

DEPARTMENT OF COMPUTER SCIENCE

Secure collection of physical activity data from study participants

through mobile solutions

Markus Madsen Fenes

Master’s thesis in Computer Science INF-3990 June 2023

Abstract

Biometric and health related data collected through automated features in smartphones and

wearables can provide researchers with valuable information about the population.

This thesis explores the possibilities of extracting data from Apple and Samsung wearable

devices like watches and smartphones where native built-in support for data extraction and

third-party data storage is not available.

Doing so will rely on a separate application (mSpider) on the connected phone, to perform

data extraction, while prioritizes privacy and security as the primary concern. The thesis has

implemented a proof-of-concept application that fetches existing data from Apple Health. The

proof-of-concept application has a low footprint on the participant’s phone when it comes to

battery usage and data usage.

The result from this thesis shows that it is possible and feasible to perform automatic and

continuous data transfer from smart watches and phones in a larger population while

respecting their privacy and security. Due to varying international laws, further research is

needed to comply with regulatory requirements across the globe.

In conclusion, this application and the thesis presents a path for collecting research data from

smart watches and phones.

Preface

I decided to do a master thesis when the world went into lockdown during the first phase of

the coronavirus pandemic. At the time I was finishing my bachelor’s degree at University of

Southeast Norway and did not see the pandemic as a good opportunity to get a job, so I

decided to look for other opportunities and one of them was this master thesis at UIT.

Firstly, I would like to express my gratitude to my chemistry teacher for his remark, stating

that I had an 80% chance of failing the course. To him I would say thank you for igniting a

fierce determination within me. Through this challenge, I have attained a bachelor's degree in

information technology and information systems, with the potential to achieve a master's

degree if all goes according to plan. Looking ahead, I may even consider pursuing a PhD, as

my passion for research, learning and the desire to educate others drives me forward in life.

While studying for my bachelor and this master, I have learned a lot of useful things both on

and off the computer, that will help me later in life. I have become a very active bicyclist and

have clocked in over 4000 kilometers on my bike, and I will continue biking after finishing

my master thesis. While I have enjoyed studying, I am now looking forward to gaining some

practical job experience and going on new adventures with my bike and in the realm of

technology.

I would also like to thank friends and family for helping me move around the country and for

motivating me and reminding me why I am doing this in the first place, namely the reasons

explained above.

Another group of people I would like to thank is all the wonderful individuals I have met

online during my master thesis, you have been an inspiration to me to find new fields of

interest and just in general nice to talk to.

Additionally, I like to thank my supervisors, my fellow students, and other teachers at UIT.

And finally, I would like to thank you the reader, for reading this.

Table of contents

Abstract .. ii

Preface ... iii

Abbreviations ... vii

1 Introduction .. 1

1.1 Background .. 1

1.2 Problem statement .. 2

1.3 Limitations ... 3

1.4 Thesis structure .. 4

2 Theoretical Framework .. 5

2.1 Physical Activity .. 5

2.2 Apple iPhone .. 5

2.3 Apple Watch ... 6

2.4 Apple Health .. 6

2.5 Apple ResearchKit ... 8

2.6 Samsung Health .. 8

2.7 Security ... 9

2.8 Related work .. 10

2.8.1 mSpider .. 10

2.9 State of the art .. 11

2.9.1 Methods .. 11

2.9.2 Results .. 12

3 Method ... 18

3.1 Software and tools .. 18

3.2 Reach Native .. 20

3.3 Testing .. 21

4 Requirement specifications .. 22

4.1 Functional requirements ... 22

4.2 Non-functional requirements .. 26

4.3 Actors ... 26

4.4 Use-cases .. 27

4.5 Personas and usage scenarios ... 30

5 Design ... 32

6 Implementation ... 36

7 Results .. 45

7.1 Data collected and battery usage .. 45

7.2 User testing ... 48

7.3 Security ... 48

7.3.1 Apple .. 48

7.3.2 Samsung and Google .. 49

7.4 Limitations with using React Native. ... 50

8 Discussion .. 51

8.1 Thesis summary .. 51

8.2 Data collection .. 51

8.3 Privacy and security ... 51

8.4 User testing ... 52

8.5 Strengths and limitations .. 52

8.6 Problem statements .. 53

8.7 Contributions .. 54

8.8 Future work .. 55

9 Conclusion .. 56

References .. 57

List of figures

Figure 1 Apple Watch series 8 on the author’s hand ... 6

Figure 2 Prisma diagram .. 13

Figure 3 Use case diagram. .. 29

Figure 4 Persona 1 Mike Smith .. 30

Figure 5 Persona 2 Robert .. 31

Figure 6 iOS ... 32

Figure 7 Android .. 32

Figure 8 Database diagram ... 34

Figure 9 Sequence diagram of token use ... 35

Figure 10 Permissions request on iOS ... 40

Figure 11 Code snippet from upload loop .. 41

Figure 12 Example data upload .. 41

Figure 13 Uploading from iPhone and Apple Watch ... 43

Figure 14 User interface in iOS .. 44

Figure 15 60 days with records from the mSpider application .. 45

Figure 16 24-hour overview of scopes on 19 of June .. 46

Figure 17 10-day view on scope .. 46

List of tables

Table 1 Summary of included papers ... 14

Table 2 Functional Requirements .. 22

Table 3 Use cases. .. 27

Table 4 HealthKit object names ... 39

Table 5 Count of records over 60 days .. 47

Table 6 Estimated data size in bytes .. 47

https://universitetetitromso-my.sharepoint.com/personal/mfe025_uit_no/Documents/Ny%20master/thesis.docx#_Toc139047972
https://universitetetitromso-my.sharepoint.com/personal/mfe025_uit_no/Documents/Ny%20master/thesis.docx#_Toc139047975
https://universitetetitromso-my.sharepoint.com/personal/mfe025_uit_no/Documents/Ny%20master/thesis.docx#_Toc139047976
https://universitetetitromso-my.sharepoint.com/personal/mfe025_uit_no/Documents/Ny%20master/thesis.docx#_Toc139047977
https://universitetetitromso-my.sharepoint.com/personal/mfe025_uit_no/Documents/Ny%20master/thesis.docx#_Toc139047979
https://universitetetitromso-my.sharepoint.com/personal/mfe025_uit_no/Documents/Ny%20master/thesis.docx#_Toc139047981
https://universitetetitromso-my.sharepoint.com/personal/mfe025_uit_no/Documents/Ny%20master/thesis.docx#_Toc139047985

Abbreviations

API Application Programming Interface

BPM Beats Per Minute

ECG Electrocardiography

FHIR Fast Healthcare Interoperability Resources

GDPR General Data Protection Regulation

GUI Graphical User Interface

mSpider

Motivating continuous Sharing of Physical activity using non-Intrusive Data

Extraction methods Retro- and prospectively.

HIPAA Health Insurance Portability and Accountability Act

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

JSON JavaScript Object Notation

JWT JSON Web Token

ORM Object Relational Mapping

OS Operating System

SDK Software Development Kit

TOS Terms Of Service

XML Extensible Markup Language

Page 1 of 58

1 Introduction

1.1 Background

Collecting health data from consumer-based wearables can be an avenue for researchers to

gather valuable information on what their participants do without too much of an

inconvenience for the participants. The ability to get the health data delivered in a way that

both helps the researchers and does not interfere with the privacy or security of the

participant. Mobile crowdsensing [1] is the name of the data collection method, and there are

two main methods of crowdsensing, participatory sensing [2] and opportunistic sensing [3].

Participatory sensing is when the participants are aware and have agreed to the data collection

and opportunistic sensing is when data is collected without the implicit approval or

knowledge from the data originator.

The Apple Watch (Apple Inc, California (CA), US) and Samsung Galaxy Watch (Samsung

Electronics Co, South Korea) were selected to the be devices that is focused on. The main

reason for selecting the Apple Watch and Samsung Galaxy Watch is that these are the most

popular on the market and has the most users both in Norway and worldwide. Both watches

have been on the market for a few iterations and have gotten most of their flaws sorted out.

Market research done by Counterpoint Research states that Apple has 43 percent1 of the smart

watch market globally, and that Samsung has 8 percent of the smart watch market.

The second reason for selecting these two watches is that when it comes to integration with a

data gathering platform, these watches with their accompanying phones do not offer an

integrated way for third parties to collect the stored information using Application

Programming Interface (API).

An API is often a webservice hosted by the manufacturers of products that allows developers

and end users to interact with the product offered in a programmatic way. This allows third

parties to develop software that will extend the functionalities of the original product offered

by the first party.

1 https://www.counterpointresearch.com/global-smartwatch-shipments-market-share/

Page 2 of 58

Since neither Apple Health2 nor Samsung Health (Samsung Electronics Co, South Korea) are

providing a convenient way for accessing externally stored data using an API, a third-party

developer must use a service running locally on the device in question itself to be able to

access and utilize physical activity and other related health data. To do this in a programmatic

way, a third-party developer must use a Software Development Kit (SDK).

SDKs are sets of programming libraries that are provided by the product manufacturer and are

used to interface with the software running locally on an individual user's device. The SDKs

allow third party developers to request permission from the user to change the phone's

settings, read, and write data from and to applications and the phone itself.

Neither Apple nor Samsung offers an SDK capable of uploading data directly from the users’

phone or watch. A third-party application is needed to read data using the SDK and then

process and upload it to a service run by third-party developers.

1.2 Problem statement

In this project, the primary objective is to simplify the prosses of sharing data from smart

watches and phones with researchers. The following problem statement will outline the issue

and propose possible solutions.

How can health data be collected from smart watch vendors that do not support backend API

data retrieval?

2 https://www.apple.com/ios/health/

Page 3 of 58

Sub-problems

SP1: How can health data be automatically and continuously collected from wearables?

Collecting activity data automatically is important since users cannot be expected to interact

with the application daily. Continuously collecting data in the background also reduces the

burden placed on the user while increasing the amount of data collected.

SP2: How can data be collected while preserving the privacy and security of the participants?

For the users of the application to trust that their data is not mismanaged, it is important to

consider privacy and security when developing health and research applications, particularly

for health data when this is potentially sensitive in nature.

SP3: How can collected data be prevented from being sent or stored on vendor services?

Preventing upload to the vendors services where possible makes sure that the shared data is

only uploaded to specified locations.

1.3 Limitations

The initial goal of this master project was to develop a health data gathering application that

would work on both Apple iPhone and Samsung Galaxy phones. However, due to time

constraints, the scope was adjusted to only focus on making a solution that collects physical

activity and health data from the Apple iPhone and the Apple Watch.

Another reason to only focus on Apple devices is that Samsung recently changed their system

for collecting data from individual users’ phones and the new system was still in development

at the time of writing.

Page 4 of 58

1.4 Thesis structure

Chapter 1

The introduction chapter explains the needed background and context. This chapter also

covers the limitations and explains the problem statement.

Chapter 2

The second chapter introduces the theoretical framework and related work (both commercial

and open source). The chapter additionally covers the literature review and the results from it.

Chapter 3

The third chapter explains the methods used for designing and implementing the application

and when writing and researching for the thesis.

Chapter 4

The fourth chapter contains use cases and the functional and non-functional requirements of

the application.

Chapter 5

The fifth chapter contains the design decisions during the development of the mobile

application and web application.

Chapter 6

The sixth chapter explains the implementation of the mobile application.

Chapter 7

The seventh chapter shows the results and analysis of the data collection as well as a small

breakdown of the collected data and other results from the application development.

Chapter 8

The eighth chapter discusses the solution and the results from the seventh chapter and

suggests possible future work for the application.

Chapter 9

The ninth chapter concludes the findings of the report and adds final remarks.

Page 5 of 58

2 Theoretical Framework

This chapter explains the concepts needed to understand the next chapters of the thesis.

2.1 Physical Activity

The World Health Organization (WHO) defines physical activity as

“Any bodily movement by skeletal muscles that requires energy expenditure” [4]

Physical activity is when the user is not sedentary, when a person is physically active, they

could be doing a set of training exercises, or they could just be doing their daily routine.

There are various levels of physical activity, they range from sedentary behavior to standing

and the three different intensities. Sedentary behavior [5] is any behavior consistent with

having less than 1.5 metabolic equivalents (METs) [6] of energy expenditure.

• Light Physical Activity (LPA).

• Moderate Physical Activity (MPA).

• Vigorous Physical Activity (VPA).

The above list shows the different types of physical activity.

2.2 Apple iPhone

The Apple iPhone (Apple Inc, CA, US) is a line of both premium and budget phones from

Apple. The first generation of iPhone was announced in 2007 [7], by the late Steve Jobs

(Apple’s CEO at the time). The iPhone was one of the first commercially available

smartphones that made an appeal to the masses. The iPhone has become a household name in

the consumer phone market, with a market share of over 15 %3. As of May 2023, the newest

revision of the iPhone is the line of 14th generation iPhones.

Apple iOS (Apple Inc, CA, US) is the operating system (OS) that powers the iPhones.

Launched at the same time as the iPhone in 2007, but under the longer name of iPhone OS,

the iOS name was first used for the third version of the OS. The latest version of iOS is 16,

and there is a new major version of iOS launched each year in the fall.

3 https://www.statista.com/statistics/299153/apple-smartphone-shipments-worldwide/

Page 6 of 58

2.3 Apple Watch

The Apple Watch (Apple Inc, CA, US) is made by

Apple and has millions of users worldwide. An

Apple Watch series 8 is shown in Figure 1 on the

author’s hand.

The Apple Watch has had 8 generations since the

introduction to the market in 2015. The Apple Watch

is a smart watch with a lot of the same features of the

standard iPhone but in a smaller form factor. There

are versions of Apple Watch that have cellular

connection and allow regular phone calls. The Apple

Watch also features multiple sensors and other health

related features along with the usual clock features.

The Apple Watch runs watchOS (Apple Inc, CA, US)

as the operating system.

The Apple Watch collects a plethora of information

from the user. All health-related information is

recorded and stored in Apple Health (Apple Inc, CA,

US). Heart rate monitoring and activity tracking, and

sleep tracking are valuable information sources for

researchers as they can provide information about the current health of the population.

2.4 Apple Health

Apple Health is a standard application where Apple stores health data from both the iPhone

and the Apple Watch. Apple Health is installed on every iPhone sold today, and it is enabled

by default. Apple Health contains both sensitive and less sensitive data and therefore the

information stored is encrypted at rest. While the iPhone is unlocked, third party applications

can read and write to the Apple Health database, using Apple HealthKit (Apple Inc, CA, US).

Third-party access is restricted to what the user allows the applications to read and write.

Figure 1 Apple Watch series 8 on the author’s
hand

Page 7 of 58

Health records stored in Apple Health

Health data records stored in Apple Health have standard properties like when the data were

recorded, the type of activity, and when it was added to Apple Health.

Steps are recorded both by the iPhone itself and the Apple Watch. These records are

combined by Apple Health to avoid duplication when stored. Steps also store the start and

stop time of the activity.

Beats Per Minute4 (BPM) are stored in Apple Health, but the records are divided into

subcategories, BPM, average BPM when walking, resting BPM, and BPM variation. The

Heart rate records are saved at regular intervals. The intervals change depending on if the user

is physically active or if they have activated a workout mode. When none of the conditions

are present, the Apple Watch will store recorded BPM at an average of once per 10 minutes.

Active Energy Burned and Resting Energy are two records where one builds on the other.

Active energy is what the body burns on top of the resting energy when the body is not

sedentary, while resting energy is what is being burned when the body is sedentary. Both

active energy and resting energy are stored in kcal.

Both devices (iPhone and Watch) record and store distance traveled in kilometers. The

devices also store flights climbed. Cycling distance traveled is an additional record, but only

stored by the Apple Watch and only when activated by the user or the user has been cycling

for longer time and Apple Watch has detected it. These records have a start and stop time

attached. Oxygen in the blood is another statistic that the Apple Watch stores at regular

intervals, when the user is sedentary and has their hands laying down on either a table or

another flat surface.

Sleep Records

Apple Health can collect data about the users' sleep if the user has enabled the sleep plan in

the settings of Health. The sleep tracking feature is not enabled by default, but once enabled,

the Apple Watch will collect sleep data about the user. The sleep records shows when the

user is in the various stages of sleep and store these with a start and stop time.

4 https://developer.apple.com/documentation/healthkit/hkquantitytypeidentifier/1615138-heartrate

Page 8 of 58

The Apple Watch collects how long the user sleeps, how much time the user spends in bed

before going to sleep and the heart rate while in bed and sleeping.

Apple Fitness

Apple Fitness (Apple Inc, CA, US) is an application developed by Apple to help iOS and

watchOS users keep track of their exercise sessions. Apple has a paid subscription program

(Apple Fitness+) that users can subscribe to for additional guides and videos on several types

of exercises. Apple Fitness also connects to Apple Health and allows developers to read data

from the exercise sessions. When an exercise session is active the Apple Watch will record

heart rate and other metrics from the user continuously. If the user has enabled the GPS

feature in the privacy settings of their iPhone, Apple Fitness will store the user's workout

routes5 and tracks, so that the users can look at it later or review it after they are finished with

the session. The sessions can also be shared with friends and family.

2.5 Apple ResearchKit

Apple ResearchKit6 (Apple Inc, CA, US) is an open-source system, developed by Apple for

their products to use in research projects. ResearchKit offers ways of gaining consent from

the participants. Another feature is the ability to make surveys, present them to the user, and

collect the answers from the surveys. ResearchKit can be implemented with HealthKit to

allow for interaction with between them and allow health data from HealthKit to be used.

2.6 Samsung Health

Samsung Health is the equivalent of Apple Health but for Samsung phones and watches. This

application is also installed on every Samsung Galaxy phone sold today. This application is

the hub for storing physical activity records and other health related data collected from the

Galaxy Watch and the Galaxy suite of phones.

Samsung7 has a new program for third-party developers called Privileged Access. Developers

can use this program to request access to the Samsung Health Privileged Access SDK, and

that gives the developers access to physical activity data, and other health related data from

5 https://support.apple.com/en-us/HT210385

6 https://www.apple.com/lae/researchkit/

7 https://developer.samsung.com/health/privileged

Page 9 of 58

Samsung Health. This SDK is compatible with the fourth generation of Samsung Galaxy

Watches running on Wear OS (Google, CA, US).

2.7 Security

The world is a connected place, our lives are lived both online and offline. With the recent

surge in usage of smart watches. Making applications that utilize them as secure as possible

from the ground up is important.

Security is more involved than respecting the privacy of the users of any given service

provided. It is making sure data about the user is stored securely. It is also about how the

collected data is transferred between the end user’s device and servers owned by device

manufacturers and service providers, who have access to that data. There are laws and

regulations service providers must follow to be able to handle user and patient data.

Health Insurance Portability and Accountability Act (HIPAA) and General Data Protection

Regulation (GDPR) [8] are two sets of regulations that protects the privacy of individuals

living in the respective countries.

GDPR is a European Union (EU) regulation that became effective in 2018, and the purpose of

it is to protect the users of digital mediums in Europe. GDPR is also effective in Norway

because of the European Economic Area (EEA). The EEA grants Norway access to the single

market of EU but also requires that Norway follow relevant regulation in return. The GDPR

regulation states that any service provider outside of EU that renders services to EU and EEA

citizens must follow the regulations set by it and that the data that European citizens generate

is stored in the EU or in a jurisdiction with similar regulations. The right to be forgotten, the

right to have data amended in case of error and the right to see the stored data stored are the

main rights GDPR grants EU and EEA citizens.

HIPAA is a US federal law that prohibits health care personnel from disclosing information to

non-authorized parties than allowed by the patient themselves or their next of kind, it also has

other sections but the one in focus here is the handling of personal medical records and

information.

Page 10 of 58

2.8 Related work

WeFitter Connections (WeFitter, Netherlands)8 is a commercial offering that aims to be one

API, that developers can use to connect to magnitude of smart devices. They offer support for

the Apple Watch and Google Fit (Google LLC, CA, US), Samsung Health (Samsung

Electronics, Seoul, South Korea) and Garmin.

WeFitter also offers a gamification API, that will motivate users to exercise more and use the

system more frequently. Gamification is trying to use the mechanics of video games to

influence the users’ choices.

Terra API (Terra, London, UK) offers an API9 akin WeFitter’s API, in the regard that it

offers a way for developers to integrate with the other service providers services instead of

doing all the prerequisites themselves, this API will do the interfacing to the third-party

services (Apple, Samsung and the like) but at a cost since they are a commercial service.

Terra is funded in part with venture capital from Samsung Next10.

2.8.1 mSpider

mSpider [9] is a data collection platform, developed in-house at UIT. The mSpider project is

led by Henriksen (PhD). The mSpider platform is designed to be easy to expand when a new

product is launched, or when a new project has requirements that are not yet supported by

platform. The mSpider platform is also designed to support future master students and PhD

candidates that want to do a variation of health data collection. There are two versions of

mSpider. The first version had support for the most common smart watches and devices. The

second version has been in development at UIT since the end of 2022, this version is designed

to better support expandability and scalability. The mSpider mobile application is developed

for the newest version. The first version of mSpider also had a mobile application, but this

version was never used or published, only tested internally.

mSpider (Motivating continuous Sharing of Physical activity using non-Intrusive Data

Extraction methods Retro- and prospectively).

8 https://www.wefitter.com/en-us/features/connections/

9 https://tryterra.co/products/api

10 https://www.samsungnext.com/blog/why-we-invested-in-terra-an-api-for-fitness-and-health

Page 11 of 58

Other related work

CardinalKit (Stanford Byers Center for Biodesign, CA, US) 11 is an iOS application and a

webservice with Firebase (Google, CA US) database. CardinalKit offers template applications

and a framework, that are programmed using Swift (Apple, CA, US) instead of using a

framework like React Native (Meta Inc, CA, US), as has been done with the mSpider smart

phone application.

2.9 State of the art

The literature review was undertaken in October and November 2022. The literature review

started on PubMed before branching out to the other search engines. Institute of Electrical and

Electronics Engineers (IEEE) and Association of Computer Machinery (ACM) were the other

databases where the search also was undertaken.

After finding papers on all three databases, the next phase of the screening started. This phase

involves reading the titles and selecting the ones that should be reviewed further. Once all the

results had been reviewed. The next phase started, and this phase involved reading the

individual abstracts for each of the remaining articles.

After all the abstracts had been reviewed, the ones were still relevant were imported into the

literature reference manager EndNote for further evaluation. In EndNote, the full text versions

of the article were downloaded. The remaining relevant papers were read and included in the

review further down.

2.9.1 Methods

Databases

The following databases were used when performing the literature review:

• IEEE (23), selected (1)

• PubMed (151), selected (9)

• ACM (459), selected (4)

11 https://cardinalkit.sites.stanford.edu/

Page 12 of 58

Inclusion criteria and exclusion criteria

The first inclusion criterion is that the article must written and available in English to be

included in the review. The second criterion is that the article must be accessible and

retrievable using either open-access, or access through the university library at UIT. The third

criterion is that the article must mention how the authors extracted the data from the

participants.

(“Apple Watch” OR “Samsung Galaxy Watch”) AND

(“physical activity” OR “steps” OR “kcal” OR "energy expenditure" OR “ecg” OR “heart

rate”)

The research query used to provide the results displayed further down is divided into two

categories.

The first block is the products and their manufacturers.

Apple Watch, Samsung Galaxy Watch

The secund block is the type of activity and measurements of heart rate and energy

expenditure.

physical activity, steps, kcal, energy expenditure, ECG, heart rate.

2.9.2 Results

The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) [10] is

a guideline that will help literature reviewers explain what they have done in a transparent and

open way.

The initial search resulted in 633 articles. After removing duplicates, 631 remained. After

screening 631 records, 599 were removed because of the title or the abstract was not

interesting enough to be included further. 33 papers were left after abstract and title screening

and in the end 14 papers were included in the review.

Page 13 of 58

Figure 2 Prisma diagram

Records identified from:
Databases (n = 633)

Records removed before
screening:

Duplicate records removed
(n = 2)

Records screened.
(n = 631)

Records excluded.
(n = 599)

Reports sought for retrieval.
(n = 33)

Reports not retrieved.
(n = 0)

Reports assessed for eligibility.
(n = 33)

Reports excluded: 19.

Studies included in review.
(n = 14)

Identification of studies via databases
Id

e
n

ti
fi

c
a

ti
o

n

S
c

re
e

n
in

g

In

c
lu

d
e
d

Page 14 of 58

Article summary

Table 1 Summary of included papers

Author Data Extraction method Main results

Bartschke, et al. [11] FHIR The authors used an application to

parse the raw data from the Apple

Watch and then convert it to a

FHIR observation and from there

send it to a server.

Curtis, et al. [12] All types of sensors, GPS, call

log, text log,

Full scale system that uses

Amazon Web Services for

scalability and MongoDB as the

database. The researchers can

input the specifics about their

study and then the system will

adapt to fit it. The need for

software engineering and coding

skills is minimal.

Dandapani, et al. [13] Apple HealthKit and

ResearchKit with their own

application in real time.

A system for conducting research

on human falls, and other health

related data collected by the

Apple Watch. Their system is

explained in detail. The Redcap

system (with its API) is also

explained and lastly, they explain

the shortcomings of the

technology.

Page 15 of 58

Fuller, et al. [14] Apple HealthKit with their

own application.

Authors made their own

unpublished application.

Goldberg and Ho [15] Apple HealthKit and

ResearchKit.

An application that facilitates the

collection of heart rate data

through Apple HealthKit. They

have also made a model to detect

exercise during free living

conditions.

The authors tried to use React

Native to manage one code base,

but after further research, they

found out that it was not equipped

to process data extraction from

smartwatches.

Hänsel, et al. [16] Data is stored on the watch

itself and then transmitted to

the iPhone for later use.

A bachelor project with an

application for both the iPhone

and the Apple Watch, with this,

they can read the raw heart rate

data.

Kunchay and Abdullah

[17]

Aware framework and Apple

Health using Apple HealthKit.

The iPhone and Apple Watch are

used to collect data about

substance abuse. The Apple

Watch asks the users small

questions with a system called

micro interruptions. Further it

outlined what happens when the

devices are offline. The system

also collected location using GPS

Page 16 of 58

and health data from Apple

Health.

Lima, et al. [18] No Data collection. The authors discuss how users of

smart watches use them, and how

the market has grown over the

years.

Marinescu [19] Apple HealthKit with self-

developed app.

iOS application called SOS Heart.

SOS Heart collects real time data

from the Apple Watch and detects

abnormalities. SOS Heart will

then alert the user's doctor. The

doctor will then assess if the

patient needs emergency care.

SOS Heart provides doctors with

valuable information that can save

time.

McManus, et al. [20] Apple ResearchKit and their

own app called eFHS.

Authors made their own

application. This is part of a

larger study called Framingham

Heart Study. Participants had a

weekly blood pressure

measurement and daily data from

Apple Watch. The study ran on a

3-month cycle, and then the

participants were called back in

for follow-up sessions.

Ding, et al. [21] Apple Health kit and

mydatahelps.

Updated version of the

Framingham Heart Study, using

mydatahelps to simplify

management.

Page 17 of 58

Shcherbina, et al. [22] Manual data extraction using

XML from Apple Watch and

Apple Health.

Larger study of many major smart

watch brands, but no automatic

data collection.

Turki, et al. [23] Application called FITIV, and

then downloaded to the

computer by the researcher

manually.

The accuracy of the Apple Watch

is discussed. The article explains

how they extracted the data to

analyze it.

Walch, et al. [24] Raw data collection from

Apple HealthKit and Apple

Watch.

Authors developed their own

application with raw XYZ data

from the accelerometer of the

Apple Watch. The collected data

was used to conduct sleep studies.

The application also collected

heart rate and then they ran the

collected data through different

algorithms.

FHIR: Fast Healthcare Interoperability Resources, API: Application Programing Interface,

XML: Extensible Markup Language, GPS: Global Positioning System.

The system described in [12] is the most interesting system found in the literature review, but

this system also collects information about call logs and location information, which could

present challenges when it comes to privacy.

The literature review shows that there has been research done in this field before, but it also

shows that most of the research done before uses semi-automated systems.

Chapter summary

This chapter explained the theorical framework used for the thesis, the mSpider system the

application is made for and covered the literature found and the other related work.

Page 18 of 58

3 Method

3.1 Software and tools

Prior to starting development, both Google (Google LLC, CA, US) and GitHub (GitHub Inc,

CA, US) were used heavily to find what software that could aid the mSpider mobile

application.

Git12 (Git, Open-source projects) is a version control software made by Linus Torvalds to

manage the Linux kernel. In the mSpider project, Git has been used to keep track of the

changes made by the author.

GitHub13 is a code sharing platform. GitHub was used to find third-party packages that could

help the mSpider application reach the goals set for it.

GitLab14 (GitLab Inc, CA, US) was used to store the git repository for the source code and to

run and compile the code using a GitLab runner. A GitLab Runner is a continuous integration

runner that will look for changes in the git repository and when there are changes, it will fetch

the changes and build them without the need for manual intervention. The GitLab runner ran

on a Mac mini (Apple Inc, CA, US) and uploaded the compiled software package to GitLab so

it could be downloaded and installed on the mobile device.

Visual Studio Code15 (Microsoft, WA, US) was used to edit the source files for the project and

interact with the server running the application and database.

Xcode16 (Apple Inc, CA, US) is an integrated development environment (IDE) for Apple

products. Xcode was used to compile and test the mSpider iOS application.

Docker17 (Docker Inc, CA, US) was used when the application was containerized. The

application, server and database ran in Docker during the project's development phase.

12 https://git-scm.com/

13 https://github.com/

14 https://about.gitlab.com/

15 https://code.visualstudio.com/

16 https://developer.apple.com/xcode/

17 https://www.docker.com/

Page 19 of 58

PostgreSQL18 (PostgreSQL Global Development Group, CA, US) is a database server that is

used to store uploaded records. PostgreSQL is an open-source relational database built on

Structured Query Language (SQL) and uses SQL combined with other features.

Go19 (Google Inc, CA, US) is a programing language used for the mSpider web API, made by

The Go Authors in 2009 at Google.

Gorm20 is a database Object–relational mapping (ORM) for Go. ORM ‘s are software

packages that help developers use databases more efficiently as the package provides a

standard way for interacting with one or more databases. Gorm was used to program the

database schema for PostgreSQL database.

NodeJS21 (OpenJS Foundation, CA, US) is a web server that runs on the JavaScript runtime.

NodeJS makes developers able to run JavaScript outside the web browser and in a server

environment.

Yarn22 (Meta Open Source, CA, US) is a package manager that lets developers install

dependencies and libraries to their NodeJS server environments. Yarn was used to add

libraries, start, and stop the development environment of the mSpider React Native

application.

Axios23 (Matt Zabriskie, et al) is a NodeJS library that handles HTTP requests. Axios supports

all the HTTP request methods. The request methods that are primarily used for mSpider

mobile application are POST and GET. Axios was used to handle the web requests that are

made from the mSpider application.

18 https://www.postgresql.org/about/

19 https://go.dev/

20 https://gorm.io/

21 https://nodejs.org/en

22 https://yarnpkg.com/

23 https://axios-http.com/

Page 20 of 58

Grafana24 (Grafana Labs, NY, US) is a web tool for making graphs and metrics. Grafana was

used to make some of the figures that are in this report. Grafana was also used to query the

data that the author collected during the testing period.

Swift (Apple Inc, CA, US) is a programing language that powers Apple devices. The

language has been in development for 10 years and it is planned to be the replacement of

Objective-C. Objective-C is the former language that Apple used on their devices. Swift is

derived from Objective C, but Swift is modern and safe by design.

3.2 Reach Native

React25 (Meta Open Source, CA, US) was chosen to be the framework that powers the

application. React is an open-source JavaScript framework made by Facebook (Meta Inc, CA,

US), that makes it easier to make single page applications. The framework is client side, but it

can also be used with server-side rendering.

React Native 26 (Meta Open Source, CA, US) is an open-source framework made by

Facebook which makes it easier to develop applications for both Android and iOS. React

Natives cross platform features development easier by using the same code base, written in

either JavaScript or TypeScript (Microsoft, WA, US) and embedding a website in the

application.

React Native is the backbone of the mSpider iOS application, it handles everything from the

Graphical User Interface (GUI) to the background data fetching from Apple HealthKit.

React Native HealthKit

React Native HealthKit27 (Kingstinct AB, Sweden) was found using GitHub. React Native

HealthKit is an open source React Native package that lets third party developers access data

from Apple HealthKit using TypeScript Swift bindings.

24 https://grafana.com/

25 https://react.dev/

26 https://reactnative.dev/

27 https://github.com/Kingstinct/react-native-healthkit

Page 21 of 58

Using Swift bindings, React Native HealthKit can interact with Apple HealthKit in a similar

fashion that a developer using Swift directly can. The documentation28 made available from

Apple at their developer sites is applicable to what a developer can utilize React Native

HealthKit for.

Hardware

The iOS version of the mSpider application was developed and tested on an iPhone XR (with

iOS 16.4a) with an Apple Watch series 8 connected to it. A Mac mini M1(2020) with Xcode

(version 14.3) was used to compile and install the application on the iPhone, the iOS version

was targeted at iOS 16 as that is what the iPhone runs. An older Apple Watch series 2 was

also used to test the application with another iPhone that ran iOS 16.4. During development

multiple new versions of both iOS and Mac OS were released, these were installed as they

became available, and the application was tested with them.

3.3 Testing

The mSpider iOS application was tested with an Apple Watch series 8 that the author wore on

their left arm for the duration of three months (start of April to the end of June). On 9th of

May, the development of the mSpider iOS application was paused, and the focus shifted to

testing the application instead. The Apple Watch was connected to an iPhone XR running iOS

16, this iPhone was not connected to the cellular network, and had flight mode activated,

meaning that uploads only happen on wireless networks at the UIT campus or at the author's

apartment.

From 12th of May and until 21st of May, the sleep tracking capability of the Apple Watch was

tested. During this 10-day period, the author wore the watch continuously throughout most

days and nights, except for when the Apple Watch was charging, or the author was

showering. The author has also tested the hand washing detection capability of the Apple

Watch.

28 https://developer.apple.com/documentation/healthkit

Page 22 of 58

4 Requirement specifications

The Volere Requirements [25] template was used to help create functional requirements

shown in

Table 2. The Volere requirements template is used in software engineering to help developers

understand their projects deeper. The number in the table states the identifier for the

requirement and will be used in dependencies and when referred to in the rest of the report.

The Unified Modeling Language (UML) [26] has been used to create the sequence diagram

and the use-case diagram. UML is a standard from the International Organization for

Standardization for creating diagrams in software engineering.

Functional requirements and non-functional requirements are distinct types of requirements.

both are important for the functionality of the application. Functional requirements refer to the

functionality of the application the participant interacts with, while non-functional

requirements refer to the functionality that the participant does not interact with directly.

4.1 Functional requirements

Table 2 Functional Requirements

Requirement Rationale Fit criteria Priority Dependencies

#1 The application

must start when

opened by the

participant.

For the participant

to be able to

utilize the

functions of the

application, it

must start.

The participant

can reach the

login page of

the application.

High

#2 The participant

must be able to

sign in with a

one-time unique

invite code.

To maintain the

privacy of the

participant, while

also identifying

which study the

health data should

get stored to.

The participant

is enrolled into

the correct

research project

when signing

in.

High #1

Page 23 of 58

#3 The participant

must be asked

what data they

wish to share

with the

researcher(s).

The participant's

privacy should be

maintained, they

should decide

what is shared

with the

researcher(s).

The collected

records shall

only contain

health data

collected with

the consent of

the participant.

High # 1, # 2

#4 Consensual

retrieval of

health data from

Apple Health

using Apple

HealthKit.

Health data

collection from

Apple Health will

help researchers

understand the

population whom

the data was

collected from.

The application

only uploads

shared health

data.

High

#5 Health data must

be sent securely

to the mSpider

Apple provider.

Health regulations

and privacy laws

require that health

data is encrypted

in transit.

Data uploads

shall happen

over an

encrypted

connection to

the mSpider

server.

High # 4

#6 The application

must be able to

run in the

background after

initial setup.

For it to be useful

for a longer

period,

background

upload is

necessary.

The application

can receive data

from Apple

Health and

upload it is in

in the

background.

High

Page 24 of 58

#7 The application

must be able to

continue after

the participant

has restarted

their phone.

Avoid

unnecessary

reliance on the

participant.

The application

continues to

operate,

requiring no

action after

restarting the

phone.

Medium # 2

#8 The application

must function

autonomously

after initial setup

by the

participant.

Avoiding

interference with

the daily routine

of the study

participants to get

data.

The application

functions

normally when

in the different

states (active,

background).

Medium # 2

#9 The application

must use atomic

uploads.

A record of the

uploaded data will

keep data

consistent in the

event of an upload

failure.

All shared

health data is

uploaded to the

mSpider server.

High

#10 The application

must alert the

participant if an

error occurs.

To give the

participant the

ability to fix

smaller issues,

should they arise.

The application

alerts the

participant if an

error occurs.

Low

#11 The application

must upload

health data at

regular intervals.

To minimize risk

of losing data, it

should be

uploaded

regularly.

Health data

received is

uploaded to

mSpider at

regular

intervals.

Medium

Page 25 of 58

#12 The application

should check

when it last

uploaded to the

server.

Only uploading

changed data is

more efficient use

of resources.

The application

can store the

state of the

upload using an

anchor.

Low

#13 The application

should ask the

participant if

they want to

upload historical

data.

To be able to see

past activity and

compare it to

newer data.

The participant

is presented

with an option

for including

historical data.

Low

#14 The application

must have an

option to log out

and stop the data

collection.

The participant

may wish to

resign from the

studies.

The participant

can sign out of

the application

and have it stop

uploading

health data.

Low #1 #2

#15 The application

should only

upload data on

Wi-Fi.

To not add any

data costs to the

participant, the

mSpider

application should

only upload on

Wi-Fi networks.

The application

pauses uploads

until a Wi-Fi

network is

available.

Low

Page 26 of 58

4.2 Non-functional requirements

Application Security and privacy

The mSpider application must adhere to strict privacy regulations as it collects health data

from Apple Health. Health data must never be exposed while in transit.

Performance and uptime

The mSpider application and server-side software must minimize downtime to a minimum.

Expandability and reusability

To allow for future research projects with different data type requirements to use the same

application with minor changes. The mSpider iOS application and server-side provider must

be easily expandable to add support for new Apple Health datatypes.

4.3 Actors

An actor is a term from UML that describes a user that has a role in a system they interact

with. The actor can be a physical user, or it can be a system interacting with another system.

iPhone user

The iPhone user has health data from their iPhone and Apple Watch and wishes to share it

with researchers to provide up to date information about their health and physical activity.

Samsung user

The Samsung user has health data from their Samsung Galaxy and Galaxy Watch and wishes

to share it with researchers to provide up to date information about their health and physical

activity.

Apple Watch

The Apple Watch is responsible for the collection of various health related metrics about the

participant, including heart rate, steps taken, and sending this to Apple Health.

Page 27 of 58

Samsung Galaxy Watch

The Galaxy watch is responsible for the collection of various health related metrics about the

participant, including heart rate, steps taken, and sending this to Samsung Health.

Apple Health

Apple Health is responsible for saving health data from the iPhone and the Apple Watch and

then making it available to third-party applications.

Samsung Health

Samsung Health is responsible for saving health data from Samsung Galaxy and the Galaxy

watch and then making it available to third-party applications.

mSpider

The mSpider server is used to retrieve/receive the health data sent from the iOS application on

the users iPhone.

mSpider application

The mSpider application is responsible for the transfer and upload of health data from Apple

Health/Samsung Health to the mSpider server.

4.4 Use-cases

The term use case is from UML, and it is used to describe the interaction between either the

user of a system or the system itself takes to achieve a goal.

Table 3 Use cases.

Use-case Goal Actor and

requirement

Flow

Log in A participant must

be able login to the

mSpider application.

iPhone user with an

Apple Watch

#1 and #2

The participant

opens the mSpider

application and logs

in with the provided

invite code.

Page 28 of 58

Approve read

permissions from

Apple Health

A participant must

be to approve the

permissions request

from Apple Health.

iPhone user with an

Apple Watch.

#3

The participant

opens the mSpider

application, the

application will ask

them to approve

permissions from

Apple Health.

Upload data. A participant must

be able to share

health and physical

activity data with

researchers.

iPhone user with an

Apple Watch

#4, #5, #6, #7, #8

and #10, # 11

The participant lets

mSpider run in the

background on their

phone and the

application uploads

data.

Log out. A participant must

be able log out of the

mSpider application

and stop the data

collection.

iPhone user with an

Apple Watch

#14

The participant

opens the mSpider

application and finds

the log out button,

and press it, and the

application will then

log them out and

stop uploading new

health data from

Apple Health.

View data. An administrator

must be able to view

the collected data.

Admin with database

or mSpider web

portal access

Admin logs in to the

database or front end

of mSpider web

portal and looks at

the collected data.

Page 29 of 58

The use case diagram is shown in Figure 3 shows that the participants can log in to the

mSpider application, they can also log out of the system. Once logged in, the participants will

get a screen where they will be asked to approve the required permissions that the study, they

have enrolled in has set.

Use-case diagram

Figure 3 Use case diagram.

Page 30 of 58

4.5 Personas and usage scenarios

A persona is a mockup of a user that might use a service or a product. The persona is there to

showcase who might use the service or product offered. They are often in the target group of

the product. Figure 4 and Figure 5 are pictures of two potential users, they are both smart

watch users but have different technical skill levels.

The images were generated using Stable Diffusion [27]. Stable Diffusion is a way to generate

images from natural text. The personas of both Mike and Robert were posted in the text field

and images were generated using that.

Personas

Mike Smith

Mike works at a marketing firm in

a large city. He enjoys walking to

and from work, sometimes he

uses his bicycle, and when it is

raining, he takes the bus. Mike

does not exercise other than the

physical activity he gets from

walking and cycling while doing

his daily routine. Mike’s daily

routine includes going to work

every day, sometimes after work

he goes shopping for groceries.

Mike lives alone with his cat.

Mike likes to travel on his

vacations, visit various places and explore their cultures. Mike is an average iPhone user, he

has recently acquired an Apple Watch, and uses it every day. Mike enjoys using his watch to

control his music, check notifications and the weather.

Figure 4 Persona 1 Mike Smith

Page 31 of 58

Mike saw a poster about a research project that seeks participants to conduct research about

physical activity in the population. Mike has applied to join the research survey as a

participant. Mike downloads the application and logs in and approves the permissions

required.

Robert Pit

Robert is a man who does

many things, he works at an

office, with many other office

workers. He likes to ride his

motorcycle to work. He has a

wife that likes cats, and

together they live a peaceful

life in the city.

Robert uses a Samsung

Galaxy with a Galaxy Watch

connected.

Usage scenarios

The participant is allowed to enter a study that uses mSpider iOS application. Firstly, the

participant downloads the application from the Apple App Store. The participant then checks

their email to find the invite code, sent by mSpider. Secondly, the participant opens the

application, then the participant logs in to the application using the provided invite code.

Thirdly the participant approves the application’s request to read health and physical activity

data from Apple Health. Lastly the participant closes the application.

Chapter Summary

An explanation about the requirements and use cases has been provided. Additionally, the

chapter provides some examples of personas using the application.

Figure 5 Persona 2 Robert

Page 32 of 58

5 Design

The design chapter will explain the decisions during the design phase of the project. The

decisions explained in this chapter will impact both platforms, Android and iOS.

The mSpider login system and token storage work on Android and iOS as shown in Figure 6

and Figure 7. The screenshots shown in the Figure 6 is taken from a physical iPhone while the

one in Figure 7 shows the application running on an Android emulator.

Figure 7 Android

The mSpider webserver has different providers that are in charge of fetching the health data

from the different APIs and service providers that are supported by the platform. These

providers are used to collect health data using Open Authorization (OAuth) tokens.

Figure 6 iOS

Page 33 of 58

OAuth2 [28] is an internet standard for securely interacting with applications or API on behalf

of a user. The mSpider mobile application does not use OAuth2, but the scope terminology is

still used for the application.

The participant will upon registration be given an invite link and with that link they will be

able to authorize data they want the mSpider platform to collect from their accounts at Google

Fit or Garmin or Fitbit (Google LLC, CA, US) using a OAuth2 connection. The scopes are

what data, the mSpider platform and its mobile applications has been given permission from

the participants to collect and store into the database. The term scope is also used to describe

the permissions given by a participant using the mobile application of mSpider.

Error! Reference source not found. shows two database tables, apple_data and participants.

The ID field in apple_data is the primary key and generated by PostgreSQL automatically.

The apple_data also contains the id of the participant(participant_id) which is connected to

the participants table using a foreign key. The date_time_reference field contains an int

collected from each record uploaded from the phone, the int is an epoch. An epoch timestamp

is the number of seconds elapsed that have elapsed since the first of January 1970.

The data_type field contains information about what metric the value from the data field is.

The scope field contains information about the object name used to call the object from the

HealthKit SDK. The data field contains raw JSON (JavaScript Object Notation) of the

uploaded data.

The participant database table contains four rows. The first-row participant_id is randomly

generated by PostgreSQL and used to link the participants up to the uploaded records. The

second row is email, and this may change in the production version of mSpider as data should

not contain identifying parameters. Third row is the username of the participant and that may

also change in the production version. The fourth row is the apple_auth_token that the

participant uses to login to the application with.

The token table is not in use currently, but before the mSpider application goes into

production, the token table should be used instead of apple_auth_token in participants table.

Page 34 of 58

Figure 9 shows the participant entering the email and their invite code to the mSpider

application. When the participant has pressed the sign in button in the application, the

following will happen, the application will send a post web request to the mSpider API. This

request is asking for the server to validate the existence of a record with the specific invite

code that the participant provided.

If the server can validate the request, the mSpider API will send back a JWT token to the

application and the application will save the token in a secure keystore on the phone. When

this is done, the participant is presented with the home screen of the application and that the

data uploads will start shortly and continue until either the study is over, or the participant

signs out of the application and uninstalls it from their phone.

The data uploads will fetch the token from the secure storage of the phone and use that to

upload health data when there is new data registered in Apple Health. The uploading prosses

does not require further action from the user after initial setup. However, there is one

requirement to uploading prosses, the participant needs to have background fetching enabled

on their phone.

Every week the application will send a request with the JWT token to the mSpider API and

request a new valid token to upload. This will continue until the token either is invalid or the

participant stops using the application and logs out.

Figure 8 Database diagram

Page 35 of 58

Authentication sequence for a participant with an iPhone.

Figure 9 Sequence diagram of token use

• HTTPS Web request to the mSpider web API with email and passcode embed.

• JWT token is returned if passcode is accepted.

• JWT is stored on the participants' phone in a secure location and used in further and

future communication with the server.

• JWT expires after the set time of a week.

o The mSpider application must then use a refresh token to get a new token and

save that to the secure storage on the phone.

Chapter summary

This chapter explains the database and how the systems (mSpider mobile application and

mSpider web API) play together.

Page 36 of 58

6 Implementation

This chapter will contain the specific details of how the mSpider mobile application was

implemented and how the implementation is different on the different platforms (Android and

iOS).

The initial plan was to implement mSpider as either an application on the watches themselves

or as a cross-platform application on phone that communicates with the watches. After

conducting research and finding out that watch application would require separate

applications with platform specific code bases, this would increase the complexity of the

development and future maintenance and was scrapped.

In the end, the option that was chosen was to only implement a data gathering solution for the

Apple products (Apple Watch and iPhone). Samsung Health was considered not feasible in

the current timeframe since it requires extensive implementation time to make it usable for the

user and could be a separate master thesis.

RN-fitness-tracker29 supports both Android and Apple iOS but not Samsung Health. This

library supports Android using Google Fit. Google Fit is already supported with an API in the

web application of mSpider.

Running services and applications in the background on iOS and iPhone is much more

restricted than it is on Android as when the user navigates away from application, the

application either gets suspended or terminated depending on the settings of the phone. The

restriction on such services makes it more difficult to have an application that runs in the

background and uploads data on a regular basis.

Manual upload is a possible solution and was done in Bartschke, et al. [11] and in Shcherbina,

et al. [22] where upload without an application was performed. However, there are down

sides with manual upload and manual extraction as it requires that the user must open the

application and let it upload data, but this method is relying on that the participants

remembers and have time to interact with the application on regular basis.

29 https://github.com/kilohealth/rn-fitness-tracker

Page 37 of 58

To utilize background processes with the restriction in mind, the application uses background

fetch that is initialized by Apple Health. This is a feature in HealthKit that fires an event when

there is new data saved.

The data retrieval frequencies are defined by Apple in their developer documentation and

selected by the developer. Apple Health will send an internal notification using HealthKit to

the mSpider application, and this allows the mobile application to wake up, and fetch new

data from the Apple Health database.

During the first phase of the development, the author tested three different libraries for

collecting health data from Apple Health and found two open-source libraries (AE Studio 's

React-Native-Health30 and Kingstinct's React-Native-HealthKit31). These libraries were easy

to set up and test on an Apple Mac mini and get results quickly. Both libraries also support

background delivery of health data from Apple Health to mSpider. The support of background

delivery is crucial to the mobile application.

AE Studio’s React-Native Health was the first iOS only React Native library that the author

tested on a physical iPhone. After initial testing of the library, it became clear that the

implementation of it was outdated as AE’s library uses Objective-C as a backbone for

interfacing with Apple HealthKit. Since the introduction of Swift in 2014, Objective-C has

become less popular to use in new applications, as Apple themselves uses Swift in their new

applications.

The AE’s library uses React Native event emitters to listen to background updates from Apple

Health. Event emitters are special types of listeners that listen for an event to happen and

when the event has happened, they notify the subscribers of the listener to update themselves

with the new state of the event that fired.

30 https://github.com/agencyenterprise/react-native-health

31 https://github.com/Kingstinct/react-native-healthkit

Page 38 of 58

The AE’s background observers need four separate event listeners (setup success, setup

failure, new listener, and retrieval failure) for each data type. A listener for each state is

required the mSpider application using the AE library had to subscribe to four emitters

simultaneously to access six different data types, each with their own method to call and get a

response from.

The AE library does not offer a way to iterate over the results from the different data types

requested from Apple Health, each data type had to be called separately and their return value

had to be handled separately and then processed for uploading to the mSpider API.

The AE library has a limited set of datatypes to query from, and this set is further reduced if

the application needs to access them in the background, and it is this limitation that led the

author to look for a different library to access data from Apple Health using HealthKit.

Kingstinct's React-Native-HealthKit is the second React Native library the author tried to use

with a physical iPhone. The library uses Swift and TypeScript as a backend for connecting to

Apple Health. Furthermore, the same object and function names as found in Apples

documentation are used.

The outputs returned from calls are similar to what a native Swift developer would get from

HealthKit. React-Native-HealthKit is easier to maintain because of the large connection it has

with the native Apple documentation.

Background delivery works differently in React Native HealthKit than in the AE library. To

setup background delivery from React Native-HealthKit to the mSpider application, the

author made a list of permissions at the top of the JavaScript file, and this list was passed to

the permissions request method and to the method that handles the querying of information

from Apple Health. This implementation method makes for highly modular code, that can

easily be called upon and reused when needed.

Page 39 of 58

The different quantity data types from HealthKit are called HKQuantityType32, and these

types store all the information about each individual sample stored in Apple Health. Each of

the data types in Apple HealthKit has one, one example is distanceWalkingRunning and this

type is called HKQuantityTypeIdentifier.distanceWalkingRunning when called from the code.

The HKQuantityType types are called both during the initial permissions request from the

participant to read them and during the process of uploading them the mSpider server after

retrieval from Apple Health. React Native HealthKit does not use a separate listener for each

state.

The mSpider application supports six types of HealthKit quantity records. Table 4 shows a list

over HealthKit type identifiers and their friendly names that is used in Apple Health.

Table 4 HealthKit object names

HealthKit name Apple Health name

HKQuantityTypeIdentifierDistanceWalkingRunning Walking + Running Distance

HKQuantityTypeIdentifierActiveEnergyBurned Active Energy Burned

HKQuantityTypeIdentifierDistanceCycling Cycling Distance

HKQuantityTypeIdentifierFlightsClimbed Flights Climbed

HKQuantityTypeIdentifierStepCount Steps

HKQuantityTypeIdentifierHeartRate Heart Rate

The only factor that changes during each iteration is the input parameter of what

HKQuantityType is next in the queue to be uploaded. This implementation makes for modular

code, and since the same methods are used for all the data types.

32 https://developer.apple.com/documentation/healthkit/hkquantitytype

Page 40 of 58

React Native HealthKit uses the HKQuantityType to keep what data belongs to which sample

and it makes it easier to add new data types in the future. This allows the application to be

expanded to support both currently unsupported types and new types that Apple adds in the

future.

React Native HealthKit supports other types of samples (Category types and Workout

Activity types) so these could be added in a future update to the mSpider application. This

will make the mSpider application able to collect nearly any data that is stored in Apple

Health and that could be of interest for a future researcher. Third party applications can also

push records to Apple Health, making them available for the mSpider application as well.

This means that any application that supports writing to Apple Health could be supported by

the mSpider application.

Figure 10 shows the permissions request from the

mSpider application.

The mSpider application makes use of a list of

permissions and the list is the same

HKQuantityType as the data collection loop uses.

The participants will be asked to allow the

mSpider application to read from the different

scopes in Apple Health when they log in the first

time. When a participant declines mSpider to read

from a specific permission, the application skips

over it as it was not there in the first place.

The mSpider iOS application uses a HealthKit

anchor to be able to store what Apple Health

samples, the application has read and uploaded

and what samples it has not uploaded. During the

upload loop, the application will only mark a

sample as uploaded if the mSpider API server sent

a HTTP status code of 201 Created in return after

records have been uploaded.

Figure 10 Permissions request on iOS

Page 41 of 58

Figure 11 shows a code snippet of the uploading loop and the anchor mechanism.

Figure 11 Code snippet from upload loop

The code snippet showed in Figure 11 starts with a for each loop that will loop trough every

HKQuantityType that has been set in the Type list. After the list has been read, the application

will try to load the anchor from the phone storage. Once the anchor has been loaded, the code

execution continues with querying the new samples since the last upload, and it queries seven

days back and until the current time. After the samples have been loaded from Apple Health

and they are not empty. The samples will then be sent to the mSpider API in batches for each

scope using the JWT-token loaded from the phone's storage. If the result after sending is 201

Created, the sample will be marked as uploaded in the anchor, and the loop continues until

there are no more samples left that have not been uploaded and marked as such.

Data upload

Figure 12 shows a record from the PostgreSQL database uploaded from the iPhone.

0de4d9a5-f6f3-4e8a-88e6-97a7bc7bc6c3 | 9d1d43fc-f14a-4e23-886f-
27ef62a09db2 | 1686247823000 | kcal |
HKQuantityTypeIdentifierActiveEnergyBurned| 0.21599999999999997
Figure 12 Example data upload

Page 42 of 58

The record is explained as follows. The first row is the unique row id generated by the

PostgreSQL database system. The second row is the id of the participant who generated the

row. The third row is the epoch timestamp of the record and that converts to Thursday 8th

June 2023 at 20:10:23. The fourth row is the data type, and this data type is kilocalorie(kcal).

The fifth row is the identifier of the object, named from the Apple Developer documentation

HKQuantityTypeIdentifierActiveEnergyBurned33. The sixth row is the actual data that was

uploaded. This record was collected from an 8th generation Apple Watch that the author uses

to test the implementation and uploaded using an iPhone XR.

The figure starts at the participant (Participant, 1). The participant is wearing an Apple Watch,

this Apple Watch is connected to the iPhone as shown in 2. Apple Health (3) is the local data

store for health data. Once the data from the Apple Watch is saved in Apple Health, and the

phone is connected to the internet and has iCloud backup enabled, it will get transferred to the

iCloud backup system, as shown in 4. The transfer of data from Apple Health to the mSpider

mobile application happens with a connection between Apple HealthKit (5), React Native

HealthKit (6) and mSpider iOS (7). The health data from the participant (1) is uploaded to (8)

and stored in the mSpider database (9).

The ability to disable iCloud backup (4) is an optional feature, but this is important to the

process as depicts, the option to have a closed loop system. When the backup feature is

disabled, the health data from the participant is only uploaded to the mSpider system and not

to Apple’s own systems.

33 https://developer.apple.com/documentation/healthkit/hkquantitytypeidentifier/1615771-

activeenergyburned

Page 43 of 58

Figure 13 Uploading from iPhone and Apple Watch

• Stage 1 depicts the actor/participant wearing the Apple Watch.

• Stage 2 depicts the data being transmitted between the iPhone and the Apple Watch.

• Stage 3 depicts the health data being stored locally in Apple Health.

• Stage 4 depicts the flow of data between Apple Health and the optional backup feature

iCloud, provided the user has not disabled backup of Apple Health data to iCloud.

• Stage 5 depicts the transfer of data from 5 to 7 using Apple HealthKit and React

Native HealthKit.

• Stage 6 depicts that React Native HealthKit is used to transfer health data from Apple

Health and to mSpider.

• Stage 7 depicts the mSpider iOS application transferring data from the iPhone and to

the mSpider cloud server.

• Stage 8 depicts the mSpider API receiving health data from the iOS application.

• Stage 9 depicts the data received by the API being saved into the mSpider database

server.

Page 44 of 58

Figure 14 shows the user interface in iOS that used during

development, the user interface in the mSpider application

uses React Native Paper and React Native Navigation. These

libraries are cross-compatible, making the interface and other

core functions the same on both platforms (iOS and

Android). This will allow for the future implementation of

the data collection for Samsung, while relying on other

features that are cross-compatible and already present in the

iOS version of the application.

Other cross platform features include the login and uploader

features that make use of the JavaScript library Axios. The

React Native Library React Native-Keychain handles the

storage of the JSON Web Token (JWT) and the anchor from

Apple HealthKit. The JSON Web Token is a system and a

proposed internet standard [29] for handling access tokens.

The mSpider application is meant to run in the background on the participants phone, so the

user interface has not been a top priority, and therefore the user interface has a lot of potential

in terms of future work. Currently, the user interface offers the ability to log in and out to the

application, and the rest of the functionality is automatic. Uploading happens automatically

when Apple Health has new data from either the iPhone or the Apple Watch.

For future work, it could be useful to look in to if it is possible to have a dynamic list that is

requested from the mSpider server, and based on that it will customize the list in the

application, so that the researcher can also customize what kind of data they want to collect,

making the collection more specialized and therefore the researcher will not get data they do

not intend to use or wish to use, and at the same time making it easier to analyze data after the

data collection is completed.

Chapter summary

This chapter described the proof-concept application that was implemented for iOS in React

Native using React Native HealthKit as data source.

Figure 14 User interface in iOS

Page 45 of 58

7 Results

This chapter will explain the results the author has come to before, during and after the

development of mSpider application. The figures shown in this chapter are graphed with

Grafana. Figure 15 shows an overview of the 60 days of data collection the author did during

the period. The data was collected from 1sth of May and until the end of 28th of June 2023.

Figure 15 60 days with records from the mSpider application

7.1 Data collected and battery usage

164 upload requests were sent to the server during a 24-hour period on the 19th of June 2023.

These upload requests resulted that 3905 records were stored in the PostgreSQL database.

The mSpider application used 11 percent of battery on an iPhone on the 19th of June. The

battery usage is collected from the battery usage screen in the settings menu of iOS.

Page 46 of 58

Figure 16 shows the records uploaded on 19th of June grouped by scope.

Figure 16 24-hour overview of scopes on 19 of June

The figure shows that 56 % percent of the uploaded records were active energy burned. This

is expected as this is the record that the Apple Watch saves the most.

In the days since the 19th of June and until 28th of June, the mSpider application has used six

percent of battery, and there were 26820 records added to the PostgreSQL database. As

shown in Figure 17.

Figure 17 10-day view on scope

The figure shows that again the scope with the most records uploaded is active energy burned.

Page 47 of 58

Table 5 shows the records in numbers from Figure 15

Table 5 Count of records over 60 days

Record name Count

Active energy burned 49380

Heart Rate 29813

Steps 6960

Distance traveled 11472

Total 114965

Table 6 shows the estimated size of one data record uploaded.

Table 6 Estimated data size in bytes

Name Data Bytes per record

Object ID 0de4d9a5-f6f3-4e8a-88e6-97a7bc7bc6c3 37

Participant ID 9d1d43fc-f14a-4e23-886f-27ef62a09db2 37

Timestamp 1686247823000 8

Metric kcal 16

Scope HKQuantityTypeIdentifierActiveEnergyBurned 35

JSON Data 0.21 50

 183 bytes multiplied by 114965 records = 21 megabytes

If the results from Table 5 are multiplied with the data from Table 6 the result is 21.

21 megabytes is the total megabytes used for all the data that the author collected on

themselves during the two-month collection period. When the data is extracted from the

PostgreSQL database the file is also 21 megabytes in size.

Page 48 of 58

7.2 User testing

The mSpider iOS user interface was shown to other students during the development, to get

feedback on the user interface. The feedback showed that the application lacks an informative

screen to inform the participants about the study they are enrolled in. Other students have not

been used in the testing of data gathering from the Apple Watch.

User testing with data collection from private devices has not been conducted as that would

have been a challenge with Apple devices as they require that the developer either publishes

the application using TestFlight and invites the users through this system or publishes the

application to the App Store.

7.3 Security

7.3.1 Apple

Apple has requirements that every developer that wishes to publish to the App Store (Apple

Inc, CA, US) needs to follow. These requirements include that the developer needs to own a

Mac capable of running the Xcode for the development and compilation and testing of their

software packages. Developers also need to pay a fee to Apple to be granted access to the

Apple Developer Program34 (Apple Inc, CA, US). The Developer Program has different

levels of access depending on how large the business is.

A single developer needs to pay 99 USD to enter the program, while a larger enterprise with

100 or more employees needs to pay 299 USD to enter the Apple Developer Enterprise

Program35 (Apple Inc, CA, US). The fee is a subscription as the developers need to pay it

each year.

There are benefits to requiring developers to pay a fee to be allowed to publish to the App

Store. One large reason for the fee is to increase the barrier and to hinder the publication of

spam and malicious applications. The App Store also has strict regulations for what Apple

deems an application worthy of being allowed onto the App Store as outlined in their App

Store Review Guidelines36 and polices, the fee serves as first line of defense.

34 https://developer.apple.com/programs/

35 https://developer.apple.com/programs/enterprise/

36 https://developer.apple.com/app-store/review/guidelines/

Page 49 of 58

HealthKit background fetching is one of the features a developer enrolled into the Apple

Developer Program gets, this feature is used heavily in the mSpider iOS application. To test

the background fetching on a physical iPhone, the developer needs to be a member of the

program. This requirement does complicate the process for a small-time student developer.

If the user declines a permission request for access to health data from Apple Health, the

application requesting the permission will get no notice of the permission being declined, and

that is how it is designed by Apple. Apple states that the reason that applications do not know

what permissions are declined is to protect the user's privacy37.

Apple Health offline data storage

Apple does not act as an intermediary3839 when an iPhone user allows a third-party application

access to their data stored in Apple Health. The shared health data is transferred directly from

Apple Health and to the third-party application. If the user wishes to keep the data stored only

on their iPhone, they can do so by disabling the iCloud backup feature (the iCloud backup is

enabled by default), while this is not required, it is a nice option that will allow for closed

loop data gathering.

Closed loop data gathering solutions opens new opportunities for research data gathering that

has previously been harder to accomplish. There are researchers that would prefer to remain

in complete control of the collection of data, and this option will appeal to them. Closed loop

systems also make risk analysis easier as there are fewer parties to account for in terms of

who has access to the data. The findings from this satisfies the third sub-problem to some

degree.

7.3.2 Samsung and Google

Samsung has an SDK (Samsung Privileged Health) similar to what Apple offers with

HealthKit, but it is harder to gain access to it, as developers need to request access to the

software kit using a Samsung account and then Samsung needs time to go through the request

and then approve it before you can start testing your application with physical hardware.

37 https://developer.apple.com/documentation/healthkit/authorizing_access_to_health_data

38 https://support.apple.com/en-us/HT209519

39 https://www.apple.com/legal/privacy/data/en/health-app/

https://www.apple.com/legal/privacy/data/en/health-app/

Page 50 of 58

Samsung has also restricted the system so developers cannot test the SDK features of the

Privileged Health program in an emulator, making it harder for developers to test their

applications quickly. Entering the program is not an easy task according to a developer

relation spokesperson Ron at Samsung40.

Developers publishing an application to the Google Play Store (Google LLC, CA, US). The

developers would also be subjected to similar restrictions and guidelines from Googles as

outlined in the Google Play Developer Distribution Agreement41. Google charges a 25-dollar

one-time fee to be able to upload applications to the Play Store. The fee charged by Google is

smaller than what Apple charges.

7.4 Limitations with using React Native.

Platform dependent dependencies, and that means, that each platform requires their own

packages, and these packages change based on if the device is an Android or an iPhone, an

example is the HealthKit package is used in the application. The package uses Swift native

code and therefore only supports the iOS platform.

Another limitation with React Native is the dependencies that depend on other dependencies,

and to utilize them the developer must install large amounts of packages. Loss of support

from developer of a package is a further limitation that can lead to the application being

unsupported on newer phones, and then requiring an update to swap out the deprecated

packages / outdated packages, making the maintenance harder.

40 https://forum.developer.samsung.com/t/i-need-to-get-data-from-samsung-health/19625/4

41 https://play.google.com/intl/en_us/about/developer-distribution-agreement.html

Page 51 of 58

8 Discussion

8.1 Thesis summary

Collecting data from smart watches is an interesting way of gaining insights about the

population. This thesis consists of an explanation about Apple Watch, and Samsung Galaxy

Watch and how to collect data from them using an automated system. The thesis also covers

the theoretical framework needed to explain the core concepts, a literature review, and a

requirement specification. The thesis further explains the design and implementation of the

mSpider mobile application, and results from the data collection and results from battery

consumption and the results of the other findings.

8.2 Data collection

During the phase after development had been paused on the mobile application, the author

wore the Apple Watch for an extended period, this allowed the author to test the application

for a longer time, and the amount of data is surprisingly large for one person to have

generated in just two months, while the storage required for the records is low, this is good

news for the participants as that means the application will have low impact on their cellular

data if they choose to allow mSpider to use mobile data.

The application also has a low impact on the battery of the participants. The results from the

battery usage are an estimate as the phone used was put in flight mode as it did not have a sim

card activated. The phone was not used as a primary phone during the period as the author

used their regular phone as well during the two-month collection period.

The data generated by the author and shown in 7.1, gives an estimate of how the application

would have performed in a real production environment. This data set is an estimate based on

one person usage of the system and this person (the author) was more enthusiastic than a

regular participant might have been, as the author did make an effort to wear the Apple Watch

whenever possible, while a regular participant might forget to use the watch and not record

data to the phone, causing a lower amount of data to be collected.

8.3 Privacy and security

Once the uploaded data has reached the mSpider server and database. If the data gets

anonymized before it is stored on disk, it would be easier when it comes to privacy as with no

identifiable information, no privacy or trust can be broken.

Page 52 of 58

While if the data were to be stored with identifying information left in it, it could help

researchers gain a larger understanding about the population on a more individual level. To

keep data with identifying information in it, the researchers would need to apply to the

Norwegian Research Ethics board (SIKT) for approval.

The author has not put in an application with SIKT for this thesis or the mSpider application.

There are three reasons for not sending a request to SIKT. The first one is that the data that

has been collected has only came from the author, and the second reason is that the collected

data contains no identifiable information about the author. The third reason is that the

mSpider mobile application is still under development and not ready for use with real

participants as currently the application is still in a proof-of-concept stage.

8.4 User testing

As user testing was not done on actual participants or other students. There are fewer

elements to discuss. While the chance was there to test on actual participants, this was not

done due to time constraints.

In 7.2, feedback was shared with the author about the user interface, that the interface should

give information about the studies and the author agrees with the feedback given but has not

had time to implement it.

8.5 Strengths and limitations

There are strengths and limitations with this project as any other project.

High barrier to entry to access studies, as the participant must purchase at least a high-end

smart phone to be eligible for the study. The cost of entry further increases when the

participant needs either purchase or own the Apple Watch or a Samsung Galaxy Watch for

most of the records the be saved.

Large portions of the population do own these devices from before, but the ones that do not

own them, will not be able to take part in the studies offered through the mSpider mobile

application. These participants can however gain entry to the studies by using other less costly

devices (Fitbit and the like).

Page 53 of 58

The Apple Watch has fitness motivational features that could impact the data collected

through Apple Health, which could make the results different from a person that is not

wearing an Apple Watch and therefore not necessarily representable of the general population

while these features are enabled.

There are multiple ways a participant can trick the Apple Watch. The Apple Watch is

susceptible to the participant shaking the Apple Watch or using other ways to trick the Apple

Watch into detecting exercise.

Activity data can also be manipulated if the user starts a workout session on the watch and

then proceeds to just shake the watch repeatedly. Data manipulation normally only affects the

user. If the user were to cheat while part of a research project that could change the results.

This could however be mitigated using motion data[30].

In this article they have participants trying to trick a fitness tracker installed on a cell phone

and when the participant successfully cheats the system, the authors retrain the model until

the participants were not able to trick the detection.

In Apple Health, the user can add manual records to Apple Health, thus making it seem like

they were more active than they were. This can also be mitigated by not uploading manual

records .

8.6 Problem statements

The introduction outlined the statements and potential solutions, and those solutions were

further detailed in the design chapter and the implementation chapter.

SP1: How can health data be collected from smart watch vendors that do not support

backend API data retrieval?

This sub-problem was resolved, as the solution described in the sections 5 and 6 have shown

that is possible.

Page 54 of 58

SP2: How can data be collected while preserving the privacy and security of the participants?

This sub-problem was not completely resolved, as this project only has developed a proof-of-

concept system. Security and privacy concerns described in sections 2.7 and 8.3 should be

evaluated further before the system is used for any data collection that involves any personal

data or health data covered by GDPR or HIPAA. An application to SIKT is required as well.

SP3: How can collected data be prevented from being sent or stored on vendor services?

This sub-problem was resolved for the iOS application. As described in 7.3.1, if the user

disables the backup feature there is no data that will leave the phone unless the user has

accepted it.

8.7 Contributions

Automatic data collection from Apple Watch with a background process, that does not require

manual management after initial setup. This process allows for complete control over the data

collection and storage. The mSpider mobile upload system has a low cost as it does not

require researchers pay a third party for access to their data as would have been necessary if a

similar but commercial system like WeFitter or Terra was chosen to be the platform for data

collection.

Login system for mSpider with support for both Android and iPhone, so that another master

student in the future can add data uploader support for Android.

Page 55 of 58

8.8 Future work

General improvements

• Develop a nice-looking user interface for mSpider.

• The mSpider application should only upload data on Wi-Fi networks.

o Give the participant options where they can select what they want.

▪ A choice for the participant to enable data upload over cellular data /

4G / 5G.

• Check that there is data to collect, to avoid looking after no existent data.

• Show last uploaded data to let the user know when data was last uploaded, and that the

application is working as normal.

• Fetch and show information about the current user / study in the main page of the

application.

Android version improvements

• Develop the Android version of mSpider to have more features and get it up to par

with the iOS version.

iOS improvements

• Check for duplicated data from either iPhone or Watch.

o Add the device source of the uploaded data.

• Apple ResearchKit is not used in the iOS version of mSpider data collector. A future

version of mSpider could implement ResearchKit as it grants access to more metrics

and usage information that is not available otherwise.

As mentioned in chapter 6, a feature that would have been beneficial for both the participants

and the researchers analyzing the collected data is that mSpider application would get a list of

permissions or scopes from the mSpider API at login. The mSpider application would then

base the permissions request on the list of permissions gotten from the server, giving

researchers customizability in the data they collect. The customizability would both be helpful

and provide more privacy to the participant.

Page 56 of 58

9 Conclusion

The findings presented in this report and the literature review show that it is possible to

collect data automatically while still preserving privacy and security of the participant.

The thesis contributes to the existing knowledge by providing an implementation and

discussion of a proof-of-concept system for collecting health data from wearables that do not

support online data extraction while preserving the privacy and security of the data originators

using a third-party application.

As discussed in section 8.6, resolutions to the problem statements have been found through an

automated smartphone application for health data collection where the participant is only

required to provide login credentials and accept permissions. Not all the problem statements

have been fully resolved, but it shows that it is possible but further research is required to

comply with international regulations.

Page 57 of 58

References

[1] R. Ganti, F. Ye, and H. Lei, "Mobile crowdsensing: current state and future

challenges," IEEE Communications Magazine, vol. 49, no. 11, pp. 32-39, 2011, doi:

10.1109/mcom.2011.6069707.

[2] J. Burke, "Participatory sensing," presented at the ACM Sensys 2006, Colorado, USA,

2006.

[3] N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. Campbell, "A survey

of mobile phone sensing," IEEE Communications Magazine, vol. 48, no. 9, pp. 140-

150, 2010, doi: 10.1109/mcom.2010.5560598.

[4] Physical activity fact sheet, World Health Organization, Geneva, 2021. [Online].

Available: https://apps.who.int/iris/handle/10665/346252

[5] D. Thivel, A. Tremblay, P. M. Genin, S. Panahi, D. Riviere, and M. Duclos, "Physical

Activity, Inactivity, and Sedentary Behaviors: Definitions and Implications in

Occupational Health," Front Public Health, vol. 6, p. 288, 2018, doi:

10.3389/fpubh.2018.00288.

[6] M. S. Tremblay et al., "Sedentary Behavior Research Network (SBRN) - Terminology

Consensus Project process and outcome," Int J Behav Nutr Phys Act, vol. 14, no. 1, p.

75, Jun 10 2017, doi: 10.1186/s12966-017-0525-8.

[7] Apple, "Apple reinvents the Phone with the iPhone," Apple Newsroom, January 9,

2007. [Online]. Available: https://www.apple.com/newsroom/2007/01/09Apple-

Reinvents-the-Phone-with-iPhone/.

[8] General Data Protection Regulation, European Union 2016/679, 2016.

[9] A. Henriksen, E. Johannessen, G. Hartvigsen, S. Grimsgaard, and L. A. Hopstock,

"Consumer-Based Activity Trackers as a Tool for Physical Activity Monitoring in

Epidemiological Studies During the COVID-19 Pandemic: Development and

Usability Study," JMIR Public Health Surveill, vol. 7, no. 4, p. e23806, Apr 23 2021,

doi: 10.2196/23806.

[10] M. J. Page et al., "The PRISMA 2020 statement: an updated guideline for reporting

systematic reviews," BMJ, vol. 372, p. n71, Mar 29 2021, doi: 10.1136/bmj.n71.

[11] A. Bartschke, Y. Borner, and S. Thun, "Accessing the ECG Data of the Apple Watch

and Accomplishing Interoperability Through FHIR," (in eng), Stud Health Technol

Inform, vol. 278, pp. 245-250, May 24 2021, doi: 10.3233/SHTI210076.

[12] A. Curtis, A. Pai, J. Cao, N. Moukaddam, and A. Sabharwal, "HealthSense: Software-

defined Mobile-based Clinical Trials," presented at the The 25th Annual International

Conference on Mobile Computing and Networking, Los Cabos, Mexico, 2019.

[Online]. Available: https://dl.acm.org/doi/pdf/10.1145/3300061.3345433.

[13] H. G. Dandapani et al., "Leveraging Mobile-Based Sensors for Clinical Research to

Obtain Activity and Health Measures for Disease Monitoring, Prevention, and

Treatment," (in eng), Front Digit Health, vol. 4, p. 893070, 2022, doi:

10.3389/fdgth.2022.893070.

[14] D. Fuller et al., "Predicting lying, sitting, walking and running using Apple Watch and

Fitbit data," (in eng), BMJ Open Sport Exerc Med, vol. 7, no. 1, p. e001004, 2021, doi:

10.1136/bmjsem-2020-001004.

[15] A. Goldberg and J. W. K. Ho, "Hactive: a smartphone application for heart rate

profiling," (in eng), Biophys Rev, vol. 12, no. 4, pp. 777-779, Aug 2020, doi:

10.1007/s12551-020-00731-3.

[16] K. Hänsel, H. Haddadi, and A. Alomainy, "Demo: AWSense: A Framework for

Collecting Sensing Data from the Apple Watch," presented at the Proceedings of the

https://apps.who.int/iris/handle/10665/346252
https://www.apple.com/newsroom/2007/01/09Apple-Reinvents-the-Phone-with-iPhone/
https://www.apple.com/newsroom/2007/01/09Apple-Reinvents-the-Phone-with-iPhone/
https://dl.acm.org/doi/pdf/10.1145/3300061.3345433

Page 58 of 58

15th Annual International Conference on Mobile Systems, Applications, and Services,

Niagara Falls, New York, USA, 2017. [Online]. Available:

https://dl.acm.org/doi/pdf/10.1145/3081333.3089333.

[17] S. Kunchay and S. Abdullah, "WatchOver: using Apple watches to assess and predict

substance co-use in young adults," presented at the Adjunct Proceedings of the 2020

ACM International Joint Conference on Pervasive and Ubiquitous Computing and

Proceedings of the 2020 ACM International Symposium on Wearable Computers,

Virtual Event, Mexico, 2020. [Online]. Available:

https://dl.acm.org/doi/pdf/10.1145/3410530.3414373.

[18] F. V. Lima et al., "At the Crossroads! Time to Start Taking Smartwatches Seriously,"

(in eng), Am J Cardiol, vol. 179, pp. 96-101, Sep 15 2022, doi:

10.1016/j.amjcard.2022.06.020.

[19] R. a. N. A. Marinescu, "Smartphone application for heart rate monitoring," presented

at the 2017 E-Health and Bioengineering Conference (EHB), June ,, 2017.

[20] D. D. McManus et al., "Design and Preliminary Findings From a New Electronic

Cohort Embedded in the Framingham Heart Study," (in eng), J Med Internet Res, vol.

21, no. 3, p. e12143, Mar 1 2019, doi: 10.2196/12143.

[21] E. Y. Ding et al., "Design, deployment, and usability of a mobile system for

cardiovascular health monitoring within the electronic Framingham Heart Study," (in

eng), Cardiovasc Digit Health J, vol. 2, no. 3, pp. 171-178, Jun 2021, doi:

10.1016/j.cvdhj.2021.04.001.

[22] A. Shcherbina et al., "Accuracy in Wrist-Worn, Sensor-Based Measurements of Heart

Rate and Energy Expenditure in a Diverse Cohort," (in eng), J Pers Med, vol. 7, no. 2,

May 24 2017, doi: 10.3390/jpm7020003.

[23] A. Turki, K. Behbehani, K. Ding, R. Zhang, M. Li, and K. Bell, "Estimation of Heart

Rate Variability Measures Using Apple Watch and Evaluating Their Accuracy:

Estimation of Heart Rate Variability Measures Using Apple Watch," presented at the

The 14th PErvasive Technologies Related to Assistive Environments Conference,

Corfu, Greece, 2021. [Online]. Available:

https://dl.acm.org/doi/pdf/10.1145/3453892.3462647.

[24] O. Walch, Y. Huang, D. Forger, and C. Goldstein, "Sleep stage prediction with raw

acceleration and photoplethysmography heart rate data derived from a consumer

wearable device," (in eng), Sleep, vol. 42, no. 12, Dec 24 2019, doi:

10.1093/sleep/zsz180.

[25] S. R. James Robertson, Volere Requirements Specification Template. Atlantic Systems

Guild, 2016, p. 90.

[26] Information technology — Object Management Group Unified Modeling Language

(OMG UML) — Part 1: Infrastructure, ISO/IEC 19505-1:2012, Object Managment

Group, 2012. [Online]. Available: https://www.iso.org/standard/32624.html

[27] A. B. Robin Rombach, Dominik Lorenz, Patrick Esser, Björn Ommer, "High-

Resolution Image Synthesis with Latent Diffusion Models," 2021, doi: 2112.10752.

[28] The OAuth 2.0 Authorization Framework, RFC 6749, The Internet Engineering Task

Force, 2012. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc6749

[29] JSON Web Token (JWT), RFC 7519, The Internet Engineering Task Force, 2015.

[Online]. Available: https://datatracker.ietf.org/doc/html/rfc7519

[30] S. Saeb, K. Kording, and D. C. Mohr, "Making Activity Recognition Robust against

Deceptive Behavior," PLoS One, vol. 10, no. 12, p. e0144795, 2015, doi:

10.1371/journal.pone.0144795.

https://dl.acm.org/doi/pdf/10.1145/3081333.3089333
https://dl.acm.org/doi/pdf/10.1145/3410530.3414373
https://dl.acm.org/doi/pdf/10.1145/3453892.3462647
https://www.iso.org/standard/32624.html
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7519

	1 Introduction
	1.1 Background
	1.2 Problem statement
	1.3 Limitations
	1.4 Thesis structure

	2 Theoretical Framework
	2.1 Physical Activity
	2.2 Apple iPhone
	2.3 Apple Watch
	2.4 Apple Health
	2.5 Apple ResearchKit
	2.6 Samsung Health
	2.7 Security
	2.8 Related work
	2.8.1 mSpider

	2.9 State of the art
	2.9.1 Methods
	2.9.2 Results

	3 Method
	3.1 Software and tools
	3.2 Reach Native
	3.3 Testing

	4 Requirement specifications
	4.1 Functional requirements
	4.2 Non-functional requirements
	4.3 Actors
	4.4 Use-cases
	4.5 Personas and usage scenarios

	5 Design
	6 Implementation
	7 Results
	7.1 Data collected and battery usage
	7.2 User testing
	7.3 Security
	7.3.1 Apple
	7.3.2 Samsung and Google

	7.4 Limitations with using React Native.

	8 Discussion
	8.1 Thesis summary
	8.2 Data collection
	8.3 Privacy and security
	8.4 User testing
	8.5 Strengths and limitations
	8.6 Problem statements
	8.7 Contributions
	8.8 Future work

	9 Conclusion
	References

