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Abstract: This paper presents a novel 160 Gbps free space optics (FSO) communication system for 6G
applications. Polarization division multiplexing (PDM) is integrated with an optical code division
multiple access (OCDMA) technique to form a PDM-OCDMA hybrid. There are two polarization
states: one is X-polarization generated from adjusting the azimuthal angle of a light source at 0◦

while the other is Y-polarization which is generated by adjusting the azimuthal angle of a light source
at 90◦. Each polarization state is used for the transmission of four independent users. Each channel
is assigned by permutation vector (PV) codes and carries 20 Gbps data. Four different weather
conditions are considered for evaluating the performance of our proposed model. These weather
conditions are clear air (CA), foggy conditions (low fog (LF), medium fog (MF), and heavy fog (HF)),
dust storms (low dust storm (LD), moderate dust storm (MD), heavy dust storm (HD)), and snowfall
(wet snow (WS) and dry snow (DS)). Bit error rate (BER), Q-factors, maximum propagation range,
channel capacity, and eye diagrams are used for evaluating the performance of the proposed model.
Simulation results assure successful transmission of 160 Gbps overall capacity for eight channels.
The longest FSO range is 7 km which occurred under CA while the minimum is achieved under
HD, which is 0.112 km due to large attenuation caused by HD. Within fog conditions, the maximum
propagation distances are 1.525 km in LF, 1.05 km in MF, and 0.85 km in HF. Likewise, under WS and
DS, the proposed system can support transmission distances of 1.15 km and 0.28 km, respectively.
All these transmission distances are achieved at BER less than 10−5.

Keywords: free space optics; polarization division multiplexing; optical code division multiple access;
permutation vector code

1. Introduction

Free space optical communication (FSO) is a wireless optical communication that can
be used as an alternative to the existing radio frequency (RF) infrastructure [1,2]. FSO
communication is a wireless data transmission method that uses a modulated optical
beam directed through the atmosphere or vacuum as a communication channel between
transceivers with the line of sight (LOS) [3,4]. It possesses license-free, high-security, easy-
to-employ in places where implementation of optical fibers is difficult due to geographical
location, the transmission of excessive information with high data rates, and is immune
to electromagnetic (EM) interference [5–8]. These advantages make FSO transmission be
used in 6G applications such as transmission of information between drones and buildings,
vehicle to vehicle, hospitals, and drones, and inter-satellite. On the other hand, external
and different weather conditions such as fog, dust storms, and snow become challenges
during the transmission of data as they cause attenuation, leading to degradation of the
received signal [8–10].
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Recently, the optical code division multiple access (OCDMA) method gains more
attention in either wired or wireless communication. It is based on the existence of light:
binary “1” means there is light and wavelength while binary “0” means the absence of
light [11]. In OCDMA, multiple users can share the same channel at the same time while
transmitting their information with a high level of cardinality [12,13]. Mostly, spectral
amplitude coding (SAC) is used among various techniques with OCDMA. Each channel
is assigned a unique code in SAC-OCDMA. Codes such as random diagonal (RD) [9],
enhanced double weight (EDW) [14], and permutation vector (PV) [15] are used with
SAC-OCDMA. Nowadays, to increase the capacity, researchers integrate different multi-
plexing techniques with SAC-OCDMA such as orbital angular momentum (OAM) [16],
and orthogonal frequency division multiplexing (OFDM) [17], and wavelength division
multiplexing (WDM) [18]. Polarization division multiplexing (PDM) is introduced to FSO
communication by researchers [19]. In PDM, a single wavelength is used for carrying
distinct signals and using orthogonal polarization states, which further leads to capac-
ity enhancement [20]. In [17], the authors used OFDM multiplexing techniques in FSO
communication. The results show successful transmission of 10 Gbps only under CA and
fog conditions. Moreover, one channel is used. The authors in [21] suggested a hybrid
FSO model formed by combining PDM with OCDMA using the RD code. Although the
simulation results assure successful transmission of 100 Gbps carried by ten channels, the
long code length of RD code makes it require complex components. Moreover, the results
were obtained under fog conditions. In [14], the authors used PDM in FSO communication
with OCDMA, using EDW code. As the EDW code has unity cross-correlation, it requires a
suitable detection technique at the receiver to cancel the interference from other undesired
channels, which makes its implementation expensive. Additionally, the results indicate
successful transmission of overall 60 Gbps of information among six channels under CA,
haze, rain, and fog conditions.

In this paper, we propose a novel model of FSO-PDM/PV-OCDMA that is formed by
integrating OCDMA with PDM and used in the FSO communication system. Four different
channels, each carrying 20 Gbps information, are used with the proposed model for trans-
mitting their information using two orthogonal polarization states (x and y polarizations).
These channels are assigned with an OCDMA code which is a PV code. In addition, the
effects of four different weather conditions on the FSO channel are considered in our study
of the performance of the FSO-PDM/PV-OCDMA system: clear air (CA), different levels
of fog (light fog (LF), medium fog (MF), and heavy fog (HF)), dust storms (low dust (LD),
medium dust (MD), and heavy dust (HD)), and snowfall (dry snow (DS) and wet snow
(WS)). The values of both bit error rates (BER) and Q-factors, eye-opening in eye diagrams,
and different FSO ranges are used in evaluating our model performance.

The remainder of the paper is organized as follows. The PV code construction is
illustrated in Section 2. Section 3 describes the proposed FSO-PDM/PV-OCDMA system,
followed by performance analysis in Section 4. Finally, Sections 5 and 6 are devoted to the
results and conclusion, respectively.

2. PV Code Construction

The PV code is characterized by the code length (CL), code weight (CW), zero cross-
correlation, and the number of users (N). The construction of the PV code is based on
permutation vectors. The CL can be expressed in terms of CW and N as [15]

CL= CW × N (1)

To explain the code construction, let Z indicate the field of real numbers, and Zn

represent the space of n-tuples of real numbers that form an n-dimensional vector space
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over Z. Furthermore, express the dimension of vector space, S, over the field Z as dim Z (S),
so the element S of Zn can be represented as [15]

S=


s1
s2
.
.
sn

 (2)

Thus, in general, dim Z (Zn) = n. Using a standard basis of vector, so the vector S can
be expressed as a linear combination as [15]

S= s1e1 + s2e2 + . . . + snen (3)

where e1, e2, . . . , en are the standard unit basis of Zn. Let L: Zn → Zn be a linear transfor-
mation that is defined as [15]

L(e1 ) =


1
0
.
.
0

; L(e2 ) =


0
1
.
.
0

; . . . ; L(en ) =


0
0
.
.
1

 (4)

The matrix of representation can be written as

[L(e1 ), L(e2 ), . . . , L(en )] =




1
0
.
.
0

;


0
1
.
.
0

; . . . ;


0
0
.
.
1


 (5)

As an example, at n = 4, the matrix of representation of Z4 is [15]

[L(e1 ), L(e2 ), L(e3 ), L(e4 )] =




1
0
0
0

;


0
1
0
0

;


0
0
1
0

;


0
0
0
0


 (6)

A PV is a 1 × m or m × 1 vector. So, the following permutation matrix and PV are the
same [15]

Permutation =


1
2
3
4

↔ [L(e1 ), L(e2 ), L(e3 ), L(e4 )] =




1
0
0
0

;


0
1
0
0

;


0
0
1
0

;


0
0
0
0


 (7)

Based on N, Cw and the above definitions, all possibilities of PV code can be generated
by getting all permutations of the vectors with repetition of [L(e1), L(e2), L(e3), L(e4)] each
vector Cw times. So, the PV code consists of N × CL matrix and its construction depend on
ZN and an arbitrary PV which can be given as [15]

PV =
(

ZN
∣∣∣perm )

N×CL
(8)
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where perm is a PV used to permute the columns of the matrix and the number of perm
possibilities is given as

PV possibilities =
(CW N) !

(CW !(CL − CW) !)
(9)

An example, if we want to generate PV code that has four users and CW = 2, then there
will be 28 possibilities of PV code according to Equation (9) with CL= 4 × 2 = 8. Two of
these possibilities can be written as [15]

First possible PV code ==


00100010
00001100
01000001
10010000


Second possible PV code ==


00101000
00000101
10000010
01010000


(10)

In this study, we consider the first possible PV code.

3. FSO-PDM/PV-OCDMA System Description

The schematic diagram of the proposed FSO-PDM/PV-OCDMA system is illustrated
in Figure 1. Like any communication system, it consists of three parts (transmitter, channel,
and receiver). At the transmitter, eight channels are assigned a PV code according to
Table 1, and their wavelengths are generated from a continuous wave (CW) laser source.
channels 1, 2, 3, and 4 are transmitted using x-polarization, which is delivered from a CW
source at 0◦ azimuthal angle and the other channels (channels 5, 6, 7, and 8) are transmitted
using y-polarization, which is delivered from a CW source at 90◦ azimuthal angle. Each of
these channels carries 20 Gbps of information that is generated from a pseudo-random bit
generator (PRBG) and a non-return to zero (NRZ) modulator. To modulate the information
signal into the channels that are generated from optical signals coming from a CW source,
a Mach–Zehnder modulator (MZM) is used. Further, the transmitters of the eight channels
that come from different polarization signals (channels 1, 2, 3, and 4 on x-polarization and
channels 5, 6, 7, and 8 on y-polarization) are combined through a PDM combiner, which
further transmits to the FSO channel.
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Table 1. Channels with their corresponding wavelengths.

Channels/Wavelengths 1550 1550.8 1551.6 1552.4 1553.2 1554 1554.8 1555.6

Channels 1, 4 0 0 λ3 0 0 0 λ7 0
Channels 2, 5 0 0 0 0 λ5 λ6 0 0
Channels 3, 6 0 λ2 0 0 0 0 0 λ8
Channels 4, 8 λ1 0 0 λ4 0 0 0 0

The signal during its transmission in the FSO channel is affected by various weather
conditions such as clear air (CA), fog conditions (low fog, LF, medium fog, MF, and heavy
fog, HF), dust storms (low dust storm, LD, medium dust storm, MD, and heavy dust
storm, HD), and snow (wet snow, WS, and dry snow, DS). These weather conditions cause
attenuation which degrades the signal strength during transmission between transmitter
and receiver. CA weather condition has the least attenuation that is 0.14 dB/km [16]. While
the attenuation under fog conditions differs according to the dense of the fog and it can be
expressed as [21]

∝F =
3.912

D

(
λ

550nm
)
−p

(11)

where ∝F, D and λ, respectively, are the fog attenuation in dB/km, the visibility in km, and
the wavelength in nm while p is the size distribution of the scattering particle that can be
determined according to the Kim model as [22]

p =


1.6D > 50

1.36 < D < 50
0.16D + 0.341 < D < 6

D− 0.50.5 < D < 1
0D < 0.5

(12)

However, the large attenuation is caused under dust storms, which is expressed in
dB/km as [23]

∝D = 52 × D−1.05 (13)

where ∝D is the attenuation of the dust storm in dB/km. In the case of snow, the attenuation
differs according to whether it is dry snow or wet snow, as dry snow refers to a low rate of
snowfall while wet snow refers to a high rate of snowfall. The attenuation of snow, ∝S, in
dB/km can be expressed as [24]

∝S = aFb (14)

where F is the rate of snowfall in mm/h. While a and b are parameters which in the case of
dry snow and wet snow given as [24]

In case of dry snow, b = 1.38, and a = 5.42 × 10−5λ + 5.49
In case of wet snow, b = 0.72, and a = 1.02 × 10−4λ + 3.78

(15)

Finally, at the receiver, the received signal is divided by the PDM splitter into the
two polarization signals (x and y polarizations) and the desired channel is detected by
the decoder that has the same spectral as the encoder. The output signal then enters the
photodiode (PD) detector for electrical/optical conversion which is further passed by a
low-pass filter (LPF) for blocking the unwanted signals and a BER analyzer is used for
checking the performance of the eight channels.

4. Performance Analysis

The received current of the desired channel at PD is expressed as [25]

ICh =
RrPCW

CL
(16)
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where R indicates the responsivity of PD and rP is the received power which is given as [16]

rP= tP

(
dr

dt + Pr
)

2
10
−αPr

10 (17)

where tP is the transmitted power, dt and dr, respectively are transmitter and receiver
aperture diameters, represents the beam divergence angle of the laser, and Pr looks for
propagation range. The signal-to-noise ratio, S/N, is [25]

S/N =
(ICh)

2

σSN + σTh
(18)

where σSN and σTh, respectively are the powers of shot noise and thermal noise. σSN is
given as [25]

σSN = 2eBelectric(ICh) (19)

where e and Belectric are electron charge and electrical bandwidth, respectively.
While the thermal noise, σTh, is given as [26]

σTh =
4kBTBelectric

RL
(20)

Here, kB is Boltzmann constant, RL and T are the load resistance of receiver and
absolute temperature of receiver noise, respectively.

Therefore, the S/N will be

S/N =
(ICh)

2

2eBelectric(ICh) +
4kBTBelectric

RL

(21)

Finally, BER in terms of S/N will be [25]

BER =
1
2

er f c

(√
S/N

8
) (22)

While BER in terms of Q-factor can be written as [27]

BER =
1
2

er f c
(

Q√
2
) (23)

5. Simulation Results

The proposed FSO-PDM/PV-OCDMA system is evaluated and simulated using Mat-
lab and Optisystem software version 18 with the parameters mentioned in Table 2 [27–31].
Optisystem is a commercial tool that offers designing, simulation, and optimization of opti-
cal components, links, systems, and networks. By using Optisystem software, the product
time introduction to the market can be shortened and product quality can be improved.

In this section, the simulation results presented were obtained from simulating our
suggested FSO-PDM/PV-OCDMA system. Effects of diverse weather conditions on our
proposed system performance are discussed in terms of maximum FSO range, log (BER),
Q-factors, and eye diagrams. The conducted results are divided according to different
weather conditions into the following parts:
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Table 2. Simulation parameters [27–31].

Symbol/Parameter Value

tP (dBm): CW laser source input power 15
Laser linewidth 10 MHz

Rb (Gbps): bit rate per channel 20
Number of channels 8

Belectric (Hz): electrical bandwidth 0.75 × Bit rate
Divergence angle 1 mrad

dr (cm): receiver aperture diameter 10
dt (cm): transmitter aperture diameter 20

R (A/W): PD responsivity 1
Thermal noise power density 10−22 W/Hz

T (K): receiver noise temperature 300
RL: receiver load resistance 1030

5.1. Effect of Clear Air on FSO-PDM/PV-OCDMA System

As clear air has less attenuation, that is 0.14 dB/km, this leads to less effect of the
information signal during its propagation. It is seen from Figure 2 (log (BER) versus
different FSO ranges) that the eight channels, which are transmitted using two polarization
signals (four channels on x-polarization and four channels on y-polarization), can support
up to 7 km FSO link with an overall capacity of 160 Gbps and log (BER) < −5. Table 3
shows the computed log (BER) for the eight channels at a 7 km propagation range.
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Table 3. log (BER) values of eight channels of FSO-PDM/PV-OCDMA system at 7 km.

Channels 1 2 3 4 5 6 7 8

Polarization signal x-polarization y-polarization
Log (BER) −5.91 −5.64 −6.14 −6.39 −5.87 −5.3 −6.74 −6.38

Figure 3 depicts the Q-factor for channels 1, 2, 3, and 4 transmitted using x-polarization
and channels 5, 6, 7, and 8 transmitted using y-polarization versus the propagation range
for the proposed FSO-PDM/PV-OCDMA system. At a 7 km propagation range, the Q-
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factor values for channels 1 and 5, 2 and 6, 3 and 7, and 4 and 8, respectively, are 4.7 and
4.6, 4.5 and 4.4, 4.8 and 5, and 4.9 and 4.9, respectively.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17 
 

 
Figure 3. Q-factor of FSO-PDM/PV-OCDMA system versus FSO link under clear air weather. 

Figure 4 displays the eye diagrams for the eight channels that propagate on two dif-
ferent polarization signals (X at 0 degrees and Y at 90 degrees) at a 7 km propagation 
distance. As all channels have a wide eye-opening, they advocate successful information 
transmission with an overall capacity of 160 Gbps. 

 

 
Channel one Channel two Channel three  Channel four 

(a) 

   

 

 

Channel five Channel six Channel seven  Channel eight 
(b) 

Figure 4. Eye diagrams for eight channels of the FSO-PDM/PV-OCDMA system transmitted on (a) 
x-polarization and (b) y-polarization. 

Figure 3. Q-factor of FSO-PDM/PV-OCDMA system versus FSO link under clear air weather.

Figure 4 displays the eye diagrams for the eight channels that propagate on two
different polarization signals (X at 0 degrees and Y at 90 degrees) at a 7 km propagation
distance. As all channels have a wide eye-opening, they advocate successful information
transmission with an overall capacity of 160 Gbps.
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5.2. Effect of Fog Weather Conditions on FSO-PDM/PV-OCDMA System

The effects of different fog conditions (LF, MF, and HF) are discussed in this part.
Figure 5 shows the BER versus the number of channels that the proposed system can

support at different transmission powers under foggy weather conditions and for different
transmitted power at 20 Gbps. As the level of fog rises, the attenuation increases, and the
allowable number of channels decreases. The LF has an attenuation of 9 dB/km, which
is increased to 16 dB/km under MF and further increased to 22 dB/km under HF [15].
Furthermore, the number of channels at tp = 15 dBm is higher than that at tp = 10 dBm. At
BER 10−9 and tp = 10 dBm, the maximum number of channels is 25, 19, and 10, respectively,
under LF, MF, and HF. These channels increased when tp = 15 dBm is used to 83 under LF,
58 under MF, and 36 under HF at the same value of BER.
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Figures 6 and 7 depict the log (BER) versus the propagation range for the eight channels
and Q-factor versus the propagation range for the eight channels, respectively. As the level
of fog rises, the attenuation increases, the propagation range decreases, and the Q-factor
decreases. Additionally, as the LF has less attenuation, our proposed system achieved the
longest FSO range for the eight channels under its effect, which is 1.525 km. This range is
slightly decreased to 1.05 km when the level of fog becomes medium, while at the heaviest
level of fog, the shortest FSO link is achieved at 0.85 km and that is cleared as the largest
attenuation is caused under HF. All these ranges are considered at acceptable BER values
(less than 3 × 10−3).

Additionally, as the propagation range increases, the Q-factor decreases. Table 4 shows
the computed log (BER) and the Q-factor for the eight channels at a propagation range of
1.525 km under LF, 1.05 km under MF, and 0.85 km under HF.

Table 4. log (BER) values and Q-factors of eight channels of FSO-PDM/PV-OCDMA system under
different fog conditions and propagation ranges.

Channels 1 2 3 4 5 6 7 8

Polarization signal x-polarization y-polarization
Log (BER) under LF

(1.525 km)
−6.7 −6.23 −7 −6.7 −6.39 −6.41 −6.66 −6.91

Q-factor 5.07 4.86 5.21 5.07 4.93 4.94 5.05 5.16
Log (BER) under MF

(1.05 km)
−6.87 −6.55 −6.57 −6.98 −6.61 −6.18 −6.87 −7.54

Q-factor 5.14 5 5.01 5.19 5.03 4.83 5.14 5.42
Log (BER) under HF

(0.85 km)
−6.59 −6.18 −6.55 −6.25 −6.29 −5.7 −6.25 −6.42

Q-factor 5.02 4.83 5 4.86 4.88 4.61 4.86 4.94
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5.3. Effect of Dust Storms Conditions on FSO-PDM/PV-OCDMA System

The effect of different dust storms (LD, MD, and HD) on the performance of the
proposed system is investigated in this part. The BER versus number of channels at
10 dBm and 15 dBm transmitted powers and 20 Gbps data rate under different dust storms
is depicted in Figure 8. As the dust storm becomes heavier, the maximum number of
allowable channels decreases. At LD, the number of channels that our proposed system can
support is 47 at 15 dBm transmitted power and BER 10−9 which is decreased to 25 channels
under MD and 8 channels under HD at same values of BER and tp. As for lower transmitted
power, which is 10 dBm, one can observe that lower number of channels can be used (15
for LD, 9 for MD, and 3 for HD).
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Figure 9 displays the log (BER) values under various dust storms versus the propa-
gation distance for the eight simulated channels. Dust storms cause high attenuation to
the information signal during propagation in the FSO channel, which leads to the shortest
ranges compared to those achieved under fog conditions. The maximum transmission
distance between the transmitter and the receiver under LD is 0.775 km, which decreases
by 0.515 km under MD, and further decreases by 0.663 km under HD, which is seen in
Figure 9a–c. This is expected as the attenuation value caused by dust storms is 25.11 dB/km,
107.11 dB/km, and 297.38 dB/km, respectively, under LD, MD, and HD, respectively [22].

Figure 10 shows the Q-factor for the eight channels of our suggested model under dust
storms versus the FSO link. As propagation ranges increase, the Q-factor decreases as well
under the different dust storms. The values of Q-factor at 0.775 km and under LD for the
eight channels are 5.08, 4.51, 4.78, 5, 4.95, 4.56, 5.05, and 5.03, respectively. Approximately
the same values of the Q-factor can be achieved at a 0.26 km propagation range under MD
and a 0.112 km FSO link under HD. The computed log (BER) and the Q-factor for the eight
channels at a propagation range of 0.775 km under LD, 0.26 km under MD, and 0.112 km
under HD are given in Table 5.
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Table 5. log (BER) values and Q-factors of eight channels of FSO-PDM/PV-OCDMA system under
dust storm conditions and propagation ranges.

Channels 1 2 3 4 5 6 7 8

Polarization signal x-polarization y-polarization
Log (BER) under LD

(0.775 km)
−6.74 −5.49 −6.06 −6.56 −6.44 −5.59 −6.66 −6.62

Q-factor 5.08 4.51 4.78 5 4.95 4.56 5.05 5.03
Log (BER) under MD

(0.26 km)
−6.65 −6 −6.73 −7.02 −6.21 −5.99 −6.88 −6.87

Q-factor 5.04 4.75 5.08 5.2 4.84 7.75 5.14 5.14
Log (BER) under HD

(0.112 km)
−7.4 −5.74 −7 −7.31 −6.95 −6.63 −7.48 −7.1

Q-factor 5.36 4.62 5.19 5.32 5.18 5.04 5.4 5.24

5.4. Effect of Wet and Dry Snow on FSO-PDM/PV-OCDMA System

Finally, the impact of dry and wet snow on the link performance is studied for all
eight channels. The BER versus different number of channels that can be supported by the
proposed system under WS and DS at different transmitted power and data rate of 20 Gbps
is devoted in Figure 11. As cleared from Figure 11, the system under WS can support larger
numbers of channels which are 70 and 21, respectively, at 15 dBm and 10 dBm transmitted
power at BER 10−9. However, under DS, the proposed model can support lower numbers
of channels, which are 30 at 15 dBm transmitted power and 9 at 10 dBm transmitted power.
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Figure 11. BER of FSO-PDM/PV-OCDMA system versus number of channels under snowy conditions.

Moreover, the system with eight channels carry information is simulated under differ-
ent snowfall rates to show the effect of the propagation ranges on the information signal.
From Figures 12 and 13, the maximum FSO link for eight simulated channels is 1.15 km
under WS, which causes attenuation (13.73 dB/km) less than that caused under DS (atten-
uation is 96.8 dB/km [31]). So, the FSO range for eight channels is decreased to 0.28 km
under DS. These ranges are taken at acceptable BER values (less than 2.5 × 10−3) and
Q-factor values approximately 5. The computed log (BER) and the Q-factor for the eight
channels at a propagation range of 1.15 km under DS, and 0.28 km under WS are given in
Table 6.
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Table 6. Log (BER) values and Q-factors of eight channels of FSO-PDM/PV-OCDMA system under
different snowfall and propagation ranges.

Channels 1 2 3 4 5 6 7 8

Polarization signal x-polarization y-polarization
Log (BER) under WS

(1.15 km)
−7.59 −6.54 −7.9 −7.46 −7.47 −6.91 −7.49 −7.48

Q-factor 5.44 4.99 5.57 5.39 5.4 5.16 5.4 5.4
Log (BER) under DS

(0.28 km)
−7.76 −6.35 −7.61 −7.11 −6.79 −6.7 −7.32 −7.36

Q-factor 5.51 4.91 5.45 5.24 5.11 5.07 5.33 5.35

A comparison between our work and previously published works is given in Table 7.
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Table 7. Comparison between present work and previous recent works.

Reference The Technique Used
in FSO System Number of Channels Overall Capacity Weather Conditions

[17] OFDM 1 10 Gbps CA

[16] OAM-OCDMA using
EDW code 12 120 Gbps CA, fog, haze, and rain

[14] PDM-OCDMA using
EDW code 6 60 Gbps CA, fog, haze, and rain

[21] PDM-OCDMA using
RD code 10 100 Gbps Fog

Present work PDM-OCDMA using
PV code 8 160 Gbps CA, fog, dust storms,

snowfall

6. Conclusions

A new 160 Gbps FSO communication is proposed by integrating PDM to OCDMA that
uses PV code. Four different channels are used, each carries 20 Gbps, are transmitted on two
orthogonal polarization states (x-polarization and y-polarization). Additionally, various
weather conditions are considered to show the availability of applying the proposed system
in different regions having different climates. These weathers are CA, fog (LF, MF, and
HF), dust storms (LD, MD, and HD), and snowfall (WS and DS). Our proposed model is
simulated under these weather conditions and the performance is carried out in terms of log
(BER), Q-factor, and eye diagrams. The proposed model declares successful transmission of
160 Gbps with a maximum FSO range achieved under CA that is 7 km while the minimum
is achieved under desert storms specific under HD and that is 0.112 km which is due
to large attenuation caused by HD. Moreover, the FSO-PDM/PV-OCDMA system can
transmit up to 1.525 km under LF. This range is slightly decreased to 1.05 km when the level
of fog becomes medium, while at the heaviest level of fog, the shortest FSO link is achieved
at 0.85 km and that is obvious as, under HF, the visibility is short while the attenuation
is high. Further, as there are regions that have snow, we considered the performance of
our suggested model under two types of snow that are WS and DS. Under WS, the system
prolongs up to 1.15 km, while under DS, it prolongs up to 0.28 km. All these ranges are
considered at the accepted value of BER (less than 2.5 × 10−3). Subsequently, the proposed
FSO system can be implemented in 6G applications such as transmission of information
between drones and buildings, vehicle-to-vehicle, hospitals, and hard-to-reach areas. In
future works, practical experimentations of the proposed technique needs to be performed
to better analyze the influence of real-time channel losses.
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