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Abstract

This work focuses on lightening the curse of dimensionality in a range of to multi-dimensional

dynamic programming problems. Discretization in state space and iterative methods are

used to find the optimal value function. The differentiability of the optimal value function is

utilized to solve the two-stage discrete Hamilton-Jacobi-Bellman equation.

The procedure suits for a wide range of optimal control problems in resource economics. Its

efficiency is exemplified by the solving of a few simple problems.

3.1 Introduction

Dynamic programming (DP) is a popular technique for the solving of optimal control
problems and stems from the early contribution of Bellman (1957). The technique,
which is built upon the Hamilton-Jacobi-Bellman equation, provides a mathematical
formalization of the trade-off between current and future profit. Unlike trajectorywise
approaches such as direct discretizations or methods based on the Pontryargin’s maxi-
mum principle, it gives a global solution to the problem stated. It is well known, how-
ever, that for many problems the computational requirements are so overwhelming that
DP is considered unsuitable.

Nevertheless, the concept of dynamic programming is more powerful than many
scientists seem to realize. A wide range of problems in higher state and control space
dimensions are solvable with DP, and extensive work in the field of operational research
has been undertaken to overcome the curse of dimensionality (see Rust (1996) for an
overview of computational complexity). Methods like neuro-dynamic programming
(Bertsekas and Tsitsiklis 1995), higher-order approximations, randomization and adap-
tive space discretization have been proposed (Grüne and Semmler 2004, Grüne 2004).
The techniques presented in this work may be categorized as discretization and approx-
imation methods. A discretization of the state space is done, but discretization of the
policy space is avoided in order to keep down numerical costs. Instead the optimal con-
trols are found from using first-order conditions in an approximated discrete version of
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the Hamilton-Jacobi-Bellman equation. This method relies heavily on the differentiabil-
ity of the optimal value function, which is satisfied when the object function is concave
(see Cotter and Park (2005), and Benveniste and Scheinkman (1979)).

The efficiency of the method depends on the nature of the problem explored. It
is, however, well adapted for many problems in resource economics and economics
in general, where the object function is concave. Although it does not overcome the
dimensionality problem of higher dimensions, it may ease the problem, and a state
space of at least four dimensions works fine.

At the end of this work some simple examples with a two-dimensional state space
are given, and the relevance of the proposed method is demonstrated and discussed.

3.2 Problem formulation

The general discounted optimal control problem to be solved can be formulated

V (x) = max
u∈U

∫
∞

0

e−δtg
(
x(t), u(t)

)
dt, (3.1)

with continuous state equation

d

dt
x(t) = f

(
x(t), u(t)

)
, x(0) = x0, (3.2)

where x(t) ∈ Ω and both Ω ⊂ Rn and U ⊂ Rm are compact sets. Further on,
g(x(t), u(t)) is continuous and concave with respect to the control variable, u(t).

The solving of this problem requires in many cases numerical procedures. Since
numerics is by nature discrete, we may as well give the discrete formulation straight
away. By replacing eq. (3.2) with the discrete first order approximation

xh(0) = x, xh(i+ 1) = ϕ(x, u) ≡ xh(i) + f
(
xh(i), uh(i)

)
h, (3.3)

where h is the discrete time-step (h << 1), it is shown in Grüne and Semmler (2004) that
the corresponding discrete optimal value function is given by

Vh(x) ≈ max
u∈U

h

∞∑

i=0

βi g(xh(i), ui), (3.4)

where β ≡ 1 − δh. Now, if we put eq. (3.3) into eq. (3.4) and take the first period out of
the summation sign, we arrive at the discrete Hamilton-Jacobi-Bellman equation

Vh(x) ≈ max
u

{
h g(x, u) + β Vh

(
ϕ(x, u)

)}
, (3.5)
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which is a sufficient condition for optimum.
Solving equation (3.3) repeatedly based on an estimate of Vh(x) is the core of the

numerical procedure that will be described and demonstrated in this work. A guess-
estimate V 0

h (x) is assumed as a starting value for a fixed-point iteration. Based on this
estimate an approximation to Vh(ϕ(x, u)) is calculated, and u0(x) is found as the value
that maximizes the right side of the equation based on these estimates. This maximum
value, defined as V 1

h (x), is a new and improved estimate of Vh(x), and it leads to a new
optimal policy, u1(x). A sequence of further fixed-point iterations continues until the
sequence {V 1

h , V
2
h , . . . V

n
h } convergences (V n+1

h (x) = V n
h (x)).

This procedure will in the following be explained mathematically. For notation pur-
poses we start by defining the linear operator

L(u)(Vh) ≡ h g(x, u) + β Vh

(
ϕ(x, u)

)
. (3.6)

The dynamic programming operator

Th(Vh)(x) = max
u∈U

{
L(u)(Vh)

}
(3.7)

can be used to successively solve the Hamilton-Jacobi-Bellman equation with fixed-
point iterations

V i+1
h (x) = Th(V

i
h)(x), (3.8)

and through this a mathematical procedure to solve the original problem stated in eq.
(3.1) and (3.2) is established. Since the procedure solves equation (3.5) directly, an opti-
mal solution with many equilibriums is no threat to the procedure. Local versus global
extreme points are handled properly as long is this equations is solved. There are, how-
ever, many short cuts to make use of, and traps to fall into, when the first steps are taken
in concrete numerics.

3.2.1 Numerical procedures

Using first-order conditions in selection of control

To solve the problem defined in eq. (3.1) and (3.2) by numerical methods, we find the
optimal value function on a discrete state space grid, Gx ∈ Ω̂ ⊂ Ω. This is done
by making an initial guess at the value function on Gx and employing the fixed-point
iteration in eq. (3.8).

Most literature, e.g. Bertsekas (2001), (2005) and Grüne (2004) deals with working
in a discrete "control-space", û = (û1, û2, . . . , ûm) being a subspace of the continuous
value-space U . This should be avoided if possible. First of all the discrete sub-space is
sub-optimal unless the problem is in itself discrete with a limited number of nodes or
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grid points. Second, depending on the size of the vector û and on the dimension of the
problem, n, the discretization may be very computer-demanding. Working in R1 this is
no issue, but in R3 it is very difficult to work with a discrete control vector of some size
without struggling with the curse of dimensionality.

One way to cope better with the dimensionality problem is to avoid discretization
in control space. Unfortunately, when one is working with a continuous control space,
a new problem rises. Assume xh(i) = xi ∈ Ω. Then according to eq. (3.3) admissible
controls in a continuous control-space may give a new state variable, xh(i + 1) outside
of Ω̂ but inside Ω. The updating of V i+1

h (x) in accordance with (3.8) is therefore not
straight-forward. Interpolation in state space, however, is an effective way, which is
well documented in literature (see Judd and Solnick (1994)), to find approximate values
of the optimal value function for state-values outside the initial selected grid, Gx. In the
examples below we use linear interpolation to approximate the value-function outside
Gx.

In the selection of optimal control, u, in each fixed-point iteration step that updates
the optimal value function according to (3.8), we may take advantage of the first-order
Taylor approximation of Vh with respect to x. Inserting

Vh

(
ϕ(x, u)

)
≈ Vh(x) + (∇Vh)

T (x)f(x, u)h. (3.9)

into eq. (3.5), we get

Vh(x) ≈
h

1 − β
max

u

{
g(x, u) + β(∇Vh)

T (x) f(x, u)

}
. (3.10)

Only a few values need to be tested to find optimal control, u, that maximize this equa-
tion. These are the lower bound u = 0, the upper bound and the interior solution(s)
solving

∂g(x, u)

∂u
+ β(∇Vh)

T (x)
∂f(x, u)

∂u
= 0 (3.11)

with respect to u on all the nodes or grid-points of x.
In this equation the only unknown, except from u which is to be found, is ∇Vh(x).

For every fixed-point iteration, however, an estimate for this size can be found. Typi-
cally, we start the fixed-point iteration with V 0

h = 0 and use the nodes or grid points of
x to estimate ∇V k

h (x) from

∇V k
h (x) ≈ V k−1

h (x+ ∆x) − V k−1
h (x)

∆x
. (3.12)

Then V k
h (x) will, for each fixed-point iteration, approach its true value, Vh(x), and uk(x)

will approach uh(x).
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3.2.2 Policy and value iterations

The number of heavy approximations should be reduced to a minimum in order to
improve time of convergence. One way to do that is to mix policy iterations and what
we call "value iterations" (see Grüne and Semmler (2004)).

In the solving procedure of the Hamilton-Jacobi-Bellman equation (3.5), each step
of using the dynamic programming operator (3.7) could be called a policy iteration.
To speed up convergence switching between this policy-iteration and less numerically
expensive value iterations can be done. In the "value-iterations" the policy is fixed, u =

uf , and therefore also the profit, g(x, uf ), is fixed in the linear value iteration operator
(3.6). This means that the value iterations

V n+1
h = L(uf )V n

h (3.13)

stabilize rather quick. When they do, we shift to policy-iterations in accordance with
equation (3.7), before we again return to value-iterations. The alternation between value
and policy iterations continues until convergence.

3.2.3 Interpolating first-order conditions

The usefulness of utilizing first order conditions in accordance with the procedure de-
scribed in sec. 3.2.1 depends on the numeric costs of solving equation (3.11) with respect
to u. When exact roots can be found algebraically the method is very favorable, but it
might be preferable also in cases where the numerics are more challenging.

For many cases an exact root of (3.11) is not required. When approximate solutions
are sufficient, a passable and effective procedure is to find unique interpolated func-
tions on each node of Gx representing the u-dependence. Say, for node i on Gx we find
h1(i, u) and/or h2(i, u) that satisfies h1(i, u) ≈ ∂g(x,u)

∂u
and/or h2(i, u) ≈ ∂f(x,u)

∂u
. If these in-

terpolations are sufficiently good approximations and have forms that make it possible
algebraically to find roots of

h1(i, u) + β(∇Vh)
T h2(i, u) = 0, (3.14)

the method can be used. (Eq. (3.14) corresponds to eq. (3.11).
Note that interpolating f(x, u) and g(x, u), and taking the partial derivative of these

functions instead of interpolating the partial derivatives directly, may lead to large er-
rors.

3.3 Examples

In this section we will look at some examples from two classes of problems where the
first-order conditions in eq. (3.11) are effective in the finding of optimal control. The
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first class of problems consists of cases where an algebraic solution is reachable (exam-
ples 3.3.1 and 3.3.2), and the second class is problems where an algebraic solution is
reachable only when ∂ f(x,u)

∂u
and/or ∂ g(x,u)

∂u
is replaced by simpler functions on Gx (see

example 3.3.3). Such a replacement should only be done when the interpolated func-
tions are sufficiently close to the original ones.

3.3.1 Example 1: A 2d investment model with relative adjustment cost

First we will look at a problem where eq. 3.11 is easily solved algebraically without any
interpolation. The problem from Haunschmied and colleagues (2003) is also presented
in Grüne and Semmler (2004), where it is solved by adaptive grid schemes. The inputs
to equation (3.1) and (3.2) are respectively given by

g(x, u) = k1

√
x1 −

x1

1 + k2x4
1

− c1x2 −
c2x

2
2

2
− αu2

2
, (3.15)

and

f(x, u) =

(
x2(t) − σx1(t)

u(t)

)
. (3.16)

The state x1 is capital stock, x2 is investment, and the control, u, should be interpreted
as change in investment. The parameters are k1 = 2, k2 = 0.0117, c1 = 0.75, c2 =

2.5, α = 12, σ = 0.25, and discount rate δ = 0.04. Subsequently, we choose time-step
h = 1/20.

The procedure is rather easy, but let us go through the first example step by step to
convince all readers.

1. Let Gx be the 2D grid with x1 = {0, 0.05, 0.1, ..., 10} and x2 = {0, 0.01, 0.02, ..., 3}
and let h = 1/20 . This means that Gx is a very fine-meshed grid.

2. Start with a guess estimate for Vh(x), e.g a zero-matrix on the whole x-grid, Gx.

3. Find ∇Vh(x) with equation (3.12). If the zero-matrix is chosen as a start value for
V (x), the first ∇Vh(x) will also be the zero-matrix.

4. On Gx, find the set of controls u(x) that maximizes V (x) according to equation
(3.11). Since g(x, u) is concave with respect to u the inner solution will be the
maximum. Putting ∂g/∂u = −αu into the equation gives −αu+β∇Vh(x) ∂f/∂u =

0, and consequently the algebraic solution is u(x) = β∇Vh(x)/α.

5. Update Vh(x) according to 3.11

6. Start again from point 1 with the updatet V 1
h (x) as initial guess and repete the

whole procedure until convergence
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A matlab code that solves the problem numerically is given in appendix B. In the code
one should regard that the finding of optimal policy according to equation (3.14) is done
by a complete matrix operation. That is, instead of using if- and for-loops through the
grid, Gx, the calculation of u(x) is done on the whole Gx in a single operation.
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Figure 3.1: Example 1: (a) the optimal value function and (b) the optimal control on the
state space grid.

Figure 3.1(b) shows a special characteristic of the optimal control. There are discon-
tinuities in the politics along a line which, in literature, is referred to as a skibaline or
a DNS line. (See Haunschmied 2003). The discontinuity slows down convergence, and
for these kinds of problems adaptive grid schemes are ideal for treating the behavior
of the optimal control. Utilization of the first-order conditions, however, allows selec-
tion of a fine-meshed grid Gx, and therefore we did not need an adaptive grid to find a
satisfactory solution. (See Figures 3.1(a) and 3.1(b).)

3.3.2 Example 2: Optimal harvest of two species

The following example concerns management of a two-species fish resource. One of the
species predates the other, and both of the species are harvested. Therefore this model
is two-dimensional in both control and state space, and a discretization of the control
space would have been even more numerically expensive than that for example 1.

The profit and dynamics to be putted into equation (3.1) and (3.2) respectively are

g(x, u) =
2∑

i=1

pi ui −
ci
xi

uαi (3.17)



40 3. Essay II

and

f(x, u) =

(
r1x1 (1 − x1

k1

− b1x2)

r2x2 (1 − x1

k2

+ b2x1)

)
, (3.18)

and the constants are r1 = r2 = 1, p1 = 1, p2 = 25, c1 = c2 = 0.1 α1 = 2, α2 = 2.1,
k1 = k2 = 1, b1 = 0.001, b2 = 0.0001 and the discount rate δ = 0.05.

Optimal controls, catch u1 and u2, are found directly from equation 3.11, and are
given algebraically by

ui =

(
xi

2

(
pi − β

∂V

∂xi

))1/(αi−1)

. (3.19)

Convergence to the optimal curves presented in Figures 3.2(a) and 3.2(b) is reached
within half a minute when a x-grid, Gx of size 44 × 44, and time-step h = 1/1000 was
chosen.

3.3.3 Example 3: Interpolation in the first-order conditions

The dynamics in this example is identical with that in example 3.3.2, but the object
function is slightly changed to

g(x, u) = p1 u1 −
c1
x1

uα1 + (p2 − p3u2)u2 −
c2
x2

uα3

2 . (3.20)

The constants have the same values as in example 3.3.2, but p3 = 1 and α3 = 1.1 are new
to this problem.

The change of object function has consequences for the solving of equation 3.11,
which is no longer analytically solvable for u2. A direct numerical approach leads to
very high throughput, and therefore we should search for a short path omitting that
problem. Very often it is possible to find simple interpolated functions that are suffi-
ciently close to g(x, u) to be substituted into equation (3.11) (as in equaton (3.14)). These
should be functions that make it possible to solve the equation either analytically or
with fast numerical algorithms.

In this problem
∂g(x, u)

∂u2

= 25 − 2u2 −
0.11

x2

u0.1
2 . (3.21)

This suggests that the linear function

h1(i, u2) = A(x(i)) +B(x(i))u2 (3.22)

might be a sufficiently good approximation for ∂g(x,u)
∂u2

. We have to test the quality, how-
ever. A graphical inspection shows that there is practically no difference between ∂g(x,u)

∂u2

and the interpolated function (see Figure 3.3.3). Only close to x2 = 0 are there some
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Figure 3.2: Example 2: The optimal catch of (a) species x1 and (b) species x2 on the state
space grid Gx.

differences owing to extreme growth of the last term of eq. (3.21) when x2 approaches
zero. The lowest x2-value in Figure 3.3.3 is 0.01.
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When ∂g(x,u)
∂u2

is replaced with x(i) +B(x(i))u2 in eq. (3.11), optimal catch is given by

u2 =

(
β
∂Vh(x)

∂x2

− A(x(i))

)/
B(x(i)). (3.23)
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Figure 3.3: Example 3: The surfaces of ∂g(x,u)
∂u2

and the interpolated replacement function
h1(i, u2) = A(i) +B(i)u2 plotted in the same figure.

The optimal catches of the two species are plotted in Figures 3.4(a) and 3.4(b).

3.4 Range of use for the numerical procedure

The numerical procedure described in section 3.2.1 is not always effective. It is a nec-
essary condition that there exists a method to find all solutions to equation (3.11) alge-
braically or numerically within a limited number of iterations.

For resource management models, where u typically is the harvest or the use of a
certain resource, the function f(x, u) is usually linear with respect to u. This simplifies
equation (3.11) as it is reduced to

∂g(x, u)

∂u
+ β(∇Vh)

T (x) ·K = 0, (3.24)
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Figure 3.4: Example 3: The optimal catch of (a) species x1 and (b)species x2 on the state
space grid Gx.

whereK is some constant, usuallyK = 1. We will not go into any discussions about nu-
merical solvability of such equations since it on its own is a special field written tons of
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literature about. However, when either g(x, u) or ∂g(x, u)/∂u is quadratic, which often
is the case in social economic and bioeconomic literature, it is simple to solve equation
(3.24) algebraically. When that is the case, as in example 1 and example 2, the method is
preferable. It should also be considered when (3.24) can be solved numerically within
a reasonable number of iterations or when an approximation to this equation can be
solved either algebraically, as in example 3, or numerically. This means that the method
is very flexible for numerically experienced users.

How to numerically solve equation (3.10) effectively is a question that should be paid
attention. In the problem of example 1 the solution is characterized by a discontinuity in
the control space, and it is already mentioned that an adaptive grid method is effective
in that case. Since adaptive grids may easily be used in the solving of equation (3.10)
our procedure should be combined with adaptive grids for problems of this kind. With
an adaptive grid Gx is rather crude in the beginning but, depending on the sizes of local
changes in each of the fixed-point iterations, the grid is refined around the nodes where
the changes are largest. Adaptive grid is, however, not possible to implement without
breaking up the matrix operations on Gx when finding optimal controls, u. Instead of
finding u(x) in a single matrix-operation (see matlab-code in appendix B), it is necessary
to go through each element (node) of the matrixes by if- and for-loops. Although that
increases the time to find each u(x) on G(x), the total time to solve the problem may
decrease since the adaptive grid for most cases allows a lot cruder Gx (less nodes on
Gx). Especially, this is the case when the optimal control, u(x), is discontinuous.
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3.5 Conclusions

In this work we have demonstrated the use of some efficiency-improving methods for
the solving of optimal control problems with dynamic programming. These methods
do not overcome the curse of dimensionality, but their efficiency in making dynamic
programming solutions feasible and attractive for many problems with state space of
up to four dimensions is unquestionable.

In the methods demonstrated, discretization in state space is employed (discretiza-
tion methods). Subsequently, a combination of Taylor approximation of the optimal
value function and first-order conditions with respect to the optimal controls is used
to decide controls in accordance with the discrete Hamilton-Jacobi-Bellman equation.
When an optimal control is not analytically solvable in the discrete two-stage problem,
we may use interpolation and approximation techniques to find analytic solutions to
related approximated problems that are good representations of the original problem.
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