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Summary  

Background  

Tumor purity estimation plays a crucial role in genomic profiling and is traditionally carried 

out manually by pathologists. This manual approach has several disadvantages, including 

potential inaccuracies due to human error, inconsistency in evaluation criteria among different 

pathologists, and the time-consuming nature of the process. These issues may be addressed by 

adopting a digital approach. In this thesis, we employ a machine learning (ML)-based, cell-

based classifier to estimate tumor purity in lung cancer tissues.  

Materials and methods 

In this study, conducted as part of the subsequent clinical trial TNM-I, we incorporated 61 

patients diagnosed with non-small cell lung cancer (NSCLC). Tumor purity was initially 

estimated manually by two pathologists. The digital estimation of tumor purity was executed 

using a ML-based classifier in QuPath. To determine the level of agreement and inter-rater 

reliability between the two pathologists, as well as between the manual and digital 

estimations, we computed Intraclass Correlation Coefficient (ICC) and Cohen’s Kappa using 

SPSS. 

Results  

The ICC coefficient when comparing the tumor purity estimations done by the two 

pathologists was 0.833, indicating good reliability. According to Cohen’s Kappa the inter-

rater reliability between the pathologists was moderate with a value of 0.534. The ICC 

coefficient when comparing the manual and digital tumor purity estimation was 0.838, which 

indicates good reliability. When analyzing for Cohen’s Kappa we got a value of 0.563, 

indicating moderate inter-rater reliability between the tumor purity estimations done manually 

and digitally. All the results were statistically significant. 

Conclusion 

In summary, we have successfully developed a ML classifier that estimates tumor purity in 

lung cancer tissue. Our findings align with previous research and demonstrate strong 

correlation with traditional detection methods. These results underscore the importance of 

continuing research in enhancing ML-based strategies for tumor purity estimation. 
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Introduction 

Lung cancer 

Epidemiology 

Lung cancer is the most common form of cancer worldwide (1, 2). In Norway, lung cancer is 

the second most common cancer in both men and women, as shown in Figure 1 (2, 3). In the 

period 2017-2021, lung cancer accounted for approximately 10% of all newly diagnosed 

cancer cases. There were 3685 new cases of lung cancer registered in 2021 (4). The incidence 

is rising steadily, while the prevalence has tripled in the past 20 years (2). The increase in 

prevalence can be explained by better survival due to improved guidelines for examination, 

treatment, and follow-up of patients. In the last 20 years, the survival rate for patients with 

lung cancer has almost doubled. Even though the survival from lung cancer is increasing, 

lung cancer is still the form of cancer that takes the most lives. In 2021, 1190 men and 1053 

women died of lung cancer in Norway (4). A study calculated that in 2012 almost 33,000 

years of life were lost due to lung cancer, roughly the same number as breast cancer, prostate 

cancer and colon cancer combined (5). Worldwide, it is estimated that 1.8 million die from 

lung cancer annually (1, 2).  

 

Figure 1: Illustrating that lung cancer is the second most common form of cancer in 

Norwegian men (blue) and women (red). The two figures are retrieved from the Norwegian 

Cancer Registry's website. They illustrate the most common forms of cancer in percentage for 

men and women in the period 2017-2021 (3)  
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Risk factors 

Tobacco smoking is the major risk factor of all major histological types of lung cancer (6). As 

much as 8 out of 10 lung cancer cases are due to tobacco use (4). The increased risk of lung 

cancer is 20 to 50 times greater in smokers compared to never smokers (6). Duration of 

smoking is the strongest risk factor for lung cancer among smokers (6, 7). It has been shown 

that quitting tobacco use has a beneficial effect on relative risk, even if you quit smoking late 

in life. It is still important to mention that an excess risk throughout life probably persists 

even in long-term quitters (6, 8). There is a casual association between second-hand exposure 

to cigarette smoke and lung cancer risk in nonsmokers. A nonsmoker who is married to a 

smoker will have 20-30% excess risk for developing lung cancer themselves (6, 9, 10).  

When it comes to diet and lung cancer, case-control studies have shown that a rich diet in 

vegetables and fruits may exert some protective effect against lung cancer (6, 11, 12). In 

contrast, intake of meat may increase the risk of lung cancer. Especially fried or well-done red 

meat increases the risk (6, 13). It is difficult to assess the relationship between alcohol 

consumption and the risk of lung cancer, since the correlation between alcohol use and 

tobacco smoking is strong in many populations (6).  

Studies have suggested that patients with chronic obstructive pulmonary disease, such as 

asthma, are at increased risk for lung cancer (6, 14-16). The same applies to patients with 

tuberculosis (6, 17). Whether the excess risk in tuberculosis patients is caused by the chronic 

inflammation in the lung parenchyma or by the Mycobacterium itself is unclear (6). When it 

comes to indoor air pollution it has been reported positive association between indoor air 

pollution and lung cancer risk in Europe, but also in several regions of Asia (6, 18). Indoor air 

pollution is created by poorly ventilated houses, burning of wood and fumes from high-

temperature cooking using unrefined vegetable oils (6, 19).  

Ionizing radiation increases the risk of lung cancer, which can be seen in studies done on 

atomic bomb survivors and patients treated with radiotherapy (6, 20). Exposure to radioactive 

radon and its decay products have been found to increase risk of lung cancer in underground 

miners (6, 21). However, today the main concern about lung cancer risk due to radon 

exposure comes from residential rather than occupational exposure (6). In Norway around 

12% of cases of lung cancer can probably be attributed to exposure to radioactive radon gas in 

the bedrock in several areas (4, 22). For smokers who are also exposed to radon gas, the risk 

of lung cancer is particularly high. This can be explained by the two factors working in 
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different ways to promote lung cancer, but also because radon gas binds to particles in the 

tobacco smoke (4, 22). 

In Norway, asbestos and radon are considered the most important additional factors for the 

development of lung cancer in addition to smoking (4). In many low- and medium- resource 

countries the occupational exposure to asbestos remains widespread. Asbestos together with 

silica, polycyclic aromatic hydrocarbons, diesel exhaust and metals like arsenic, chromium 

and nickel make up the substances which increases lung cancer risk in occupational exposure 

(6). 

 

Diagnostics  

In Norway, we have a package procedure so called “pakkeforløp” when it comes to 

diagnostics, treatment and follow-up of cancer patients. These package procedures contain 

deadlines so that patients with cancer receive the most optimal treatment possible. In order for 

a patient to be referred to the lung cancer package procedure, certain criteria must be met. 

One criteria is that if a chest X-ray or chest computed tomography (CT) results in suspicion of 

lung cancer, the patient must be referred to the lung cancer package procedure. A patient may 

also be referred to a lung cancer package procedure despite a normal chest X-ray if there is 

still a strong clinical suspicion of lung cancer, such as in the case of unexplained dyspnea and 

hemoptysis lasting more than a week. In two cases, a patient should be referred to the lung 

cancer package procedure without waiting for the results on the chest X-ray first. This applies 

to persistent hemoptysis in smokers or ex-smokers over the age of 40 or to signs of 

obstruction of the superior vena cava (23). 

When the patient has been referred in the package procedure, the diagnostics starts. First by 

clarifying whether it is a malignant disease or not. If it proves to be cancer, an early decision 

must be made as to whether the condition is limited or widespread. This is done to decide if 

the treatment should be curative or palliative. In the case of a potentially curative condition, 

the investigation must be comprehensive, so that the histological diagnosis, distribution and 

state of health can be clarified so that further treatment can be adapted. In contrast, the 

examinations should be limited if it is an obvious palliative condition (24).   

The further course of investigation can be divided into two main categories based on whether 

the tumor is located centrally or peripherally in the lung or whether there are distant 
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metastases. The main goal in both categories is to get the best possible biopsy from the tumor. 

Centrally located tumors can be biopsied by using bronchoscopy or endobronchial ultrasound 

examination. While one can use ultrasound or CT guided needle biopsy to take samples from 

peripheral located tumors. Spread to mediastinal lymph nodes can be investigated using 

needle biopsy guided by endobronchial or endoscopic ultrasound examination, or by doing 

mediastinoscopy. Assessment of any metastases to the adrenal gland, liver, brain and other 

organs is done using CT, magnetic resonance imaging (MRI) or scintigraphy, depending on 

location. Patients considered for curative treatment undergo further investigations, such as 

Extended Pulmonary Function Test, gait test, cardiopulmonary stress test, cardiology 

assessment and positron emission tomography–computed tomography (PET-CT). In general 

when diagnosing lung cancer, histological diagnosis is important for treatment selection and it 

forms the basis for further individualized treatment. For this reason, a definitive histological 

diagnosis is sought in all patients before treatment (24). 

 

Treatment 

Determination of the diagnosis and treatment decision is made in multidisciplinary team 

(MDT) meetings, which is an interdisciplinary meeting where, for example, a pulmonologist, 

pathologist, radiologist, surgeon and oncologist meet and discuss each individual patient (24, 

25). Lung cancer is treated with surgery, radiotherapy or chemotherapy, either alone or in 

various combinations. Disease extent, tissue type as well as the patient's general condition and 

any other concurrent illness determine the choice of treatment. When choosing treatment, a 

distinction is made between non-small cell lung cancer (NSCLC) and small cell lung cancer 

(SCLC), where curative treatment is rarely relevant for SCLC (26, 27). NSCLC is further 

divided into stages which in turn help to determine the treatment. At stage I, the lung tumor is 

less than 5 centimeters without spread to lymph nodes, while at stage II the primary tumor is 

larger or there is spread to lymph nodes near the primary tumor. At stage III, there is either 

spread to lymph nodes in the breast septum or the tumor has grown into surrounding 

structures. At stage IV, distant metastases have been detected (27).  

For NSCLC in stage I or II, the primary treatment is surgery, given that it is technically and 

medically possible. After the operation, patients under the age of 70 and in stage II will 

benefit from chemotherapy. Radiotherapy is recommended postoperatively if there is a 

possibility of remaining cancer tissue. Curative radiation therapy may be appropriate as 
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primary treatment for stage I and II if the patient has concurrent heart disease or other lung 

disease that may cause the patient to be unable to tolerate the surgery (27). 

In stage III NSCLC, surgery is usually not an option. When choosing treatment for patients 

with stage III, prognostic factors are decisive. If the patient has good prognostic factors, 

curative radiation therapy should be given, usually in combination with chemotherapy. In 

cases with poor prognostic factors, the patient is offered palliative treatment, in the form of 

radiotherapy or chemotherapy. In some cases, at stage III, chemotherapy and radiotherapy can 

be given in an attempt to make the tumor operable. In the case of stage IV NSCLC, that is 

metastatic disease, the patient must be offered palliative treatment with radiotherapy or 

chemotherapy. Targeted treatment with tablets may be relevant for specific mutations (27).  

Over the past decade, a greater understanding of lung cancer biology at the molecular level 

has led to the development of targeted therapy and immunotherapy in the treatment of 

NSCLC (28). The principle behind immunotherapy is to stimulate the body’s own immune 

system to target the cancer cells, whereas targeted therapy is treatment that targets specific 

genes and proteins found in cancer cells that are responsible for driving the cancer cells to 

grow and spread (29). Immune checkpoint inhibitors (ICIs) have shown enormous value in 

the treatment of NSCLC and is now a standard part of the treatment for patients with 

metastatic, locally advanced, and resectable NSCLC. Programmed Cell Death Protein 

1/Programmed Cell Death Ligand 1 (PD-1/PD-L1) and cytotoxic T-lymphocyte associated 

protein 4 (CTLA-4) are the most common targets for ICIs, as they are utilized by the tumor to 

evade the host’s immune system. ICIs is an integral part of the treatment of NSCLC without a 

driver mutation, whereas targeted treatment is an option for patients with driver mutation 

positive NSCLC (28). Currently there are eight targets in cancer cells that can be attacked by 

targeted treatment; epidermal growth factor receptor (EGFR), kirsten rat sarcoma virus 

(KRAS), anaplastic lymphoma kinase (ALK),  mesenchymal epithelial transition (MET), 

proto-oncogene tyrosine-protein kinase (ROS1),  v-raf murine sarcoma viral oncogene 

homolog B1 (BRAF), rearranged during transfection (RET), and neurotrophic tyrosine 

receptor kinase (NTRK) (30). A problem with immunotherapy, including ICIs, is that a 

substantial number of patients with NSCLC do not benefit from the treatment and rather 

experience only toxicity. To solve this problem new predictive immunotherapy biomarkers 

needs to be found in order to predict who will respond to ICIs (28).   
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Tumor cellularity 

Manual microscopic histopathological evaluation of tumor tissue has been the gold standard 

for subtyping malignancies and deciding on treatment strategies for cancer patients (31). 

However, this approach has limitations, as the tumor tissue and microenvironment consist of 

neoplastic and various non-neoplastic cells, such as normal epithelial cells, immune cells, 

fibroblasts, endothelial cells, and others (32). When molecular genomic profiling is performed 

on bulk tissue samples, the resulting output is often influenced by the presence of non-

neoplastic cells (33, 34). Therefore, tumor purity, which accounts for the fraction of 

neoplastic cells in the tissue, needs to be estimated accurately (34, 35). Pathologists typically 

estimate tumor purity by reviewing tumors or by using DNA-based tools (34). In addition, 

tumor cellularity, or the level of neoplastic cells in a tissue sample, can affect the inclusion or 

exclusion of patients for genomic profiling, as well as downstream variant analysis (36). For 

example, sequencing platforms require a sufficient fraction of neoplastic cells (>20%) in the 

tumor tissue to identify genomic variants accurately (37). It is crucial to determine the tumor 

cellularity accurately, as it can impact treatment decisions and patient outcomes (36). 

In other hand, manual evaluation of histological sections by an expert pathologist is a time-

consuming and subjective process, which can lead to low interobserver agreement among 

pathologists for tumor purity estimation (38). Therefore, efforts should have been made to 

develop automated methods for accurate and reproducible estimation of tumor purity and 

cellularity. These methods include machine learning (ML)-based algorithms that use 

morphological features to classify neoplastic and non-neoplastic cells and DNA-based 

methods that quantify the proportion of neoplastic cells in a sample. 

 

Computational pathology 

Computational pathology has emerged as a promising field in recent years, revolutionizing 

the way we analyze and interpret biomedical images. Digital pathology technologies have 

greatly improved the image quality, making it easier to analyze large volumes of data at scale. 

In particular, artificial intelligence (AI) based image analysis platforms have the potential to 

enable rapid, reproducible, and quantitative analysis of complex pathology images (Figure 2) 

(39). 
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Figure 2: Some AI and ML approaches which are used by pathologists today. The figure is 

used with permission from the writes of “Artificial intelligence in digital pathology — new 

tools for diagnosis and precision oncology” (39). 

Machine/deep learning models have recently shown great promise in translational medicine 

for predicting the tissue of origin for unknown primary tumors (39), identifying mutational 

subtypes (40), and for tumor grading (41). These models can learn from vast amounts of data 

and can identify patterns and features that may not be visible to the human eye. As a result, 

these models can help pathologists make more accurate and informed diagnoses (39). One 

exciting application of machine/deep learning models in computational pathology is the 

development of algorithms for quantification of immune cell subsets on hematoxylin and 

eosin (H&E) stained sections in multiple malignancies (42). These models can accurately 

identify and quantify different immune cell types, which can have a significant impact on the 

effectiveness of immunotherapy. The predictive impact of these immunological markers can 
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be tested in relation to immunotherapy clinical outcomes, helping clinicians make more 

informed treatment decisions (43-45). 

Furthermore, there are opportunities to integrate these models for the purpose of estimating 

tumor purity as well. AI-based quantification models have the potential to substitute classical 

microscopic estimations of tumor purity with improved reliability and reduced subjectivity. 

By accurately estimating tumor purity, clinicians can make better decisions about which 

patients are suitable for molecular genomic profiling and personalized treatment plans. 

 

Cell/object-based vs pixel-based ML classifier 

The segmentation of tumor tissues and cells is an essential step in cancer diagnosis and 

treatment. Accurate segmentation can aid in the identification of cancerous cells, determine 

the extent of tumor invasion, and assess the effectiveness of treatment. In recent years, ML 

techniques have been employed for tumor segmentation (39). Two popular approaches to 

tumor segmentation using ML are cell/object-based and pixel-based classification (46). 

Cell/Object-Based Classification: 

Cell/object-based classification methods rely on the identification of individual cells or 

objects in the tissue image. These methods segment the image by detecting individual cells or 

objects, such as nuclei or cytoplasm, and then classifying them based on their features. 

Features used in cell/object-based classification can include shape, size, texture, and intensity. 

This approach has been shown to achieve high accuracy in tumor segmentation (39, 46). 

Pixel-Based Classification: 

Pixel-based classification methods, on the other hand, classify individual pixels based on their 

features. These methods segment the image by dividing it into smaller regions, or pixels, and 

then classifying each pixel as tumor or non-tumor based on its features. Features used in 

pixel-based classification can include color, texture, and intensity. This approach has the 

advantage of being computationally efficient and can be used with a variety of imaging 

modalities (46). 

While both cell/object-based and pixel-based classification methods have their advantages 

and disadvantages, studies have shown that cell/object-based classification methods tend to be 
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more accurate in tumor segmentation (39). Additionally, cell/object-based classification has 

the potential to provide more detailed information on individual cells, which can aid in the 

identification of different subtypes of cancer cells (46). 

Overall, both cell/object-based and pixel-based classification methods have their strengths 

and weaknesses in tumor tissue and cell segmentation. While pixel-based classification 

methods have the advantage of being computationally efficient and can be used with a variety 

of imaging modalities, cell/object-based classification methods tend to be more accurate and 

can provide more detailed information on individual cells (47). The choice of which approach 

to use may depend on the specific needs of the study and the resources available. 
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The aim of this thesis 

The ultimate objective of this master's thesis is to improve genomic profiling and enhance the 

stratification of patients for different treatment strategies by: 

1) developing a ML-based cell-based classifier for estimating tumor purity in lung cancer 

tissues. This will involve training the ML algorithm to accurately identify neoplastic cells and 

assess their percentage in the tissue sample.  

2) in addition, the thesis will compare manual neoplastic cellularity reads with those obtained 

through ML-based classification. This comparison aims to assess the accuracy and 

reproducibility of the ML-based method and its potential to replace or complement the 

traditional manual method. 

Overall, the thesis aims to contribute to the advancement of precision medicine in lung cancer 

by providing a reliable and objective method for tumor purity estimation and neoplastic 

cellularity reads. The results of this study may have implications for personalized treatment 

decision-making and may lead to improved outcomes for lung cancer patients. 
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Methods  

Material  

In our study, which is a part of the subsequent clinical trial (tumor-node-metastasis-

immunoscore (TNM-I)), we included 61 patients diagnosed with NSCLC at pathological 

stages I-IIIA at the University Hospital of North Norway (UNN), Tromsø, between 2017 and 

2018 (ClinicalTrials.gov ID: NCT03299478). Tumor samples were collected from the 

patients and de-identified patient demographic and clinicopathological data were compiled 

and stored in a secure database using the Research Electronic Data Capture (REDCap) tool. 

Manual tumor cell estimation 

Tumor cellularity refers to the proportion or percentage of neoplastic cells present in the 

tumor tissue sample and is typically estimated through manual microscopic evaluation by a 

trained pathologist. In the TNM-I trial, tumor content was manually estimated by Pathologist 

1 (Lill-Tove Busund) prior to next-generation sequencing for the patients included in genomic 

profiling (48). For the purpose of this study and to assess inter-observer variability, the tumor 

content of the tissue was then reviewed by a second observer, Pathologist 2 (Elin Richardsen). 

 

Digital tumor cell quantification 

Digital slide: 

Using a Panoramic 250 Flash III scanner (3DHistech, Hungary), the surgically resected slides 

were digitized at a resolution of 0.24 microns per pixel. To automate tumor cell assessment, 

supervised ML algorithms were employed sequentially using the open-access program 

QuPath v.0.3.0 from Queen’s University in Northern Ireland. A single slide was used for each 

patient in the analysis. 

Color normalization and cell detection: 

The staining vectors were estimated and RGB channels were normalized per slide using color 

deconvolution due to the variation in H&E intensity on different slides. Cells were identified 

based on size, shape, and optical density (OD) of nuclei in the hematoxylin layer using 

watershed segmentation, with 33 features calculated for each cell. Parameters were set for 

hematoxylin OD, including pixel size of 0.25 μm, background radius of 10 μm, median filter 

radius of 1 μm, sigma of 1.5 μm, minimum area of 7 μm2, maximum area of 500 μm2, 
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intensity threshold of 0.1, background intensity of 2, cell expansion of 2 μm, watershed post 

process with nuclei inclusion and smooth boundaries, and measurements taken for each cell. 

Additional intensity and smoothed object features were added, and Haralick texture features 

were calculated with a Haralick distance of 1 and 32 Haralick bins, along with gaussian-

weighted averages per cell. 

Training a cell-based classifier: 

The study developed random decision forest cell classifiers, guided by pathologist 

annotations, to identify tumor and stroma cells. The cohort was randomly divided into 

training and test data sets, and 0.25 mm² ROIs were randomly harvested to build training 

images. The cell labeling process improved as more cells were annotated and curated until the 

classifiers achieved performance comparable to that of a pathologist. Quality control for cell 

detection and classification was carried out by pathologists on training images and randomly 

on the full cohort. Finally, the locked classifier was deployed on the remaining cases (test 

set). All the steps are shown in Figure 3. The digital tumor purity estimated by following 

equation: (number of tumor cells/ number of detected cells) x 100 %). 

 

Figure 3: Flowchart showing the processes used in creating the ML-based classifier. 

 

Statistical analysis 

Statistics and data visualization were performed using SPSS version 29.0.0.0., with a p-value 

<0.05 considered statistically significant. Inter-observer agreement between the two 

pathologists was evaluated using weighted Cohen's kappa and Intraclass Correlation 

Coefficient (ICC) (two-way random-effects model with absolute agreement definition). The 

performance of automated digital scores was compared to pathologist manual scores also 

using weighted Cohen's kappa and ICC. 
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Ethic clearance  

The Regional Committee (REK) and the Norwegian Data Protection Organization granted 

ethical approval for the entire clinical trial (NCT03299478) with IRB # REK2016/2 
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Results  

Patients 

As shown in Table 1 the patients selected for the study are 51% male and 49% female. The 

ages range between 51 and 83 years old with a median of 71 years old. Most of them were 

former smokers with a percentage of 56%, 36% were current smokers and only 8% were 

never smokers. When it comes to types of lung cancer included in the study, most of the cases 

were lung adenocarcinoma (LUAD) as it accounted for 66%, while 30% of the histology 

included were lung squamous cell carcinoma (LUSC) and only 5% were other types of lung 

cancer. 59% of the cases included were stage I, 30% were stage II and only 11% were stage 

IIIA. 

Clinical characteristics  N (%) 

Gender  

Male  

Female 

31 (51) 

30 (49) 

Age (years)  

<71 

≥ 71 

30 (49) 

31 (51) 

Histology  

LUAD 

LUSC 

Other 

40 (66) 

18 (30) 

3 (5) 

Smoking   

Former 

Current 

Never 

34 (56) 

22 (36) 

5 (8) 

pStage  

I 

II 

IIIA 

36 (59) 

18 (30) 

7 (11) 

Who performance  

0 

1 

2 

46 (75) 

13 (21) 

2 (3) 

Surgery procedure  

Lobectomy 

Pulmectomy 

60 (98) 

1 (2) 
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Table 1: Clinical characteristics of the patients included in the study, shown in numbers and 

percentage.   

 

Manual tumor purity estimation 

The manual tumor purity estimation done by Pathologist 1 and Pathologist 2 is shown 

graphically in Figure 4-6. The bar plots (Figure 5 and 6) display the score distribution for 

each observer. Both observers presented a mean score of 60. However, there was minimal 

variability in the data, as demonstrated by a standard deviation of 22 for Pathologist 1 and 23 

for Pathologist 2, respectively. 

We aimed to compare the consistency of tumor purity estimations made manually by 

Pathologist 1 and Pathologist 2. To achieve this, we utilized the ICC, a statistical measure 

typically used to establish the consistency of repeated measurements. Our objective was to 

assess the degree of agreement between the two pathologists - essentially, to determine how 

consistent their tumor purity estimations were in comparison with each other. The ICC 

calculated was 0.833, with a 95% confidence interval of 0.736-0.896. Considering that an 

ICC coefficient between 0.75 and 0.90 indicates good reliability, the calculated value of 0.833 

suggests that Pathologist 1 and Pathologist 2 show good consistency in their estimations of 

tumor purity (49). The results were also statistically significant with a P-value of < 0.001.  

Cohen's Kappa is a statistical measure of inter-rater reliability, employed to evaluate how 

reliably two raters assess the same parameter. In our study, we utilized Cohen’s Kappa to 

examine the level of agreement between Pathologist 1 and Pathologist 2 in their tumor purity 

estimations. Our analysis yielded a Cohen’s Kappa value of 0.534 (P-value < 0.001). Given 

that a Cohen’s Kappa value ranging between 0.4 and 0.6 represents moderate inter-rater 

reliability, our results suggest a moderate level of agreement between the two pathologists in 

their estimations of tumor purity (50).  
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Figure 4: Scatter plot showing the tumor purity estimation done by Pathologist 1 and 

Pathologist 2. 

 

Figure 5: Bar plot showing the tumor purity estimations done by Pathologist 1. 
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Figure 6: Bar plot showing the tumor purity estimations done by Pathologist 2. 

 

Developing ML classifier  

During the construction of our ML classifier, we prioritized determining the optimal cell 

detection settings in QuPath. We compared two settings; one suggested by QuPath and 

another used in a previous report (44). The QuPath settings included a pixel size of 0.5 μm, 

and the prior classifier settings featured a similar pixel size but with a background radius of 

10 μm and a cell expansion of 2 μm. Upon testing, we found that the prior classifier settings 

consistently detected more cells, as shown in supplementary Figures S1-S3. Moreover, 

these settings didn't falsely identify non-cellular objects as cells, which motivated us to adopt 

these settings for this project. 

We also modified the pixel size from 0.5 μm to 0.25 μm, which further enhanced cell 

detection. After finalizing these settings based on the accurate cell detection rate, a 

pathologist validated our choice. Figure 7 showcases the cell classification model, and the 

performance of this cell classifier was verified by the pathologist. 
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Figure 7: Random Forest Cell Classifier. A) The original H&E whole slide image, and B) the 

H&E image overlaid with the ML classifier. The tumor regions are indicated by the color red, 

while the stroma is represented by green. 

 

Digital tumor purity estimation 

The tumor purity estimation done by the digital and the manual approach is illustrated in 

Figures 8-10. The differences in the tumor purity estimation done by the ML-classifier and 

the pathologists are shown when comparing the two bar plots (Figure 9 and 10), which shows 

some differences in terms of standard deviation of the mean (22 vs 23 for digital vs mean 

manual scores).  

We wanted to determent how consistent the ML tumor purity estimate is compared to the 

mean tumor purity estimate done by the two pathologists and used ICC for that purpose. The 

computed ICC coefficient was 0.838, which was statistically significant with a P-value of 

<0.001, and the 95% confidence interval was between 0.743 and 0.899. These results indicate 

good reliability, as ICC values falling within the range of 0.75 and 0.9 typically denote this 

level of reliability (49). Therefore, these findings suggest that the ML model and the 

pathologists exhibit a good degree of consistency with each other in their estimations of 

tumor purity. 
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Then we aimed to assess the inter-rater reliability between the manual tumor purity estimation 

made by the pathologists and the digital estimation made by the ML model. Our analysis 

yielded a Cohen's Kappa value of 0.563, which signifies moderate inter-rater reliability (50). 

The findings were statistically significant with a P-value of < 0.001. Based on our results, it 

appears that there is moderate agreement between the manual method employed by the 

pathologists and the digital method implemented through the ML model in estimating tumor 

purity.

 

Figure 8: Scatter plot showing the tumor purity estimation done digitally and manually. The 

manual tumor purity estimation is represented by the mean tumor purity estimation done by 

Pathologist 1 and Pathologist 2. 
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Figure 9: Bar plot showing the tumor purity estimated by the ML classifier.  

 

Figure 10: Bar plot showing the manual tumor purity estimation, represented by the mean 

tumor purity estimation done by Pathologist 1 and Pathologist 2.  
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Discussion 

In this sub-study conducted as part of the TNM-I trial, we have developed a ML classifier to 

estimate tumor purity from histological slides. Utilizing the ICC to measure the consistency 

of our digital tumor purity estimation against manual methods, we found that our ML model 

demonstrated good reliability. This suggests a favorable level of consistency between the ML 

model and the pathologists in estimating tumor purity. Furthermore, we analyzed the inter-

rater reliability using Cohen's Kappa. The result value indicated a moderate level of 

agreement between the digital and manual methods of estimating tumor purity. Despite the 

relative novelty of digital tumor purity estimation, the moderate agreement in this early stage 

underscores the potential of our ML classifier as a reliable tool in tumor purity estimation. 

As mentioned earlier in the thesis, a problem with manual tumor purity estimation high inter-

observer variability between pathologists’ estimates. A study concluded that manual estimates 

of tumor purity on H&E-stained slides are not accurate due to significant difference between 

the nine pathologists who were making these estimations (51). Similarly, another study 

involving nine pathologists evaluating 18 tumors revealed that pathologists generally tend to 

overestimate tumor purity (52). These findings on inter-observer variability are supported by 

the Cohen's Kappa value calculated in our study, as it indicates only moderate agreement 

between the two pathologists included in our study when it comes to estimating tumor purity. 

 

In addition, studies have found high inter-observer variability between pathologists when 

evaluating other histopathological features. An article by Kos Et al. looked at 3 studies who 

evaluated pathologists scoring of stromal tumor-infiltrating lymphocytes (sTILs), which are 

an important prognostic factor in triple-negative and human epidermal growth factor receptor 

2 (HER2)-positive breast cancer (44). In total, results from 220 slides were evaluated and the 

average ICC values were 0.7 for study 1, 0.89 for study 2 and 0.76 for study 3. The ICC 

values indicate moderate to good reliability for the sTILs scoring done by the 66 pathologists 

in the 3 studies included (44). A large-scale international multicenter study involving 39 

pathologists who evaluated 149 ductal carcinomas in situ slides concluded with inter-observer 

variability being considerable, but variable between the different histopathological features 

evaluated and being acceptable at most (53). Notably, lobular cancerization, nuclear atypia, 

and stromal architecture exhibited the highest inter-observer variability, with Krippendorff's 

Alpha (KA) values of 0.39, 0.42, and 0.45, respectively. Conversely, solid ductal carcinoma 
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in situ architecture and calcifications displayed the lowest inter-observer variability, with KA 

values of 0.60 and 0.67, respectively (53). These findings underline the potential of ML as a 

viable approach for evaluating histopathological features beyond just tumor purity and to 

tackle these substantial diagnostic challenges created by inter-observer variability between 

pathologists. 

Manual estimation of tumor purity is tedious, time consuming, and prone to inter-observer 

variability (38). These problems can be solved by using ML to estimate tumor purity. By 

developing classifiers like in this study, one can secure a standardized method for estimating 

tumor purity. This can ensure a more reproducible estimation of tumor purity, by avoiding the 

possibility for human errors and subjectivity. In addition, the ML approach can identify 

features that may not be visible to humans, which means we may get a more accurate 

estimation of tumor purity than the traditional, manual way (40). At the same time using ML 

to estimate tumor purity can reduce pathologists' workload (54).  

As mentioned, we created the ML classifier using QuPath. This is an advantage since QuPath 

is an open source bioimage analysis platform, which means it is available for anyone to use 

and therefore also cost-effective. It is a both comprehensive and user-friendly program for 

analyzing whole slide images (55). The program was designed to be user-friendly to such a 

degree that users without computer programming skills can use it easily, at the same time 

QuPath allows scientists with software development skills to add their own extensions (56). 

QuPath is optimal for the purpose of creating a ML classifier, since the software primarily 

was designed to count cells, classify objects and pixels in large whole slide brightfield, 

fluorescent or H&E images without the need for cropping or down sampling to lower file 

sizes (56). The pros of using QuPath as an open-source program lie in its ability to foster 

collaboration and adoption within the scientific community. Its open nature allows the tumor 

purity of other developed algorithms to be widely shared and implemented by Clinical 

Laboratory Improve Amendments (CLIA) laboratories without significant financial burdens. 

On the other hand, there are cons associated with QuPath’s open-source nature and lack of 

FDA approval. The absence of regulatory agency approval may raise doubts about its 

reliability for certain users. Additionally, the use of ML in QuPath may introduce concerns 

and discomfort due to its novel and evolving nature. Furthermore, CLIA laboratories need to 

possess digital infrastructure and capabilities to effectively utilize QuPath for assay validation 

and analysis (57).   
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For our classifier, we opted for a method based on ML, a branch of artificial intelligence (AI). 

Another approach that could have been employed is deep learning (DL), a subset of ML, 

which is being used in other studies to build similar classifiers. DL is a subset of ML and 

refers to a specific class of ML algorithms called neurol networks. It can be said that neural 

networks try to mimic the learning process of the human brain by layering algorithms and 

computing units into artificial neural networks. ML uses experience to learn and adapt 

automatically without being explicitly programmed. This means that ML requires more 

human intervention to correct and learn from past mistakes than DL which learns and corrects 

on its own (58, 59). The ML model requires a scientist which can feed large amounts of data 

into the system and thereby “train” the machine, the more date the machine analyses, the 

better it gets in performing the task. In contrast, DL models can improve their outcomes 

through repletion and without human intervention. ML models require shorter training than 

DL models, but in contrast it delivers lower accuracy. Another important difference is that 

ML models can be trained on smaller data sets, while DL models requires large amounts of 

data (58, 59).  

According to ICC, our ML model estimates tumor purity relatively consistent to the two 

pathologists which is the traditionally used method to estimate tumor purity. A study which 

developed a deep multiple instance learning model predicting tumor purity from H&E-stained 

digital histopathology slides concluded that their model predicted tumor purity highly 

consistent with tumor purity estimates using genomic tools (38). Another study used various 

ML models and concluded that the models predicted tumor purity accurately and showed a 

high correlation with well-established gold standard methods for estimating tumor purity (60). 

A study using whole slide digital scanned images of colorectal, lung and breast cancer 

specimens showed that tumor purity estimation done by digital image analysis were highly 

concordant with manual estimation in 86% of the samples (61). Consistently, a study on colon 

cancer showed that their developed computer algorithm had a slight median deviation from 

the criterion standard, which was set by pathologists manually estimating tumor purity, of 

5.4% on the training set and 6.2% on the validation set (62). Furthermore, another study 

conducted on H&E-stained lung cancer scans revealed that digital tumor purity estimations 

significantly correlated with benchmark tumor cell counts created by multiple pathologists 

(63). A study employing transfer learning to estimate tumor purity in H&E-stained breast 

cancer images found a strong correlation, with a ICC value of 0.94, compared to estimations 

made by pathologists (64). In addition, a study focusing on breast cancer using DL 



 

 24 

approaches found a Cohen's Kappa coefficient of 0.69 and an ICC coefficient of 0.89 when 

comparing their estimations to pathologist scoring of tumor purity (65). In summary, all these 

studies on tumor purity using ML/DL methods support our finding that ML methods correlate 

well with traditional, well-established methods for detecting tumor purity. 

When it comes to the limitations of our study, some points should be mentioned. One point is 

that we should have included more slides in the study. As mentioned above a ML model 

requires a large amount of data to be “trained” ideally, since the principle is that the more data 

the machine analyses, the better it gets in performing the task. Based on this statement one 

can argue that 61 whole slide images are not sufficient in training a ML model ideally. 

Another fact worth mentioning is that our study lacks a validation dataset. A validation 

dataset is used to test the ML models performance. It is a sample of data held back from 

training the ML model, and it is different from the test dataset because it is used to give an 

unbiased estimate of the skill of the final tuned model (66). It can also be argued that we 

should have included more pathologists than two in our study to get more manual tumor 

purity estimations. This would have contributed to a better inter-observer variability 

estimation and a better mean value to compare the digital tumor purity estimation to.  

Our study compared the ML derived tumor purity with manually estimated tumor purity done 

by pathologist. A different approach is to compare digital tumor purity estimation to genomic 

tumor purity, as Oner et al. did in the pan-cancer study on ML and tumor purity estimation 

(38). Genomic tumor purity is tumor purity inferred from different types of genomic data, 

such as somatic copy number and mutations, gene expression data and DNA methylation 

data. Genomic purity values are used in correlational studies to investigate the associations 

between tumor purity and clinical variables and in genomics analysis to mitigate confounding 

effects of normal cell contamination, but genomic tumor purity have also now been accepted 

as an accurate value for downstream analysis. Another fact about genomic tumor purity is that 

it does not correlate well with pathologists’ tumor purity estimations (38). An idea for future 

studies on digital tumor purity estimations is to compare the values to genomic tumor purity 

instead of pathologists’ tumor purity estimations and making a ML/DL model such that the 

predictions are consistent with the genomic tumor purity values. 

 



 

 25 

Conclusion 

In this master thesis we have successfully developed a ML based classifier for estimating 

tumor purity in lung cancer tissue. When comparing manual tumor purity estimation to those 

obtained through the ML based classification they correlate well in terms of ICC and Cohen’s 

Kappa, which proposes accuracy and reproducibility of the model. All the results were 

statistically significant and indicates good agreement between manually and digitally tumor 

purity estimations. The results in this study supports findings in previously done studies on 

the subject, and suggests that further research should be done in terms of developing a ML 

based method which can replace or complement the traditionally manual method of detecting 

tumor purity.  
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Supplementary 

 

Figure S1: QuPath detects 951 cells in the annotation when using the QuPath suggested 

settings for cell detection.  

 

Figure S2: When using the settings which was used in the prior classifier QuPath detects 

1060 cells in the annotation. This is an increase of 109 cells compared to using the QuPath 

suggested settings on cell detection in the same annotation. 
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Figure S3: When changing the pixel size to 0.25 μm, in addition to using the settings which 

was used in the prior classifier, QuPath increases the detection to 1223 cells detected in the 

annotation. This is an increase of 163 cells compared to using only settings from the prior 

classifier and an increase of 275 cells compared to using the QuPath suggested settings. 
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