 𝐾𝑇𝑒𝑡𝑅 = K. 𝑢 
(𝑢 = 𝐶𝐴𝑟𝑎𝐶 /𝐾𝐴𝑟𝑎𝐶) and 𝑣 (𝑣 = 𝐶𝑇𝑒𝑡𝑅/𝐾𝑇𝑒𝑡𝑅) are quantities that represent activity of the toggle switch, and they are 
positioned on X and Y axis respectively and their dimensions are considered arbitrary. Bacterial strains are marked 
in different colors: blue color for E. coli, orange for P. aestusnigri, green for P. deceptionensis, red for P. oceani, 
purple for P. pachastrellae, brown for P. taenensis and V. natriegens in pink color. 

 
Figure 30 Simulated performance of the toggle switch in different hosts by a nondimensional analysis in 
different species is under the effect of species-specific growth rate. The resulting change in expression ability of 
bacterial strain is estimated by the change of 𝑢 and 𝑣. The predicted behavior was modeled for n = 1, K = 1.6285 
M, and 𝛽 = 1, that the rate of degradation is negligible and that 𝐾𝐴𝑟𝑎𝐶  = 𝐾𝑇𝑒𝑡𝑅  = K. 𝑢 (𝑢 = 𝐶𝐴𝑟𝑎𝐶/𝐾𝐴𝑟𝑎𝐶) and 𝑣 
(𝑣 = 𝐶𝑇𝑒𝑡𝑅/𝐾𝑇𝑒𝑡𝑅) are quantities that represent activity of the toggle switch, and they are positioned on X and Y axis 
respectively and their dimensions are considered arbitrary. The Z-axis shows respective time, 𝜏, estimated as 
product of time and specific growth rate, 𝜏 = 𝑡𝜇. Bacterial strains are marked in different colors: blue color for E. 
coli, orange for P. aestusnigri, green for P. deceptionensis, red for P. oceani, purple for P. pachastrellae, brown for 
P. taenensis and V. natriegens in pink color. 
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The result of nondimensional simulation was that changes of u and v with respective time were 

estimated as uprise of both quantities in P. taenensis, P. aestusnigri and P. deceptionensis. The 

approximation of the u and v change in P. pachastrellae and V. natriegens indicated initial 

increase of measures, that was followed with a constant decrease of u and v. The decreasing 

trend of both quantities is present in P. oceani. The simulation performed for E. coli as a host 

showed no change of u and v. 

The microbial chassis effect was estimated in dimensional (Figure 27 and 28) and 

nondimensional (Figure 29 and 30) analysis resulting in a different simulated actions of the 

modeled genetic toggle switches across hosts which were the consequence of the different 

species-specific growth rates considered by a model. The simulation resulted in unique behavior 

of every bacterial strain that can be presented by a different trend of the result function of ODE 

system that was modeled (Figure 28 - 30).  

4.4.1 Simulation of a toggle switch performance for initial aTc presence 

The preceding simulation included initial conditions which assumed absence of both inducers, 

anhydrotetracycline (aTc) and L-arabinose. As supposed for a toggle switch circuit (Figure 1), 

in presence of excess aTc, all cells are in a red-mKate-dominant (AraC) state, while the cells 

switch to a green-GFP-dominant (TetR) state in the presence of L-arabinose. To ensure that one 

of the sides of the device is repressed and one is activated, the initial conditions were changed 

to estimate AraC-dominant state by simulating the aTc induction.  

The same assumptions were implemented as before: the activation coefficients were estimated 

as equal and derived from Table 12, 𝑛 =  1, the maximal expression level of promoter was 

assumed (𝛽 =  1) and the rate of degradation was considered negligible 𝛼𝑑𝑒𝑔  ≈  0. The 

change of AraC and TetR predicted by the model is given in Figure 31 (2D). The three-

dimensional representation of the performed analysis is displayed in Figure 32.  

The activity of the PBAD promoter was present in every strain and the difference in intensity of 

the promoter expression in different hosts was perceived. The chassis effect was simulated in 

selected conditions and clearer visual description of this effect may be given with a respect to 

time variable as it is shown in Figure 32 (dimensional analysis) and Figure 34 (nondimensional 

analysis). 
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The protein production was considered by the Hill term ( 𝛽𝐴𝑟𝑎𝐶𝑅

1+(𝐶𝑇𝑒𝑡𝑅
𝐾𝑇𝑒𝑡𝑅

)
𝑛𝐴𝑟𝑎𝐶 ; 𝛽𝑇𝑒𝑡𝑅𝑅

1+(𝐶𝐴𝑟𝑎𝐶
𝐾𝐴𝑟𝑎𝐶

)
𝑛𝑇𝑒𝑡𝑅) and 

the dilution (𝛼 = 𝛼𝑑𝑖𝑙 = 𝜇) was modeled with the sink term (𝜇𝐶𝐴𝑟𝑎𝐶 and 𝜇𝐶𝑇𝑒𝑡𝑅) as formulated 

in Equation 40 and 41. The effect of 𝜇 in performed simulations was estimated through the 

approximation that the more rapid cell division, the higher estimated protein dilution is (Figure 

27 - 34). 

Almost identical trends that were predicted in the previous analysis (chapter 4.4) were estimated 

from the model of the toggle switch circuit behavior in presence of excess aTc in the initial 

phase of simulation. Visually, the functions are more deviating (Figure 31) compared with 

previously predicted (Figure 27).  

The simulation resulted in prediction of the increase of both repressor concertation, AraC and 

TetR, in P. pachastreallae, P. deceptionensis, P. aestusnigri and P. taenensis. The initial uprise 

of the two proteins concentration was present in V. natriegens which was followed with the 

further increase of AraC and decrease of TetR. The similar initial arise of repressor was 

estimated in E. coli, while in the later simulation production of TetR and consumption of AraC 

were predicted. The simulated performance of P. oceani showed the initial synthesis the pair 

of proteins and as the simulation progressed AraC concentration started to decrease, while TetR 

concentration was estimated to have almost linear increase over observed time period. 

The result of the simulation of u and v quantities change in the aTc-induced toggle switch was 

almost identical as the outcome of the analysis without induction of the system. This can be 

expressed as: increase of u and v in P. aestusnigri, P. deceptionensis and P. taenensis; decrease 

of both quantities in P. oceani; initial uprise of u and further decline of u and v in V. natriegens; 

initial increase of v and later decrease of the quantities in P. pachastreallae; and lastly, almost 

constant u and v values approximated in E. coli.  
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Figure 31 Simulated performance of the toggle switch induced with aTc in different species shows the effect 
of the species-specific growth rate on expression ability of bacterial strain by approximating the change of TetR and 
AraC. The more rapid cell division (higher 𝜇-value), the higher estimated protein dilution. The predicted behavior 
was modeled for n = 1, K = 1.6285 M, and under the assumption that the maximal level of promoter is achieved, 
that the rate of degradation is negligible and that 𝐾𝐴𝑟𝑎𝐶  = 𝐾𝑇𝑒𝑡𝑅 = K. Production of AraC and TetR, proteins that are 
synthetized by the toggle switch, is presented on X and Y axis respectively and the dimensions are considered 
arbitrary. Bacterial strains are marked in different colors: blue color for E. coli, orange for P. aestusnigri, green for 
P. deceptionensis, red for P. oceani, purple for P. pachastrellae, brown for P. taenensis and V. natriegens in pink 
color. 

 
Figure 32 Simulated performance of the toggle switch induced with aTc in different hosts approximates the 
effect of species-specific growth rate on the expression ability of bacterial strain by estimating the production of 
AraC and TetR. The predicted behavior was modeled for n = 1, K = 1.6285 M, and under the assumption that the 
maximal level of promoter is achieved, that the rate of degradation is negligible and that 𝐾𝐴𝑟𝑎𝐶  = 𝐾𝑇𝑒𝑡𝑅  = K. 
Production of AraC and TetR, proteins that are synthetized by the toggle switch, is presented on X and Y axis 
respectively and the dimensions are considered arbitrary. The Z-axis shows time. Bacterial strains are marked in 
different colors: blue color for E. coli, orange for P. aestusnigri, green for P. deceptionensis, red for P. oceani, purple 
for P. pachastrellae, brown for P. taenensis and V. natriegens in pink color. 
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Figure 33 Simulated performance of the aTc-induced toggle switch in different species with a 
nondimensional analysis shows the effect of the species-specific growth rate on expression ability of bacterial 
strain by approximating the u and v change. The predicted behavior was modeled for n = 1, K = 1.6285 M, and 
under the assumption that the maximal level of promoter is achieved, that the rate of degradation is negligible and 
that 𝐾𝐴𝑟𝑎𝐶  = 𝐾𝑇𝑒𝑡𝑅  = K. 𝑢 (𝑢 = 𝐶𝐴𝑟𝑎𝐶/𝐾𝐴𝑟𝑎𝐶) and 𝑣 (𝑣 = 𝐶𝑇𝑒𝑡𝑅/𝐾𝑇𝑒𝑡𝑅 ) are quantities that represent activity of the 
toggle switch, and they are positioned on X and Y axis respectively, and their dimensions are considered arbitrary. 
Bacterial strains are marked in different colors: blue color for E. coli, orange for P. aestusnigri, green for P. 
deceptionensis, red for P. oceani, purple for P. pachastrellae, brown for P. taenensis and V. natriegens in pink 
color. 

 
Figure 34 Simulated performance of the aTc-induced toggle switch in different species with a 
nondimensional analysis in different species is under effect of the growth rate which is represented in different 
expression ability of bacterial strain that is approximated with u and v change over time. The predicted behavior 
was modeled for n = 1, K = 1.6285 M, and under the assumption that the maximal level of promoter is achieved, 
that the rate of degradation is negligible and that 𝐾𝐴𝑟𝑎𝐶  = 𝐾𝑇𝑒𝑡𝑅 = K. 𝑢 (𝑢 = 𝐶𝐴𝑟𝑎𝐶/𝐾𝐴𝑟𝑎𝐶) and 𝑣 (𝑣 = 𝐶𝑇𝑒𝑡𝑅 /𝐾𝑇𝑒𝑡𝑅) 
are quantities that represent activity of the toggle switch, and they are positioned on X and Y axis respectively and 
their dimensions are considered arbitrary. The Z-axis shows respective time, 𝜏, estimated as product of time and 
specific growth rate, 𝜏 = 𝑡𝜇. Bacterial strains are marked in different colors: blue color for E. coli, orange for P. 
aestusnigri, green for P. deceptionensis, red for P. oceani, purple for P. pachastrellae, brown for P. taenensis and 
V. natriegens in pink color. 
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The comparison of the simulated device behavior in presence and absence of the inducer (aTc) 

resulted in similar trends of the protein concentration change (AraC, TetR). The induction effect 

on the toggle switch performance was modeled by a dimensional and non-dimensional analysis. 

The predicted effect was estimated as a change of the ODEs system solution function linearity, 

but the trends of simulated functions have remained the same. 

The overall results of the previously performed simulations of the toggle switch performance 

across different microbial hosts indicate that the estimated concentration of synthetized proteins 

by the device are the consequences of the species-specific growth rates that affect the 

expression ability of the bacterial strain. The 𝜇-value effect was estimated through the sink 

term, an expression that considered the dilution rate of the proteins, which is formulated as 

𝜇𝐶𝐴𝑟𝑎𝐶 and 𝜇𝐶𝑇𝑒𝑡𝑅 in Equation 40 and 41. The formulated outcome of presented models was 

predicted in dimensional and non-dimensional analysis for the system without initial induction 

and for the system simulated in the AraC-dominant state which was modeled with the presence 

of excess aTc.  
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5 Discussion 

The aim of the performed study was to enhance the understanding of the genetic toggle system 

and to predict and approximate its functioning in various microbial hosts including the marine 

bacteria and E. coli (Table 1). This was done by developing a framework which simulated and 

compared the performance of engineered genetic devices across different hosts. For this 

purpose, a mathematical model that accounted the effect of species-specific growth rate within 

a system of non-linear ordinary differential equations was created. The system of ODEs 

(Equation 40 and 41) was solved to estimate the protein production rate, predicted by the Hill 

function, and the dilution rate, approximated with the sink term.  

The parametrization of the Hill function applied in the simulation was accomplished by creating 

a non-linear model in R that predicted the Hill (n) and the activation (K) coefficient. The model 

was supplied with the data collected from the induction study performed with E. coli cells 

induced with L-arabinose. In this assay, GFP and mKate fluorescence were measured together 

with OD600, while GFP, GFP/OD600 signals from the late log phase of cell growth and GFP 

rates were further used for the estimation of parameters. Moreover, the activation coefficient 

approximated by the non-linear regression was included in the model based on one ODE 

(Equation 36) that simulated a dynamic response across different hosts. In addition to this 

analysis, the response time (𝑇1/2) for every bacterial species was estimated. 

5.1 Parametrization of the Hill function with non-linear models  

The overall goal of parametrizing the Hill function is to estimate specific constants from 

relevant data, such as the activation (K) and Hill coefficient (n) presented in Equation 1 and 2 

(Alon, U., 2019). In this specific case, monitoring the GFP signal, that is a result of promoter 

activity can lead to prediction of mentioned specific parameters. The approximation of K and n 

value was performed by incorporating estimated GFP signal from induction study to a non-

linear model (generally presented in Equation 29).  

The direct measure of promoter activity relies on determination of the presence of the repressors 

in the system, in this case AraC and TetR, or the number of messenger RNAs (mRNAs) from 

promoter in individual cells (Sepúlveda et al., 2016; Bintu et al., 2005). The operon activity is 

under control of a regulator gene that is transcribed (araC, tetR) which results in production of 

a small protein molecule. If the operon is off, no presence of the repressor is determined (Lutz, 
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R., & Bujard, H., 1997; Fontanarrosa et al., 2020). The precise calculation of the protein 

concentration can be challenging due to their modifications, different locations in the cell and 

properties of the environment in which they are found (Knight, M. I., & Chambers, P. J., 2003).  

An accurate estimation of the promoter activity by the bulk measurements is often infeasible 

due to unique number of copies of the promoter for each cell. The difference is a result of an 

individual copy number of the plasmid or the genome in which the promoter is carried. The 

plasmid copy number is determined by the origin of replication and dependent on the growth 

conditions and genetics of the host strain while the genome copy number is under the effect of 

growth rate and the distance to the origin (Shao et al., 2021). 

To overcome the difficulties of quantifying the promoter activity, the reporter proteins such as 

GFP and mKate can be included in the system (Stark et al., 2018). In other words, in the system 

from this study PTet controls the expression of araC and additionally of mKate gene, while PBAD 

controls mKate and tetR gene expression. By measuring the fluorescence intensity of mKate 

and GFP produced by the device, the levels of the two repressors can be easily approximated 

(Lugagne et al., 2017).  

The GFP requires a longer time to reach a stabile fluorescence emission because of low folding 

rate of the protein into active form and it continues to fluoresce even after the cell death 

(Gutiérrez et al., 2015). The limitation of GFP signal use is that it cannot be amplified, hence 

the detection of low expression levels may not be monitored. Because of relatively slow folding 

properties of GFP, the study of the processes that include fast transcriptional activation may be 

challenging (Salehi Jouzani, G. R., & Vasilievna Goldenkova, I., 2005).  

There are different GFP variants with improved characteristics, but a lag between synthesis and 

fluorescence is still present (Southward, C. M., & Surette, M. G., 2002). Moreover, previous 

studies showed that the formation of a fluorophore is couped to the folding of the fusion protein 

(Waldo et al., 1999; Cluzel et al., 2000). The fluorophore formation requires oxygen, hence the 

use of GFP as reporter requires aerobic conditions. GFP is sensitive to pH perturbations, and it 

is recommended to use GFP variants with lower sensitivity to pH when changes of the 

intracellular pH are expected (Southward, C. M., & Surette, M. G., 2002). 

A promoter activity can be indirectly estimated by the intensity of GFP fluorescence (DeLisa 

et al., 1999) including the simple GFP and GFP/OD600 signals or the rate of GFP change over 

time. The selection of input signal directly affects model estimates and model characteristics, 
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such as model fit and distribution of the residuals. Therefore, in this study, every output from 

these three approaches was compared, whereas the coefficient estimates with the highest quality 

of statistical parameters were selected for the further analysis.  

Estimating the rates of GFP-change-over-time from the induced cells and supplying the non-

linear models with them resulted in better statistical parameters reported for the models. This 

outcome was a consequence of estimating GFP production trend for the complete selected 

phase, the log phase, instead of approximating the signal in only one time point.  

GFP-, GFP/OD600 signal and GFP rates estimates from the cells that have reached the late log 

phase showed saturation behavior to increasing inducer concentration (Figure 4, 5 and 16). 

This includes both signal and rate escalation with L-arabinose concentration increase until the 

saturation point is reached. Therefore, this response can be described by the non-linear model 

with saturation trend as the Hill function. 

In the later simulations (4.3 and 4.4) the dilution term was modeled by the specific growth rate 

only. Therefore, the Hill function was parametrized with GFP data estimated from the cells that 

have reached a log phase. A prerequisite for estimation of the growth rate is that cells are in a 

growing phase. If the simulation considered the cells with arrested growth, the ones in a 

stationary phase, the sink term, 𝛼, should have accounted both degradation and the dilution rate. 

Hence, the assumption that 𝛼𝑑𝑒𝑔 is negligible should be rejected and the removal rate can be 

modeled as 𝛼 = 𝛼𝑑𝑒𝑔 + 𝛼𝑑𝑖𝑙 = 𝛼𝑑𝑒𝑔  +  𝜇. 

The first analysis included estimation of the effect of different n-values to a model. A change 

of this constant has significantly affected the non-linear model fit and its residuals regardless 

the input signal data. The change of n-value resulted in a better model fit with lower estimated 

n, such as for 𝑛 =  1. On the other hand, increase of coefficient up to 4 is followed by poorer 

quality of model fit. The n-value had weaker effect on models supplied with GFP rates input 

compared to other data, which is remarked as better statistical parameters estimated for the GFP 

rate models with higher n. 

Activation coefficient (K) was estimated under assumption that 𝑛 =  1 since it was the closest 

whole number to a non-linear model output estimate which was 𝑛 =  0.72318, 𝑛 =  0.74454,  

𝑛 =  0.48324 for GFP, GFP/OD600 and GFP rates input respectively (Table 4, 5 and 11). 

Additional reason was that n is defined as constant that takes values between 1 and 4 (Alon, U., 

2019) and estimating the n value as lower than 1 would not be theoretically supported. 
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This decision, 𝑛 =  1, disables further bistability analysis of the toggle switch since it is 

achievable only for the elevated Hill coefficients (Osella et al., 2014). The bistability of the 

toggle is achieved due to the mutually inhibitory arrangement of the repressor genes. It is 

reached when one of the inhibitors repress gene expression with cooperativity that is greater 

than one (𝑛 >  1). The increase of n affects the robustness of the system which results in 

achieving the bistability even in a case of weaker promoters due to greater bistabile region 

(Gardner et al., 2000). 

The parametrization of the Hill function was performed for the E. coli and these coefficients, n 

and K, were used for the later simulations across all other selected organisms. By making the 

assumption that the constants are equal among bacterial host, the uncertainty of predicted Hill 

term parameters in other bacterial strains increases. The quality of parametrization can be 

improved by performing the induction study for every host and estimating the specific 

activation (K) and Hill (n) coefficient for every bacterial strain. Moreover, in an advanced 

approach collection of the aTc-induction assay data together with L-arabinose induction study 

could result in estimation of both activation coefficients, 𝐾𝐴𝑟𝑎𝐶 and 𝐾𝑇𝑒𝑡𝑅.  

The general characteristic of all presented non-linear models is that residuals are not equally 

distributed around zero, with a trend of further dislocating for extremely- low or high L-

arabinose concentrations. This trend is especially perceptible in residual graphs with high n-

value, such as 3 or 4. A careful selection of the inducer concentration in narrower range as a 

part of the experimental design, might result in a better residual distribution which should allow 

a higher certainty of the model.  

The importance of parametrization of the Hill function in nondimensionalized form with 

selected input data (GFP, GFP/OD600 and GFP rates) is hidden in constant K that is unitless. 

This could be beneficial for analysis of the dynamical system which may be accomplished in a 

much convenient manner.  

The difference that implementing various input signal produce, is seen as better non-linear 

model fit and closer distribution of residuals around zero with models containing GFP rates 

instead of GFP or GFP/OD600 signals. The improved quality of model fit was estimated by the 

statistical parameters and by monitoring how well regression line visually describes the data. 

P-values in the models with GFP rates were significant and lower than the ones approximated 

with other model inputs. This suggests that the non-linear model supplied with the rates data 

simulates the Hill function with a higher precision. 
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The cell growth is not a result of induction with L-arabinose as specific growth rates were not 

responsive to L-arabinose. This was determined by calculating 𝜇𝑚𝑎𝑥 as a slope of the linear 

part of OD600-time curves and running linear model between estimated growth rates and 

different inducer concentrations. There was no correlation between 𝜇𝑚𝑎𝑥  and L-arabinose 

concentration which was proven by p-value for the linear model slope estimate that was not 

significant (Table 10). Because of that, there was no intention to examine the effect of inducer 

concentration to a growth such as estimating GFP rates that are normalized with OD600. 

Therefore, all non-linear models that parametrized the Hill function from a rate approach, were 

supplied only with the GFP data, as it was considered responsive to L-arabinose.  

5.2 Dynamic response of L-arabinose-activated gene 
expression across host-specific growth rates 

The dynamic response is a parameter that characterizes the promoter expression ability in a 

presence of the inducer. A transcription factor binding influences the attributes of the gene 

expression which can be monitored by the green fluorescent protein (GFP) reporter gene. The 

activity of the promoter can be approximated indirectly with the GFP expression levels. Use of 

GFP as a transcriptional reporter allows measurement of a gene expression in real time in living 

cells and at the single-cell level (Southward, C. M., & Surette, M. G., 2002). GFP is usually 

included in non-disruptive studies that observe living cells since it does not interfere with the 

host growth (Andersen et al., 1998). 

The dynamic response of L-arabinose-activated expression can be simulated by the simple ODE 

presented in Equation 35. The model accounts GFP signal as indirect measure of the promoter 

activity. The change of GFP signal over time is approximated with the Hill term, the protein 

production rate, that accounts the strength of the effect of a transcription factor on a target gene 

and the dilution/degradation term (−𝛼𝐺𝐹𝑃). The selected induction study data was collected 

from the cells that were in the exponential phase of the growth.  

The choice to estimate the reporter signals only from the growing cells, allowed us to assume 

that degradation rate is negligible and that the reduction in protein concentration is due to the 

increase of cell volume during growth only (𝛼 = 𝛼𝑑𝑖𝑙 = 𝜇). In the specific case that the 

stationary phase of the cell growth is selected, the degradation rate should be accounted in the 

sink term (𝛼 = 𝛼𝑑𝑒𝑔  +  𝜇). From the simulation perspective, the estimation of the specific 

growth rate is relatively experimentally easy, while 𝛼𝑑𝑒𝑔 approximation might be challenging 
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as mechanisms of intracellular protein degradation are still being investigated and direct 

monitoring of intracellular protein concentration may be difficult. 

The dynamic response can be quantified by estimating the response time ( 𝑇1/2 ), which 

represents the time to reach halfway between the initial and final levels of dynamic processes 

that can be estimated as a half of the steady-state protein concentration. This measure is 

determined only by the removal rate (𝛼), which is approximated as 𝛼 = 𝛼𝑑𝑖𝑙 = 𝜇 for actively 

growing cells. The fast removal allows rapid changes in the concentration.  

The estimation of 𝑇1/2 by Equation 39 indicates that the higher specific growth rate, the more 

rapid 𝑇1/2 is. The response time is considered as limiting factor for designing efficient gene 

circuits (Alon, U., 2019). Preferred fast-dynamics systems, that reach the steady state faster, 

are characterized by a low 𝑇1/2. This suggests a rapid transition of TF in active state when signal 

appears in environment, followed with a fast binding of TF to the promoter of a gene which is 

further transcribed, and the mRNA is translated resulting in protein production (Alon, U., 

2019). 

The study from Rosenfeld et al. (2002) indicates that response times can be increased by two 

strategies. Firstly, by a negative autoregulation, that represents a network motif in which a 

transcription factor inhibits its own expression (Stewart et al., 2013). This approach speeds up 

the rise-time, while not affecting the turn-off time (Rosenfeld et. al, 2002). The alternative way 

would be a degradation of the gene product and then 𝑇1/2 is estimated by the degradation rate. 

Therefore, both the rise-time and the turn-off time of protein levels are decreased (Rosenfeld 

et. al, 2002).  

In the steady-state conditions, concentration of the protein is constant and equal to a ratio of the 

production and removal rate. The higher protein concentrations are obtained with higher 

production rates. On the other hand, higher removal rate lowers the steady-state protein 

concentration. The response time is not affected by the production rate, but it influences the 

steady-state level. To maintain the steady state when the rapid degradation rates of the proteins 

are estimated, it is necessary to balance it with the high production rate (Alon, U., 2019). From 

engineering perspective, it is beneficial to closely match the time scales of production and 

dilution/degradation to quickly obtain the steady state.  

The initial analysis of dynamic response was performed for E. coli cells for only one-half of 

the toggle switch as the induction data was collected from the part of device activated with one 
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molecule, L-arabinose. A selected side of the toggle switch contains the PBAD promoter that 

expresses tetR (encode the TetR production) and gfp genes (encode the GFP production). The 

collected induction assay data was a result of the activity of the one part of the device due to 

induction of only one promoter. L-arabinose was expected to trigger the activity of PBAD 

promoter (Lee et al., 1981) in E. coli and that was quantitively measured with GFP signal 

intensity. The mKate signal was monitored during the experiment and did not indicate any 

activity of the PTet promoter during the investigation, which suggested that this promoter was 

repressed with TetR protein synthetized by the PBAD promoter. 

As a result of GFP signal record, it was possible to display different GFP-time curves which 

led to visualization and assessment of correlation between inducer concentration and GFP 

signal. This interaction was explained by non-linear models formulated for E. coli cells and 

quantitively determined through estimated coefficients by nls() function in R (Ritz, C., & 

Streibig, J. C., 2008). Approximation of these parameters was necessary for dynamic response 

analysis that included incorporation of predicted parameters in an ODE that describes a 

behavior of one side of toggle switch (Equation 35) with E. coli as a host. The ODE was solved 

in R, and it was expected to be a function (Soetaert et al., 2012), which indeed was, and it 

showed saturation trend as presented in Figure 23. 

The estimated GFP signals showed a saturation trend with the increase of L-arabinose 

concentration, consequentially synthesis of TetR protein is under the same influence of the 

inducer. The activity of PBAD promoter was triggered with L-arabinose which induced 

transcription of tetR gene and synthesis of TetR protein which was reported by GFP. PBAD 

promoter has showed activity when induced with L-arabinose which was possible to describe 

with the model based on Hill's kinetics given in Equation 35 (Lee et al., 1981; Alon, U., 2019). 

The dynamics simulation of the toggle switch performed in this study was limited to only one 

side of the device given the data that was accumulated from the induction assay. By collecting 

additional induction data from the system induced with aTc, it is possible to predict a 

performance of the entire device. In that case, the PTet promoter activity can be indirectly 

measured by fluorescence of mKate reporter protein. mKate signal data should be then used for 

estimation of activation coefficient for PTet promoter, 𝐾𝑇𝑒𝑡𝑅, and for a maximal rate of mKate 

signal, (𝑚𝐾𝑎𝑡𝑒𝑟𝑎𝑡𝑒𝑚𝑎𝑥 = 𝑅𝑚𝐾𝑎𝑡𝑒). These parameters can be approximated by a non-linear 

model in R as it was previously done for 𝐾𝐴𝑟𝑎𝐶 and R.  
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To enable comparison of the dynamic response between bacterial strains, it was convenient to 

make some assumptions. Hence, 𝑓(𝐴𝑅𝐴) from Equation 37 is assumed to be the same for all 

bacterial strains allowing us to compare the dynamic response among strains. Therefore, the 

changes of coefficient 𝐾𝑇𝑒𝑡𝑅  and maximal rate (R) values across bacterial strains were not 

considered but they are expected in a real system. The sink term in simulation was different for 

every host and included dilution rate term which was approximated as the specific growth rate.  

The estimated dynamic response across different bacteria in Figure 24 has showed the fastest 

response of V. natriegens that had the highest 𝜇 , the result was additionally confirmed by 

response time calculation and their distribution among strains presented in Figure 26. 

Currently, V. natriegens is considered as the one of the fastest growing organisms (Eagon R. 

G., 1962; Maida et al., 2013). Its Vmax Express strain shows a doubling two times faster than 

E. coli and has the ability to generate high quantities of protein per cell volume (Des Soye et 

al., 2018). Moreover, V. natriegens fulfills the requirements for applications in biotechnology 

while being a marine bacterium (Hoffart et al., 2017) and it might be considered as a model 

organism due to its unique attributes. The slowest response was simulated for P. oceani which 

was considered as a consequence of very low 𝜇 estimated for this organism. 

5.3 Simulation of a toggle switch performance across different 
bacterial hosts 

The genetic toggle switch modeled as a dynamic system was described with a system of ODEs 

(Equation 40 and 41) and its performance was estimated by the solution computed with ode() 

function in R. The intention of modeling the toggle switch was to understand and explain its 

behavior with additional goal to compare how a performance of the device is impacted by the 

change of organism. Numerous strategies that can be conducted to model a dynamic network 

has been developed recently (Zheng, Y., & Sriram, G., 2010; Kirk et al., 2013).  

By the term “chassis” we refer to an organism that is a recipient of engineered biological 

systems. A propagation of genetic information together with a gene expression and programable 

biological functions are activities that a host should perform (Kim et al., 2016). An identical 

engineered genetic device shows unique performance across different chassis due to differences 

in host physiology and interactions between genetic parts and the host cell (Bartoli et al., 2020). 

Hence, the effect that a recipient has on the device is called a "chassis" effect. 
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This thesis approach included assumption that model parameters for the Hill term (Equation 40 

and 41), the activation (K) and the Hill coefficient (n), are constant and equal for every bacterial 

strain. K was derived from Table 12 and n was estimated as 𝑛 =  1. It was supposed that this 

system reaches the maximal expression level of promoter, and that dilution process is 

approximated with a specific growth rate in a sink term. Under these conditions the "chassis" 

effect was simulated in controlled manner where the only impact was from the 𝜇. 

A limitation of presented approach is that activation coefficients of different promoters are 

considered equal (𝐾𝐴𝑟𝑎𝐶 = 𝐾𝑇𝑒𝑡𝑅). To overcome this drawback, an additional induction assay 

with aTc-induction may be performed to estimate both coefficients. Moreover, 𝐾𝐴𝑟𝑎𝐶 and 𝐾𝑇𝑒𝑡𝑅 

are considered equal among different hosts and their influence on the Hill term is not considered 

within a model. Further studies might estimate the "chassis" effect by modeling species-specific 

Hill term which should be supplied with coefficients estimated from induction study performed 

in every bacterial strain for both sides of the toggle switch.  

To estimate possible effects that presence of inducer might cause, the simulation that accounted 

the initial concentration of aTc was performed. It was expected that presence of one inducer 

should keep one side of the toggle switch inactive and that model may predict the activity of 

the other side (Lee et al., 1981; Alon, U., 2019; Guzman et al., 1995). The performed analysis, 

given in chapter 4.4.1, indicated presence of the "chassis" effect regardless to initial 

concentration which was proven with dimensional and nondimensional analysis. 

The simulated performance of the toggle switch was unique for every examined strain due to 

different specific growth rates. Both dimensional and nondimensional analysis have indicated 

a presence of the "chassis" effect with a respect to different inducer's concentrations. The effect 

was considered through several perspectives, such as ability of the device to synthetize proteins, 

the synthesis rate estimate and monitoring if device stops to produce proteins after some time. 

As shown in simulation figures (Figure 27-34) activity of toggle switch is present regardless 𝜇 

change and initial inducer concentration. The modification of the growth rate affected the 

solution function from the ODEs system that describes the network. The activity of the device 

was determined as a change in concentration of at least one of the proteins (AraC and/or TetR).  

A performance of the toggle switch was simulated under specific assumptions including 

𝑛 =  1.  This selection of Hill coefficient value was made through considering statistical 

parameters and a quality of a non-linear model, that is described in chapters 4.1 and 4.2. For 
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bistability analysis, n should be greater than 1 (Alon, U., 2019). Hence, it was not possible to 

examine two stabile states of the toggle switch in these conditions. 

The bistabile systems switch into the corresponding stable state that is triggered by the input 

signal and remain in that state even after removal of the signal (Lebar et al., 2014). The 

bistability of simulated toggle switch system given in Figure 1 is presented with two stabile 

states: red-mKate-dominant (AraC) state and green-GFP-dominant (TetR) state. In presence of 

L-arabinose the device switches to TetR-state and in presence of excess aTc to AraC-dominant 

state (Lebar et al., 2014; Lugagne et al., 2017). 

In further research, for examination of two stabile states of the device, a nullcline analysis may 

be performed. Nullclines represent curves at which one of the proteins has constant 

concentration, in other words, rate of concentration change of this protein is zero. The crossing 

points of the two nullclines are places where neither protein changes nor there is a fixed point 

(Alon, U., 2019). Another tool that can be used for determination of stability of the system of 

ODEs that are describing the genetic toggle switch is Jacobi stability analysis (Abolghasem, 

H., 2012). Moreover, the stability criteria can be defined by examination different initial 

conditions for the toggle switch performance (e.g., the Hill coefficient, the activation 

coefficient, initial concentration of repressor/inducer etc.). 

It is important to highlight, that mathematical models are useful tools to predict and 

approximate the nature when experimental approach is too challenging to perform. A 

simulation of dynamic process should support better understanding of its mechanism and 

predict all factors that affect its performance. From the synthetic biology perspective, a 

mathematical modeling can be used to estimate potentials of microbes to perform new functions 

by predicting their performance in silico. By merging experimental quantitative data and 

formulated models, it is possible to achieve application of engineered microbes as technological 

platform (Chandran et al., 2008). A unique role of a scientist is to understand model limitations, 

such as difficulty to describe a process of importance completely accurately, and to select the 

best possible option for their research. 

Synthetic biology as a scientific field is constantly seeking for new bacterial hosts for various 

engineering purposes. The vast majority of the dynamic studies of the toggle switch is focused 

on E. coli while neglecting the unique potentials of the other species. Hence, the intention of 

this study was to predict the toggle switch performance across different bacterial hosts including 

the marine bacteria and to point out the possibilities of marine bacteria as recipients in future.  
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6 Conclusion 
Finally, I would like to summarize the main findings of this thesis. 

• The microbial growth is not responsive to L-arabinose concentration. 

• Parametrization of Hill function with non-linear model showed the best quality of the 

estimates with GFP rates compared to the GFP and GFP/OD600 signals with the respect 

to the statistical parameters of nls() function output. 

• GFP, GFP/OD600 signals and GFP rates estimated from E. coli cells in the late log phase 

show saturation behavior with increasing L-arabinose concentration. 

• The Hill coefficient, n, has significant impact on non-linear models and a poorer model 

quality with a respect to statistical parameters, is a consequence of elevated n-value. 

• The effect of the Hill coefficient on a non-linear model with the GFP rates data is not 

as intense as with GFP signals or GFP/OD600. 

• None of the estimated non-linear models resulted in equal distributions of residuals. 

• The model residuals were further dislocated from zero in areas of extremely low- or 

high L-arabinose concentration. 

• A dynamic response of L-arabinose-activated gene expression in E. coli can be 

represented with a hyperbolic saturation curve. 

• The simulation of the dynamic response of L-arabinose-activated gene expression 

across host-specific growth rates, under assumption that the maximal rate (R) and 

activation coefficient (K) do not change with the strain, indicated a hyperbolic saturation 

trend for every host. 

• The fastest response of the one side of the toggle switch, when assumed that 𝑓(𝐴𝑅𝐴) is 

equal for every bacterial strain, was estimated for V. natriegens as a host organism. 

• The highest response time (𝑇1/2) and the slowest response was simulated for P. oceani. 

• The "chassis" effect was approximated by a simulation of the toggle switch performance 

that estimated a high impact of the specific growth rate (𝜇) on a behavior of the genetic 

device which was concluded in dimensional and nondimensional analysis. 

• The presence of the "chassis" effect within a toggle switch across different bacterial 

strains was predicted in conditions when none of the inducers were present in the 

environment and for the initial aTc-induction. 

• The simulations suggested that the "chassis" effect manifests itself as an influence of 

the species-specific growth rate (𝜇) on the performance of the device. 
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