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“All models are wrong, but some are useful”
–George E. P. Box





Abstract
Efficient routing optimization yields benefits that extend beyond mere financial
gains. In this thesis, we present a methodology that utilizes a graph convolu-
tional neural network to facilitate the development of energy-efficient waste
collection routes. Our approach focuses on aWaste company in Tromsø, Remiks,
and uses real-life datasets, ensuring practicability and ease of implementation.
In particular, we extend the dpdp algorithm introduced by Kool et al. (2021) [1]
to minimize fuel consumption and devise routes that account for the impact of
elevation and real road distance traveled. Our findings shed light on the poten-
tial advantages and enhancements these optimized routes can offer Remiks,
including improved effectiveness and cost savings. Additionally, we identify
key areas for future research and development.
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1
Introduction
Efficient routing optimization has far-reaching benefits, extending beyond fi-
nancial gains. One key advantage is the reduction of driving time. Optimization
techniques aim to minimize travel distance and duration by strategically plan-
ning vehicle routes, enabling businesses to complete deliveries or services more
time-effectively [2]. This enhances customer satisfaction through timely deliv-
eries, reduces overall resource usage, and increases operational productivity.
Such improvements align with sustainability efforts and the growing emphasis
on environmentally friendly practices.

This thesis focuses on green vehicle routing in the context ofwastemanagement.
The Vehicle Routing Problem (vrp) [2] is a widely recognized challenge in op-
erational research. It revolves around determining the most efficient route for
a group of vehicles to deliver goods or services to a specific group of customers.
The vrp is a challenging problem with numerous real-world applications, such
as transportation and delivery services, waste collection, and emergency re-
sponse planning.

In recent decades, optimization techniques have been extensively used to solve
complex problems like the vrp [2, 3, 4]. While exact and heuristic algorithms
have made significant advancements in the vrp domain, there has been a grow-
ing interest in learning-based algorithms [5, 6]. Learning-based algorithms can
learn optimization strategies from training data, distinguishing them from
traditional exact and heuristic algorithms designed to solve predefined prob-
lems [7].
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2 chapter 1 introduction

Solving the Vehicle Routing Problem (VRP) and its variants is known to be NP-
hard, which implies that finding an exact solution would require exponential
time since no polynomial-time algorithm exists [2]. Due to the typically large
scale of real-time vrps, heuristics, and learning-basedmethods are often consid-
ered suitable [8]. These algorithms provide solutions that may not be globally
optimal but are highly practical and effective in real-world scenarios [9].

The minimization of fuel consumption has recently received significant inter-
est in literature [10, 11, 12]. Another emerging approach is the combination of
neural networks, and Operational Research (or) [13]. State-of-the-art learning-
driven methods for solving the Travelling Salesperson Problem (tsp) [14] can
perform close to the exact solver when trained on trivial problem sizes [15].
However, they cannot generalize to data structures they have not been opti-
mized for. Joshi et al. (2022) [15] provide the first principled investigation of
zero-shot generalization, where the model is trained on trivial problem sizes
of example data and generalizes to larger problems [15] or more complex
data [16].

1.1 Context

This work was conducted in collaboration with Remiks Miljøpark AS, a waste
collection company located in Tromsø, Norway. Remiks serves over 20,000
households in Tromsø and Karlsøy municipalities and primarily engages in
waste collection, sorting, and disposal activities.

Remiks is a limited liability company owned by Tromsø and Karlsøy municipal-
ity. The concern has about 120 employees, and the head office is located north
on the Tromsø island [17].

Remiks places great emphasis on environmental consciousness as one of its core
values. This work focuses on the company’s environmental consciousness and
aims to generate robust waste collection routes that can adapt to unforeseen
events, ensuring reliable and efficient operations.

1.2 Problem definition

In today’s modern cities, waste collection is an essential logistic activity that
must be carried out efficiently. To ensure optimal performance and timely de-
livery of services, companies like Remiks rely heavily on the experience and
expertise of their employees. However, as the industry evolves, there is a need
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to find innovative ways to enhance waste collection operations.

One such enhancement is to utilize optimization methods that generate energy-
efficient routes. By leveraging technology and data analysis, waste collection
companies can optimize their routes, reduce fuel consumption, and minimize
their carbon footprint.

While most papers in the literature focus on distance when optimizing vrps [16,
18, 19], Tromsø and Karlsøy municipalities are characterized by tall mountains,
islands, steep residential areas, and dispersed settlements. This intricate land-
scape poses challenges for route optimization, rendering distance-based ap-
proaches ineffective in achieving optimal results. To facilitate sustainable solu-
tions, we hypothesize that the landscape and topology need to be taken into
account in order to lower the fuel consumption of the Remiks vehicles.

1.3 Contributions

We propose to solve the vrp in this challenging setting by extending the DPDP
algorithm introduced by Kool et al. (2021) [1] to minimize fuel consumption.
We evaluate the method on the real-world data provided by Remiks. Our pri-
mary objective is to minimize the total fuel consumption of the vehicle rather
than focusing on the distance. As training the model from scratch using the
provided Remiks data would be time-consuming and require labels, we transfer
the learned policies from Joshi et al. (2019) [20] and Kool et al. (2021) [1],
inspired by Joshi et al. (2022) [15].

In this project, we aim to:

1. Incorporate a formula for calculating fuel consumption using real dis-
tances and elevation matrices obtained through the Google Maps com-
mercial API [21].

2. Extend the DPDP algorithm introduced by Kool et al. (2021) [1] to mini-
mize fuel consumption.

3. Evaluate and compare the obtained routes with the routes currently em-
ployed by Remiks.
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1.4 Outline

The rest of this thesis is outlined as follows:

Part I - Background In Part I, we create a foundation for the approach
proposed in Part II. In Chapter 2, "Graph-Based Operational Research," the tsp
and vrp will be formally introduced. Also, we will present some commonly
used solution methodologies for solving optimization problems using or tech-
niques. Chapter 3, "Fundamentals of Neural Networks: Building Blocks and
Key Concepts," provides the foundations of fully connected neural networks. In
Chapter 4, "Graph Convolutional Neural Networks," we move into Graph Convo-
lutional Networks and their characteristics. Chapter 5, "Green Vehicle Routing
Problem," introduces the Green vrp and describes how fuel consumption and
environmental considerations are accounted for in the literature.

Part II - Method and data In Part II, we present the data and the method
utilized for the experiments presented in Part III. Chapter 6 introduced the
proposed method for measuring fuel consumption for Waste vehicles. Further,
this method is used to optimize the routes of Remiks according to the dpdp
framework. Chapter 7, "Data Gathering and Augmentations", describes the
dataset used for the optimization and the parameters used.

Part III - Results andconclusion Part III consists of results, discussion, and
conclusion. Chapter 8, "Results", displays the obtained results of the proposed
algorithm. Chapter 9, "Discussion and Future Work" evaluates and discusses
the results. Lastly, Chapter 10, "Concluding Remarks," summarizes this thesis’s
contributions and reflects on future directions.
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Background
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2
Graph-Based Operational
Research

Graphs provide a powerful framework for modeling and analyzing complex
systems in operational research. By representing entities as nodes and their
relationships as edges, graph-based approaches enable researchers and prac-
titioners to gain valuable insights into decision-making processes, resource
allocation, and optimization problems. This chapter explores the intersection
of graphs and operational research, highlighting the potential of graph theory
in addressing operational challenges. Parts of this Chapter are based on initial
research performed during the author’s preliminary project [22].

Operational research is a broad field that encompasses research on operations
in all kinds of organizations. Using mathematical and statistical methods, opera-
tional research can help organizations make better decisions, allocate resources
more efficiently, and improve overall performance [23]. Effective routing and
resource utilization are essential in order to minimize fuel consumption and
greenhouse gas emissions [24].

Graph theory, as a branch of mathematics, offers a versatile toolset for capturing
and analyzing intricate relationships, dependencies, and interactions between
components within operational systems [25].

7



8 chapter 2 graph-based operational research

2.1 Operational research

Operational research provides valuable insights into the object being modeled,
enabling experimentation and trial without the risk of real-world consequences.
Algebraic symbolism is frequently employed in operational research to con-
struct models that reflect the internal relationships within an object or use
case.

When using mathematical models to model real-world relationships, it is critical
to utilize the mathematical model as a means to gain decision insight, rather
than relying solely on it to make decisions [26]. Additionally, it is essential to
verify and evaluate the simplifications and calculations that are being used.

Figure 2.1: Flow chart of a mathematical model. The approach is based on the method-
ology described by Greefrath and Vortholer [27].

Figure 2.1 depicts the approach utilized to simplify Remiks’ fuel minimization
Waste Vehicle Routing Problem into an optimization problem. Themethodology
follows the framework described by Greefrath and Vortholter (2016) [27].

Mathematical models generally consist of several components, including input
data, an objective function, constraints, and decision variables [27]. Input data
serves as the foundation of information upon which decisions are based and is
predetermined. The objective function defines the aim of the optimization and
determines whether decision variables (𝑥1, 𝑥2, ..., 𝑥𝑛) should be minimized or
maximized. Examples of objective functions include maximizing profit, mini-
mizing cost or maximizing net present value. Constraints, expressed as equality
or inequality equations, place limitations on decision variables and establish
the relationship between supply and available resources. For example, a vehicle
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may have an upper weight limit that restricts how much it can load before re-
turning to the depot. The goal of optimization problems is to identify optimal
values for decision variables that maximize or minimize the objective func-
tion [23]. Figure 2.2 illustrates the interplay between input data, the objective
function, constraints, and decision variables.

Figure 2.2: Main inputs in a mathematical model. The input data is fed into the model.
The constraints are applied to the input data in order to find the decision
variables that optimize the objective function.

2.1.1 Linear and Mixed Integer Programming

Linear programming is a mathematical approach utilized to optimize the dis-
tribution of resources among competing activities. Its objective is to discover
an optimal solution by constructing a mathematical model that represents the
problem at hand. All mathematical functions in a linear programming prob-
lem must be linear in nature [28]. One widely employed technique for solving
linear programming problems is the Simplex algorithm [29]. This algorithm
focuses on determining solutions situated at the corner points of the feasible
region, known as Corner-Point Feasibles (cpfs).

The Simplex algorithm initiates from an arbitrary vertex and iteratively exam-
ines whether any neighboring vertex can enhance the optimal solution. If an
admissible vertex produces a better value for the objective function, the solu-
tion adopts that value. In the event that no adjacent vertices can improve the
objective function, the algorithm concludes that the current vertex represents
the optimal solution [28].

When a problem requires only a subset of variables to be integers, it is referred
to as a Mixed Integer Programming (mip). This technique is commonly em-
ployed for problems involving interdependent binary decisions that can be rep-
resented by binary variables [23]. The branch-and-bound method [30] is often
utilized to solve binary integer programming problems. This method involves
decomposing the original problem into smaller, more manageable subproblems,
a process known as branching [31]. The subproblems are then solved using a
relaxation of the problem. The most frequently used relaxation technique for
mip involves specifying certain variables as integers and applying the Simplex
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method to solve the linear programming relaxation of the problem [23].

A subproblem is dismissed from further consideration if [23]:

• The Linear Programming (lp) relaxation has no feasible solutions,

• The solution of the subproblem is worse than the current best solution,

• The current best solution gets replaced if the proposed solution is supe-
rior.

The iterations end when there are no remaining subproblems that have not
been explored. Then, the current best solution is optimal.

2.1.2 Dynamic programming

Dynamic programming is a powerful mathematical technique used to solve
problems that require a series of interconnected decisions and that can be di-
vided into overlapping subproblems. This approach uses a bottom-up strategy
to address subproblems by initially solving equations with the smallest math-
ematical value and then working upwards. The solutions obtained from the
subproblems can then be utilized to solve larger subproblems. Richard Bellman
developed dynamic programming in the 1950s [32].

Dynamic programming involves determining necessary decisions at each time
step based on the current state of the system. The key features that define
dynamic programming include dividing the problem into stages, associating
each stagewith a set of possible system conditions, and transforming the current
stage into a stage associated with the next stage based on policy decisions [23].
The stages are visualized in Figure 2.3. The goal of Dynamic Programming is
to find an optimal policy for the entire problem.

Dynamic programming provides a policy description of what to do under every
possible circumstance. Given the current state, the optimal policy for the re-
maining stages is independent of the policy decisions made in previous stages.
The solution procedure starts by finding the optimal policy for the last stage
and then moves backward, stage by stage, to find the optimal policy for each
preceding stage. A recursive relationship identifies the optimal policy for each
stage.

The Traveling Salesman Problem (tsp) can be considered a multistage decision
problem. For a tour to be optimal, it must have a minimum total length. Let
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Figure 2.3: Problem suitable for dynamic programming. Starting from the upper node,
the problem can easily be divided into smaller subproblems based on the
decision made at each stage.

us denote 𝑓 (𝑖 : 𝑗1, 𝑗2, ..., 𝑗𝑘 ) as the length of the shortest tour path starting
from location 0 and ending at location i, while ensuring that nodes 𝑗1, 𝑗2, ..., 𝑗𝑘
are visited exactly once along the path. We define 𝑑𝑖 𝑗 as the distance between
the ith and jth cities. Hence, the tour of the minimum length can be defined
as:

𝑓 (𝑖; 𝑗1, 𝑗2, · · · , 𝑗𝑘 ) = min
1≦𝑚≦𝑘

{
𝑑𝑖 𝑗𝑚 + 𝑓 (𝑖; 𝑗1, 𝑗2, · · · , 𝑗𝑚−1, 𝑗𝑚+1, · · · , 𝑗𝑘 )

}
(2.1)

This equation can be generalized into the equation:

𝑓 (𝑖; 𝑗) = 𝑑𝑖 𝑗 + 𝑑 𝑗0. (2.2)

Using Equation 2.2, we obtain 𝑓 (𝑖; 𝑗1, 𝑗2, · · · , 𝑗𝑛), and through Equation 6.1, we
get 𝑓 (𝑖; 𝑗1, 𝑗2) until 𝑓 (0; 𝑗1, 𝑗2, · · · 𝑗𝑛) is obtained. The sequence of valuesm that
results in the minimum value of Equation 6.2 provide the shortest path.

Dynamic programming’s policy is to optimize the score function, which is ex-
pressed as 𝑠𝑐𝑜𝑟𝑒 = ℎ𝑒𝑎𝑡 + 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 . The heated term represents the cost of
the edges included in the solution, while the potential term estimates the cost
of the unvisited nodes based on the remaining edges. We initiate our calcula-
tion at the bottom stage of the graph where all information is readily available.
From there, we can systematically compute the heat and potential values for
the entire graph [23].

While dynamic programming is a highly effective technique for solving prob-
lems that involve interconnected decisions, it may suffer from poor scalability
in certain circumstances. This is because the number of subproblems that need
to be solved rapidly increases as the size of the problem grows. As a result, the
computational time required to solve the problem may become prohibitively
large, rendering dynamic programming impractical [23].
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Figure 2.4: Visualization of dynamic programming. 𝑑𝑖, 𝑗 is the cost of going from the
current node to the next. 𝑑 𝑗,0 represents the lowest cost of going from the
net node to the depot, i.e., the potential.

In Chapter 6, a Graph Convolutional Neural Network will be utilized in order
to simplify a dynamic programming problem.

2.2 The Traveling Salesman Problem

The tsp is a special case of the vrpwhere only one vehicle is available [23]. It is
a classic problem in operational research that greatly benefits from graph theory.
The tsp involves finding the shortest possible route that allows a salesperson
to visit a set of cities and return to the starting point while visiting each city
exactly once [26]. The problem is visualized in Figure 2.5. This seemingly
simple problem is known to be NP-hard, meaning that as the number of cities
increases, the computational complexity grows exponentially [2].

The problem is defined on a graph 𝐺 = (𝑁,𝐴), with a cost 𝑐𝑖 𝑗 for every arc
(𝑖, 𝑗)𝜖𝐴,

𝛿𝑖, 𝑗 =

{
1 if the tour goes from 𝑖 to 𝑗 direct
0 otherwise.

Williams (2013) book Model Building in Mathematical Programming [26] used
the following notations to describe the tsp:
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Figure 2.5: traveling salesman problem. The salesman starts from home and has to
visit all cities before returning to the starting point. The optimal route is
the order of cities that cover the shortest total distance.

The objective of a tsp is to minimize the objective function,

𝑚𝑖𝑛.
∑︁
𝑖, 𝑗

𝑐𝑖, 𝑗𝛿𝑖, 𝑗 ,

where 𝑐𝑖, 𝑗 is the cost between node 𝑖 and 𝑗 . Three conditions have to be satis-
fied in a traditional tsp [26]:

1. Exactly one city must be visited immediately after city 𝑖,∑︁
𝑗=0,𝑖≠𝑗

𝛿𝑖 𝑗 = 1, 𝑖 = 0, 1, ..., 𝑛. (2.3)

2. Exactly one city must be visited immediately before city j,∑︁
𝑖=0,𝑖≠𝑗

𝛿𝑖 𝑗 = 1, 𝑗 = 0, 1, ..., 𝑛. (2.4)

3. The optimal route can not contain sub-tours. A sub-tour is a cycle that
does not visit all nodes,∑︁

(𝑖, 𝑗 )𝐶
𝛿𝑖 𝑗 ≤ (|𝐶 | − 1)∀𝐶 ⊲ C is a sub-tour in G. (2.5)

In order to tune the problem for a specific real-world problem, additional con-
straints can be added, or the objective function can be modified.
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2.3 The Vehicle Routing Problem

The objective of the vrp is to determine the optimal delivery routes for a fleet of
vehicles that visit a set of dispersed customers while meeting various constraints
and minimizing costs [33]. Due to the diverse range of constraints that may
be imposed, the vrp plays a critical role in managing various delivery services
and arises in a wide range of different forms.

Figure 2.6: The Vehicle Routing Problem. The salesmen start from the depot and have
to visit all cities before returning to the starting point. The optimal route
is the order of cities that cover the shortest total distance.

In a vrp, the vehicles generally have a fixed capacity expressed as themaximum
weight they can carry and a cost associated with their utilization per distance,
time, or route to prevent the model from employing an infinite number of
vehicles [2].

The Capacited Vehicle Routing Problem (cvrp) is the simplest case of the vrp
where only the capacity constraints are present, introduced by Dantzig and
Ramser in 1959 [34]. The number of vehicles is fixed and decided in advance.
Each node has a demand, and each vehicle has a maximum capacity. The total
demand of a route can not exceed the vehicle’s total capacity [35].

Typical objectives for vrp are minimizing the global transportation cost or
minimizing the number of vehicles required to serve all customers. In the case
of Figure 2.6, an objective could be to minimize the distance traveled to visit
all nodes [36]:

𝑚𝑖𝑛
∑︁
(𝑖, 𝑗 )𝜖𝐴

𝑐𝑖 𝑗

∑︁
𝑙𝜖𝐾

𝑥𝑖 𝑗 (2.6)

Where:
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𝐺 = (𝑉 ,𝐴) is a directed graph,
𝑉 = 0, ...., 𝑛 is the set of nodes,
𝐴 = (𝑖, 𝑗) |𝑖, 𝑗𝜖𝑉 , 𝑖 ≠ 𝑗 is the set of arcs,
𝑐𝑖 𝑗 is the cost associated with arc(i, j)𝜖𝐴, for instance distance,
𝑥𝑖 𝑗𝜖 (0, 1) = 1, only if a vehicle uses the arc (i,j)𝜖𝐴,

Typical constraints for a traditional vrp are the following [2]:

1. Each customer node in a route is connected to two other nodes,∑︁
𝑗𝜖𝛿+(𝑖 )

= 1,
∑︁

𝑖𝜖𝛿−( 𝑗 )
= 1. (2.7)

2. Exactly K routes are constructed,∑︁
𝑗𝜖𝛿+(0)

𝑥0𝑗 = |𝐾 |. (2.8)

3. The capacity of the vehicles is not exceeded,∑︁
(𝑖, 𝑗 )𝜖𝛿+(𝑆 )

𝑥𝑖 𝑗 ≥ 𝑟 (𝑆) . (2.9)

In a vrp, a given number of vehicles will start from the depot and collectively
visit all nodes at the minimum total cost.

2.4 Solution methodologies

Solving the Vehicle Routing Problem (VRP) and its variants is known to be NP-
hard, which implies that finding an exact solution would require exponential
time since no polynomial-time algorithm exists [2]. To tackle this challenge, ex-
act methods approach the VRP as integer or mixed-integer programs to identify
near-optimal solutions. However, due to the typically large scale of real-time
VRPs, heuristic-based methods are often considered more suitable [8]. More
than 70% of the solution methods found in the literature are based on meta-
heuristics, which offer the advantage of escaping from local minimums but
cannot guarantee optimality [37, 38].

Three general types of solutions to vrp have been presented in the litera-
ture:
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Exact algorithms An exact algorithm can find the optimal solution, but its
heavy mathematical programming makes it only suitable for small-sized
problems [12]. Exact algorithms are typically based on Integer Linear Pro-
gramming (ilp), dynamic programming, or branch-and-bound program-
ming [39]. Linear programming involves optimizing a linear function
subject to various constraints. Dynamic programming is a useful math-
ematical technique for making a sequence of interconnected decisions.
Branch-and-bound programming is frequently used to solve mip [31].

Heuristic algorithms A classical heuristic algorithm is an experience-based
technique for finding solutions through a series of iterative processes.
The improvement steps in the approach always descend [39], meaning
that the following solution is consistently better than the previous one.
It requires a relatively short execution time but does not guarantee the
solution’s optimality [12].

Metaheuristics Metaheuristics are random-based algorithms for exploring
possible solutions in a large range [12]. Metaheuristics consist of first
generating a family 𝑅′ of feasible routes and then solving the formula-
tion over 𝑅′ rather than the full set of R. The success of the algorithm
depends on the quality of the generated routes. In contrast to exact and
heuristic algorithms, meta-heuristics allow for non-improving and infea-
sible intermediate solutions [39].

A great variety of metaheuristic schemes have been put forward. They can
broadly be classified into three categories:

• A local search heuristic forms an initial solution 𝑠0 (which may be in-
feasible) and moves at each iteration 𝑡 from a solution 𝑠𝑡 of value 𝑓 (𝑠𝑡 )
to another solution located in the neighborhood 𝑁 (𝑠𝑡 ) on 𝑠𝑡 . The neigh-
borhood 𝑁 (𝑠𝑡 ) consists of all solutions that can be reached from 𝑠𝑡 by
applying a given type of transformation, for example, relocating a ver-
tex from its current route into another route. The search ends with the
best-known solution 𝑠′ after a stopping criterion has been satisfied [39].

• Genetic algorithms evolve a population of solutions through mutation.
In the context of vrp, The Hybrid Genetic Algorithm [40] has been pro-
posed to transform the routing problem into a tsp by removing the
factor of multiple vehicles. The problem is optimized, then the vrp solu-
tion is reconstructed at the end of the process [39]. Rochat and Taillard
(1995) [41] presented an algorithm that takes the best solutions found us-
ing the Tabu search algorithm [42] and recombines them using crossovers
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and local search to provide even better solutions [39].

• Ant colony optimization and neural networks are two examples of learn-
ing mechanisms. Ant colony optimization heuristics attempt to mimic
the behavior of ants who detect paths containing pheromones and strengthen
them with their pheromones [23]. In meta-heuristics, the pheromones
represent the system’s memory and correspond to edges often appearing
in suitable solutions. Thus, the algorithm remembers good edges and is
more likely to include them in a solution [39]. Neural Networks (nn)
were applied for operational research for the first time by Hopfield and
Tank in 1985 [43], in the form of a Hopfield network, to solve a simple tsp
problem. In recent times, neural networks for optimization have gained
significant prominence, and techniques such as Attention [13], LSTM [44],
and Reinforcement Learning [45] have been suggested. Chapter 4 will
introduce gnn and how they can be employed to solve routing problems.

Metaheuristic optimization methods are a good choice for solving vrp for sev-
eral reasons. These complex problems have large solution spaces, making exact
methods inefficient. Metaheuristic methods offer efficient search strategies to
navigate the solution space and provide near-optimal solutions for large-scale
instances. They also handle nonlinear relationships and constraints in VRP
and TSP and balance solution quality and computational efficiency [46]. Ad-
ditionally, metaheuristic methods are adaptable to real-world dynamics, can
handle problem variants and extensions, and are practical for real-world appli-
cations.

2.5 Abstractions and Simplifications

Mathematical optimization is a robust tool that effectively tackles intricate prob-
lems [38]. However, it is essential to acknowledge that optimization models are
mathematical abstractions of real-world problems. They assist decision-making
by offering a systematic framework to allocate resources, enhance efficiency, re-
duce costs, or attain desired objectives. It is important to understand that these
models should be utilized as a basis for decision-making rather than treated as
absolute truths.

Two primary approaches have been employed in the literature to simplify
real-world problems into or frameworks: the top-down approach and the
bottom-up approach [47].

The top-down approach involves initiating the modeling process with a high-
level understanding of the problem [23]. It entails identifying overall objectives,
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constraints, and key decision variables. The model is then decomposed into
sub-problems, gradually refining the model by incorporating more detailed in-
formation. This approach emphasizes a global perspective and aims to capture
the system’s overall behavior. It is particularly useful for complex problems that
require a holistic understanding.

In contrast, the bottom-up approach starts with detailed information about
individual components or subsystems of the system. It models the specific in-
teractions and constraints within each component and subsequently integrates
them to form a comprehensive model [23]. This approach is beneficial when
the system’s behavior emerges from the interactions of its individual parts. It
allows for a more detailed analysis of local behaviors and their impact on the
overall system.

Both approaches have their strengths and weaknesses. The top-down approach
is beneficial for comprehending the overall system dynamics and capturing
global patterns and behaviors. However, it may oversimplify or overlook local
details that could impact the system’s behavior. The bottom-up approach is
valuable for capturing detailed interactions and behaviors, but it may struggle
to incorporate the broader system-level constraints or objectives.

For the simplification of the Remiks problem, the top-down approach has been
used. This approach offers insights into how Remiks operate and identifies
their needs.

Metrics As a decision maker, evaluating and verifying the solution provided
by an operational research algorithm is essential. In their work, Vidal and La-
porte (2019) [48] identified seven key categories of metrics that should be con-
sidered to generate an optimized route feasible for practical applications.

The following is a summary of the seven metrics:

Profitability Cost optimization or profit maximization is typically the primary
objective of most vrp studies. Profit can be optimized to maximize fleet
utilization or the efficiency of the performed task.

Service quality High-quality service is essential for maintaining clients. This
involves ensuring that vehicles arrive on time if there are time window
restrictions. To ensure service quality, it is important to ensure that the
routes are robust to unforeseen events.

Equity Workload balance for vehicles and employees is essential to maintain
employee satisfaction and prevent resource utilization bottlenecks. In
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a vrp, work equity can be implemented by ensuring that all vehicles
perform the same amount of work or use the same amount of time.

Consistency Drivers perform better and drive more safely if they are familiar
with their route. In the case of Remiks, all households must be visited once
a week on the same day. The Remiks drivers state that their customers
expect their bins to be emptied simultaneously. Hence, the consistency
and reliability of the routes are important.

Simplicity Route plans should be easy and intuitive, with geographically dis-
tinct routes facilitating coordination. Rossit et al. (2019) emphasize that
compact, non-overlapping, and incomplex routes are desirable to gener-
ate visually attractive routes [49]. Further, they state that visually attrac-
tive routes require less explanation and training for the drivers to use
and enhance the acceptance among drivers and customers.

Reliability It is crucial to account for uncertainties and ensure that the chosen
path remains viable even in unforeseen circumstances, such as unex-
pected traffic congestion or road closures.

Externalities Traditional cost-minimization objectives based on distance or
time may not lead to minimal emissions or consumption, so other met-
rics must be considered to achieve a "green" vrp. Other examples of
externalities to consider are safety risks and traffic.

The evaluation metrics indicate that achieving the highest cost-effectiveness
alone may not always suffice for an optimal route plan. Organizations strive
to optimize operational robustness [50], minimize overtime and delays [51],
and accomplish various other objectives. In many scenarios, it is necessary to
address multiple objectives concurrently, thereby tackling multiple objective
problems.

One way of doing this is to incorporate one of the objectives as constraints.
This would be desirable for a routing problem where one wishes to minimize
driving distance as long as the fuel consumption does not exceed a specific
number. Another way of tackling multiple objectives is to take a suitable linear
combination of all the objective functions and optimize that. This approach
would require relative weighting between the parameters [23].
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2.6 Challenges

As mentioned in the previous section, or models rely on simplifications, and
excessive simplifications can lead to inaccuracies in representing reality.

The mathematical complexity of the vrp poses another challenge for OR. The
vrp is classified as an NP-hard problem, implying that as the problem size in-
creases, finding the exact solution becomes exponentially time-consuming [23].
For large-scale vrp instances, it may be impractical to obtain the optimal solu-
tion.

Considering these challenges, neural networks offer advantages in solving op-
timization problems. They excel in capturing complex and nonlinear relation-
ships among variables,making themwell-suited for optimization problems with
high-dimensional input spaces and numerous constraints [52]. Furthermore,
neural networks can adapt and generalize to new problem instances, learn
from data to provide accurate and efficient solutions, and leverage parallel
computing architectures for faster optimization.

In the context of Remiks route optimization, a neural network approach is em-
ployed to constrain the search space for a dynamic programming optimization
algorithm. Chapter 3 will provide a brief introduction to neural networks and
their mechanisms.



3
Fundamentals of Neural
Networks: Building Blocks
and Key Concepts
Machine learning aims to develop algorithms that optimize performance based
on example data or prior knowledge, using statistical methods to identify rela-
tionships and patterns in training data [7].

Neural networks distinguish themselves from traditional machine learning
algorithms by their capability to extract high-level features from data with
minimal human intervention. During training, neural networks autonomously
discover dependencies, allowing for a more automated and efficient learning
process [53].

This chapter will describe the foundation of neural networks and provide an
introduction to relevant mechanisms and concepts.

3.1 Fundamentals of Neural networks

Neural networks exhibit diverse architectures tailored to specific problem do-
mains. In a feedforward neural network, neurons are organized into layers,

21
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with each layer receiving input from the preceding layer and generating out-
put for the subsequent layer. The input layer serves as the initial layer, followed
by hidden layers that perform computations to facilitate accurate predictions,
ultimately leading to the output layer.

Figure 3.1: An example of a multilayer perception with two hidden layers, x denotes
the input layer, and h denotes the hidden layers. The predictions or classi-
fications happen at the layer y.

The perceptron is a simple neural network structure that can be used for clas-
sification and regression [53]. The structure of the perceptron is important, as
it lays the foundation for the structure of deeper neural networks. Figure 3.1
represents a multilayer perceptron with two hidden layers.

The input x is applied an activation function in the forward direction to calculate
the hidden units h. Each hidden unit in the perceptron is a perceptron by itself
and applies a nonlinear activation to its weighted sum. Activation functions will
be described further in Section 3.1.3.

Figure 3.2: Visualization of the neuron with n inputs. The neuron receives input from
the previous layer, calculates the sum of the signals multiplied by their
respective weights, and then applies the activation function to the resulting
value.
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Figure 3.2 visualize what is happening within an arbitrary neuron in the archi-
tecture of Figure 3.1. Multilayer perceptrons can implement nonlinear discrim-
inants and approximate nonlinear functions of the input [54].

Layers in neural networks are groups of interconnected units. These layers
are arranged in a sequential structure, with each layer being a function of the
previous layer. In a fully connected layer, every feature in layer 𝑙 directly affects
every feature in layer 𝑙 + 1.

In general, fully connected layers in a neural network are expressed as [54]:

h(0) = 𝑥,
h(1) = 𝑔 (1) (w(1)𝑇 y(0) + b(1) ),
h(2) = 𝑔 (2) (w(2)𝑇 y(1) + b(2) ),

...

y(𝑙 ) = 𝑔 (𝑙 ) (w(𝑙 )𝑇 y(𝑙−1) + b(𝑙 ) )

Where,

x ∈ R𝐹𝑜×1 is the feature input to the model.

𝑙 = 1, 2, 3, ....𝐿 is defined as the number of layers in the network.

h(𝑙 ) ∈ R𝐹𝑙×1 is the hidden state feature vector at the l-th layer.

w(𝑙 ) ∈ R𝐹𝑙×𝐹𝑙−1 is the weight matrix.

𝐹𝑙 is the dimension of the vectors and is equal to the number of neurons in
each layer.

y represents the final prediction that is performed based on the previous cal-
culations.

𝑔 represents the activation function that allows the neural network to model
complex nonlinear dependencies. Activation functions will be described
further in section 3.2.4.



24
chapter 3 fundamentals of neural networks: building blocks and

key concepts

Having described these parameters, we are ready to explore further how this
structure can be used for training.

3.2 Training a perceptron

To evaluate the performance of a neural network, objective functions are em-
ployed. These functions take the network’s prediction as input and generate a
measure of the prediction’s performance. Further, the network’s weights and bi-
ases can be adjusted to optimize the value objective function, aiming to achieve
the best attainable value.

In this section, the mechanisms that are used to perform these adjustments
effectively are introduced.

3.2.1 Gradient Descent

One of the most commonly used methods for improving a network’s weights
and biases is Gradient Descent [54]. The starting point of the gradient descent
algorithm is an arbitrary point on the objective function. From there, the steep-
ness of the slope is measured using a tangent. The goal of the algorithm is to
minimize the objective function or the error between the predicted and actual
y-value [55]. When the weights and the biases are updated, the slope of the
function should be gradually slighter until we arrive at a global or local mini-
mum or maximum. Figure 3.3 visualize these parameters.

The learning rate is an important hyperparameter for gradient descent that
specifies the size of the step taken during each parameter update [54]. The
learning rate can be chosen through trial and error or by monitoring learning
curves that plot the objective function over time.

Algorithm 1 describes how the weights are updated when optimizing using
gradient descent.

The update function takes the gradients as input and adjusts the weights of
the network. The basic iteration step is on the form

𝜃𝑟𝑗 (𝑛𝑒𝑤) = 𝜃𝑟𝑗 (𝑜𝑙𝑑) + Δ𝜃𝑟𝑗 (3.1)
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Figure 3.3: Visualization of gradient descent. 𝜃0 is the initial weight and the starting
point on the optimization function. The arrows represent the step size 𝜇.
The objective of gradient descent is to reach the global cost minimum of
the objective function.

Algorithm 1 Gradient descent with respect to parameter 𝜃
Input: Initial parameter guess 𝜃0 and a learning rate 𝜇 ∈ |R|

while minimum is not reached do

Δ𝜃𝑟𝑗 = −𝜇 ∗
𝜕𝐸

𝜕𝑤𝑟
𝑗

, ⊲ E is the objective function

𝜃𝑟𝑗 (𝑛𝑒𝑤) = 𝜃𝑟𝑗 (𝑜𝑙𝑑) + Δ𝜃𝑟𝑗

Result: 𝜃𝑚𝑖𝑛 ← 𝜃𝑖+1

where

Δ𝜃𝑟𝑗 = −𝜇 ·
𝜕𝐸

𝜕𝑤𝑟
𝑗

, (3.2)

𝜃𝑟𝑗 (𝑜𝑙𝑑) is the current estimate of the unknown weights and Δ𝜃𝑟𝑗 is the corre-
sponding correction to obtain the next estimate 𝜃𝑟𝑗 (𝑛𝑒𝑤).
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Now, a method for estimating Δ𝜃𝑟𝑗 is required.

3.2.2 Backpropagation

Gradient descent requires a learning rate and a gradient of error. While the
learning rate often is decided through trial and error, the gradient is calculated
using backpropagation [53]. Backpropagation leverages the layer structure of
neural networks to calculate the gradients of the weights for each layer sequen-
tially [54]. By utilizing the chain rule of differentiation [56], the weights can
be updated layer by layer. The backpropagation algorithm facilitates the flow
of information from the cost function, propagating it back through the network
to calculate the gradient necessary for learning and performing gradient de-
scent [53].

Figure 3.4 visualize the variables involved in backpropagation. 𝑣𝑟𝑗 represents
the weighted summation of the inputs to the 𝑗 th neuron of the 𝑟 th layer, and
𝑦𝑟𝑗 represents the corresponding output after the activation function.

Figure 3.4: Visualiation of the variables involved in backpropagation. 𝑣𝑟𝑗 is the
weighted summation of the inputs to the 𝑗 th neuron of the 𝑟 th layer, and
𝑦𝑟𝑗 is the corresponding output after the activation function.

The gradient of error, Δ𝜃𝑟𝑗 , can be calculated for all layers using the formu-
las of Algorithm 2. The mathematical formulations will be further described
below.
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Algorithm 2 The Backpropagation Algorithm
Require: Init all weights with random small values.

function Forward Propagation(i,j)
for all 𝑥 (𝑖), 𝑖 = 1, 2, ..., 𝑁 do

Compute all 𝑣𝑟𝑗 (𝑖), 𝑦𝑟𝑗 (𝑖) = 𝑓 (𝑣𝑟𝑗 (𝑖)), 𝑗 = 1, 2, ..., 𝑘𝑟 , 𝑟 = 1, 2, ..., 𝐿

Compute cost function for the current weight

function Backward propagation(i,j)
for each 𝑖 = 1, 2, ..., 𝑁 and 𝑗 = 1, 2, ..., 𝑘 : 𝑙 do

Compute 𝛿𝐿𝑗 (𝑖)
Compute 𝛿𝑟−1𝑗 (𝑖) for 𝑟 = 𝐿, 𝐿 − 1, ..., 2 and
𝑗 = 1, 2, ..., 𝑘𝑟

function Update the weights(r,j)
for 𝑟 = 1, 2, ..., 𝐿 and 𝑗 = 1, 2, ..., 𝑘𝑟 do

𝜃𝑟𝑗 (𝑛𝑒𝑤) = 𝜃𝑟𝑗 (𝑜𝑙𝑑) + Δ𝜃𝑟𝑗
Δ𝜃𝑟𝑗 = −𝜇

∑𝑁
𝑖=1 𝛿

𝑟
𝑗 (𝑖)𝑦𝑟−1(𝑖)

From Equations 3.1 and 3.2, which describe the basic iteration step of back-
propagation, we define all objective functions on the form

𝐸 =

𝑁∑︁
𝑖=1

𝜖 (𝑖), (3.3)

where 𝜖 is an approximated function dependent on 𝑦 (𝑖) and 𝑦 (𝑖), 𝑖 = 1, 2, ...𝑁 .
E is expressed as a sum of the N values that function 𝜖 takes for each of the
training pairs (𝑦 (𝑖), 𝑥 (𝑖)). 𝜖 (𝑖) can, for instance, be the sum of squared errors
of the output neurons.

By defining
𝜕𝜖 (𝑖)
𝜕𝑣𝐿
𝑗
(𝑖)
≡ 𝛿𝑟𝑗 (𝑖) (3.4)

Equation 3.2 become

Δ𝜃𝑟𝑗 = −𝜇
𝑁∑︁
𝑖=1

𝛿𝑟𝑗 (𝑖)𝑦𝑟−1(𝑖), (3.5)
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and describes the change in the objective function for any differentiable objec-
tive function on the form (3.3).

Further, the backpropagation algorithm calculates the value of 𝛿𝑟𝑗 (𝑖) by prop-
agating backwards from 𝑟 = 𝐿 and propagate backwards for the values 𝑟 =

𝐿 − 1, 𝐿 − 2, ..., 1.

For the last layer where r = L, we have that:

1. 𝑟 = 𝐿

𝛿𝐿𝑗 (𝑖) =
𝜕𝜖 (𝑖)
𝜕𝑣𝐿
𝑗
(𝑖)

(3.6)

𝜖 (𝑖) ≡ 1
2

𝑘𝐿∑︁
𝑚=1

𝑒2𝑚 (𝑖) ≡
1
2

𝑘𝐿∑︁
𝑚=1

(
𝑓

(
𝑣𝐿𝑚 (𝑖)

)
− 𝑦𝑚 (𝑖)

)2
(3.7)

Hence
𝛿𝐿𝑗 (𝑖) = 𝑒 𝑗 (𝑖) 𝑓 ′

(
𝑣𝐿𝑗 (𝑖)

)
where 𝑓 ′ is the derivative of 𝑓 (·). In the last layer, the dependence of 𝜖 (𝑖)
on 𝑣𝐿𝑗 (𝑖) is explicit, and the computation of the derivative is straightfor-
ward. For hidden layers, the computations of the derivatives need more
elaboration [54].

For the previous layers, we have that:

2. 𝑟 < 𝐿. Due to the successive dependence among the layers, the value 𝑣𝑟−1𝑗 (𝑖)
influences all 𝑣𝑟

𝑘
(𝑖), 𝑘 = 1, 2, . . . , 𝑘𝑟 , of the next layer. Employing chain

rule in differentiation, we obtain

𝜕𝜖 (𝑖)
𝜕𝑣𝑟−1
𝑗
(𝑖)

=

𝑘𝑟∑︁
𝑘=1

𝜕𝜖 (𝑖)
𝜕𝑣𝑟
𝑘
(𝑖)

𝜕𝑣𝑟
𝑘
(𝑖)

𝜕𝑣𝑟−1
𝑗
(𝑖)

= 𝛿𝑟−1𝑗 (𝑖) =
𝑘𝑟∑︁
𝑘=1

𝛿𝑟
𝑘
(𝑖)

𝜕𝑣𝑟
𝑘
(𝑖)

𝜕𝑣𝑟−1
𝑗
(𝑖)
, (3.8)

From the definition of Equation 3.4

𝜕𝑣𝑟
𝑘
(𝑖)

𝜕𝑣𝑟−1
𝑗
(𝑖)

=

𝜕

[∑𝑘𝑟−1
𝑚=0 𝜃

𝑟
𝑘𝑚
𝑦𝑟−1𝑚 (𝑖)

]
𝜕𝑣𝑟−1
𝑗
(𝑖)

(3.9)
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with

𝑦𝑟−1𝑚 (𝑖) = 𝑓
(
𝑣𝑟−1𝑚 (𝑖)

)
(3.10)

Hence,

𝜕𝑣𝑟
𝑘
(𝑖)

𝜕𝑣𝑟−1
𝑗
(𝑖)

= 𝜃𝑟
𝑘 𝑗
𝑓 ′

(
𝑣𝑟−1𝑗 (𝑖)

)
(3.11)

From (3.10) and (3.8), the following results:

𝛿𝑟−1𝑗 (𝑖) =
[
𝑘𝑟∑︁
𝑘=1

𝛿𝑟
𝑘
(𝑖)𝜃𝑟

𝑘 𝑗

]
𝑓 ′

(
𝑣𝑟−1𝑗 (𝑖)

)
(3.12)

which enables 𝛿𝑟−1𝑗 (𝑖) to be expressed as

𝛿𝑟−1𝑗 (𝑖) = 𝑒𝑟−1𝑗 (𝑖) 𝑓 ′
(
𝑣𝑟−1𝑗 (𝑖)

)
(3.13)

where

𝑒𝑟−1𝑗 (𝑖) =
𝑘𝑟∑︁
𝑘=1

𝛿𝑟
𝑘
(𝑖)𝜃𝑟

𝑘 𝑗
.

Now Δ𝜃𝑟𝑗 can be calculated using Equation 3.5.

To summarize, backpropagation involves calculating the gradients of the loss
function concerning the network’s weights and biases. These gradients indicate
how each weight and bias should be adjusted to minimize the prediction error.
By iteratively updating the weights and biases based on these gradients, the
network learns from its mistakes and improves its accuracy through gradient
descent.

3.2.3 The Vanishing and Exploding Gradient problems

The vanishing gradient problem is a common issue that arises during the train-
ing of deep neural networks. It occurs when the gradient values become very
small during gradient descent. As a result, the weights of the early layers are
updated very slowly or not at all, which can cause these layers to become inef-
fective in the learning process [57].
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Similarly, the model’s training becomes unstable when the gradient values be-
come very large. This problem is called the exploding gradient problem.

To address these issues, several techniques have been developed, including
the use of activation functions with higher gradients [58], proper initialization
of network weights [54], normalization techniques such as batch normaliza-
tion [54], and the integration of skip connections to allow gradients to bypass
specific layers [57].

3.2.4 Activation function

Previously, activation functions were introduced as a function applied to the
neurons in the hidden layer of a neural network. In this section, we will dive
further into activation functions.

An activation function is a mathematical operation that acts on the activation
level of a neuron to decide its activity. It takes the sum of the input signals and
transforms it into an output value, which is then forwarded to the subsequent
neural network layer. Acting as a transfer function, the activation function
computes calculations within each neuron [58].

The activation function primarily aims to introduce nonlinearities to the neural
network to model nonlinear relationships [54].

ReLU, Tanh, and Softmax are three commonly used activation functions in
neural networks.

Sigmoid

Figure 3.5: The sigmoid activation function.
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The sigmoid activation function is widely used in neural networks, particularly
for binary classification tasks. It maps any input value to a value between 0
and 1, providing a smooth and continuous transition from the minimum value
to the maximum value. The sigmoid function is defined mathematically as

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) = 1
1 + 𝑒−𝑥 , (3.14)

Where e is the mathematical constant known as Euler’s number, and x is the
input value to the function.

One of the key properties of the Sigmoid function is that it saturates at extreme
input values, where the output values approach either 0 or 1. The gradients of
the Sigmoid function become very small in these regions, leading to the the van-
ishing gradient problem introduced in section 3.2.3. As the gradients diminish,
the neural network encounters challenges in efficiently adjusting the weights
of the lower layers, leading to a decrease in learning speed and a decline in
the overall performance of the model [54].

Tanh

Figure 3.6: The tanh activation function.

The hyperbolic tangent activation function, known as Tanh, is another activa-
tion function. It maps any input value to a value between -1 and 1, providing
a smooth and continuous transition from the negative minimum value to the
positive maximum value [59]. The tanh function is defined mathematically
as
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𝑦 = 𝑡𝑎𝑛ℎ(𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 , (3.15)

where e is the mathematical constant known as Euler’s number, and x is the
input value to the function.

The steepness of the Tanh enables it to respond more strongly to changes in the
input values than, i.e., the Sigmoid. This property can be beneficial, particularly
when training deeper neural networks. However, like the Sigmoid function, the
Tanh function can also suffer from the vanishing gradient problem for large
positive or negative input values.

ReLU

The Rectified Linear Unit (ReLU) is a simple piecewise linear function that
returns the input value if it is positive and 0 otherwise [54].

Figure 3.7: The Rectified Linear Unit activation function.

One of the ReLU function’s main advantages is its simplicity and computation
efficiency. It is computationally cheaper than other activation functions, such
as the sigmoid and hyperbolic tangent functions, which involve expensive ex-
ponential operations.

𝑅𝑒𝐿𝑈 (𝑥) =𝑚𝑎𝑥 (0, 𝑥) (3.16)
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Another advantage of the ReLU function is that it can help mitigate the vanish-
ing gradient problem by producing non-zero gradients for positive inputs [54].

A limitation of the ReLU function is that it can suffer from the "dying neuron"
problem [60], where some of the neurons in the network may become "dead"
and stop producing any output due to a zero gradient. This can happen if the
neurons’ weights are always initialized to produce negative inputs to the ReLU
function, leading to a zero gradient. Several variations of the ReLU function,
such as Leaky ReLU and Parametric ReLU, have been proposed to address this
issue [54].

3.2.5 Batch normalization

In Section 3.2.3, the problem of vanishing and Exploding gradients is intro-
duced. Batch normalization helps prevent these issues. Normalizing activa-
tions through the network prevents small changes to the parameters from
amplifying into more significant and suboptimal changes in activations in gra-
dients [61].

When performing Batch Normalization, the output of the hidden layers is nor-
malized using the mean and variance [56] of the batch before or after apply-
ing the activation function. This transformation leads to faster and smoother
convergence and allows for the utilization of a higher learning rate without
compromising the convergence [62].

3.2.6 Skip connections

Skip connections, commonly called residual connections, avoids the vanishing
gradient problem by preserving the identity 𝑥 from the previous layers. It in-
volves the direct connection of the input from one layer to the output of a
subsequent layer. This connection allows the information to bypass the inter-
mediate layers and be directly propagated forward [63].

The Deep residual learning framework was introduced by He et al. (2015) [64]
as a solution to the degradation problem which occurs when training deep neu-
ral networks. The training gets saturated and degrades rapidly as the depth
increases [64]. Figure 3.8 visualize how the identity 𝑥 is allowed to skip lay-
ers through shortcut connections. The output after the skip connection is the
element-wise addition of the input that has passed through the residual block,
and the identity that has been preserved.
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Figure 3.8: A building block of a residual learning framework.

3.3 Learning paradigms in Neural Networks

By leveraging Neural Networks’ ability to learn from vast amounts of data, the
architectures can process and analyze information, recognize patterns, make
predictions, and even generate creative outputs [59]. Its applications range
from natural language processing to computer vision.

For different tasks, different optimization techniques are required. These can
broadly be categorized into three learning paradigms [7]: supervised, unsu-
pervised, and reinforcement.

Supervised learning happens when the model learns from labeled data. Su-
pervised learning techniques aim to map the input data to the target accuracy,
using the labeled training data as ground truth [7]. Examples of supervised
learning applications are classification [65] and regression [66].

Reinforcement learning involves an agent that interacts with an environment
by taking actions and receiving rewards or penalties in return. The agent aims
to develop a policy that maximizes the total cumulative reward over time. The
agent operates in discrete time steps, observing the current environment state,
selecting actions according to its learned policy, and updating its policy based
on the received reward and chosen action to enhance its decision-making skills
progressively [7].

Unsupervised learning is a learning-based optimization technique for when
there are no labels, mainly used for parameter optimization. The objective is to
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find regularities in the input data. Real-world data often contains valuable but
unexplored information that may not be readily apparent [7]. Unsupervised
learning algorithms aim to extract meaningful insights from such data by iden-
tifying inherent patterns or groupings.





4
Graph Convolutional
Neural Networks

Graphs are used in an increasing number of applications and differ from tradi-
tional machine learning algorithms in that the nodes are related to others by
links of various types [67]. The route optimization problem of Remiks can be
seen as a graph, where the households represent the nodes to be visited, and
the roads or distance between them represent the edges.

gnn are deep learning-based methods that operate on graph domain [25].
They can be seen as a generalization of the classical cnn and as an efficient
tool to extract complex features in 1D, 2D, and 3D.

4.1 Fundamentals of Graph Neural Networks

gnn use the graph structure and node features 𝑋𝑣 to learn a representation
vector of a node ℎ𝑣 or the entire graph ℎ𝐺 . State-of-the-art gnns iteratively
update the representation of a node by aggregating representations of its neigh-
bors. After a given number of iterations, the nodes’ representation captures the
structural information within its network neighborhood [68].

37
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Figure 4.1: Example of how the connectivities in a graph can be visualized in an
adjacency matrix. In this scenario, the adjacency matrix is symmetric.

The connectivities of a graph are exemplified as an adjacency matrix in Figure
4.1. The mapping ensures that each node is mapped to its respective represen-
tation is either mapped to its respective representation [68].

Figure 4.2 presents four types of information found in graphs that can aid in
making predictions: node features, edge features, global context, and connec-
tivity [69]. Node features comprise node identity and the number of neigh-
bors, while edge features encompass edge identity, edge weights, and direction.
Global attributes pertain to the number of nodes and information about the
global paths. A gnn can be defined as an optimizable transformation on all
graph attributes that preserves all graph symmetries [69]. The connectivity
concerns which nodes are linked to each other and remain constant during the
optimization.

Figure 4.2: Overview over graph attributes: Nodes, edges, and global context. A gnn
is an optimizable transformation on all graph attributes that preserves
graph symmetry [69].

The nodes can be used to generate a node feature matrix 𝑁 by assigning each
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node an index 𝑖 and storing the feature for𝑛𝑜𝑑𝑒𝑖 in N. The connectivities can be
stored as adjacency lists. These describe the connectivity of edge 𝑒𝑘 between
nodes 𝑛𝑖 and 𝑛 𝑗 as a tuple (𝑖, 𝑗) in the k-th entry of the adjacency list [69].
In the Remiks use case, the node feature matrix is generated from the node
coordinates, letting the road map represent the connectivities.

4.2 Grapg Neural Network Architecture

The gnn has rapidly emerged as a powerful framework for machine learning
on graph-structured data. This section will dive deeper into the fundamental
building blocks of a gnn.

Figure 4.3: A single layer in a gnn, where f represents the update function. Each
component, U (global), V (nodes), and E (edges), gets updated to produce
a new graph. Each layer n in the gnn represents a separate update func-
tion at a different graph attribute. The figure is inspired from [69].

For each layer in a gnn, an update function is applied to the three attributes
of the graph. The output of this transformation is a new graph with new graph
attributes [69]. Because the connectivity of the input graph is invariant, the
output graph of the gnn can be described with the same adjacency list and the
same number of feature vectors as the input graph. The embeddings, however,
are different.

In order to make predictions on the graph, a final classifier is necessary. De-
pending on what features are available to use for classification, information
can be transferred between attributes. This is performed through pooling op-
erations. The embeddings of the items that are to be pooled are aggregated
into a matrix through, i.e., a sum operation [69], and the classification can be
performed.
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Figure 4.4: A gnn operates by taking an input graph and passing it through a series
of layers, each of which updates the attributes of the graph. The output
graph is then used to make predictions through a final classifier, which is
selected based on the specific optimization goal.

4.3 Graph Convolutional Networks

Message passing and convolution are operations to aggregate and process in-
formation of an element’s neighbors in order to update the element value [69].
Graph convolution differs from image convolution in the way that neighboring
nodes in a graph can be variable, while a pixel has a fixed set of neighboring
elements. Graph Convolutional Networks are an extension of cnn from regular
grids to irregular graphs [70].

Figure 4.5: Comparison between a convolutional operation for a cnn and a gnn.

By stacking message-passing gnn layers together, one node will eventually
capture information from across the entire graph.

Message passing in gnn is a method to make the learned embeddings aware
of the graph connectivity, where neighboring nodes or edges exchange infor-
mation and influence each other updated embeddings [69]. The method can
be summarized in three steps [69].

1. For each node in the graph, the algorithm gathers all the embeddings of
its neighboring nodes, which are represented as messages.

ℎ
(0)
𝑣 = 𝑥𝑣 (4.1)

Node 𝑣 ’s initial embedding is the original feature vector 𝑥𝑣.
For 𝑣 ’s embedding at step k [71]

ℎ
(𝑘 )
𝑣 = 𝑓 (𝑘 )

(
𝜃 (𝑘 ) ·

∑
𝑢∈N(𝑣) ℎ

(𝑘−1)
𝑢

|N (𝑣) | + 𝐵 (𝑘 ) · ℎ (𝑘−1)𝑣

)
for all 𝑣 ∈ 𝑉 ,

(4.2)
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where
∑
𝑢∈N(𝑣) ℎ

(𝑘−1)
𝑢

|N (𝑣) | is the mean of 𝑣 ’s neighbors embedding at step 𝑘 −1,
𝐵 (𝑘 ) is the decision variables and ℎ𝑘−1𝑣 is node 𝑣 ’s embedding at step
𝑘 − 1.

2. The messages are aggregated using an aggregate function, such as sum
or mean. This step produces a single message for each node that encap-
sulates information from its neighbors.

𝑎
(𝑘 )
𝑣 = 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 (𝑘 ) ({ℎ𝑘−1𝑣−1 : 𝑣 − 1 ∈ N (𝑣)}) (4.3)

The neighborhood aggregation of node 𝑣 in layer 𝑘 is expressed using
the activation of neighboring the neighboring node 𝑣 − 1, ℎ𝑣−1 of layer
𝑘 − 1 [72].

3. The pooled messages are passed through an update function, which typ-
ically takes the form of a neural network. Update functions were intro-
duced in Chapter 2.2. This function updates the node embeddings based
on the aggregated messages, allowing nodes to incorporate information
from their neighbors into their representations.

By repeating this process for multiple layers, a gnn can learn to capture com-
plex relationships and patterns in graph-structured data, making it a powerful
tool for various machine-learning tasks.

4.4 Challenges and opportunities in Graph
Neural Networks

Graph neural networks (gnns) have shown great promise in solving complex
optimization problems in various domains, including routing problems. In re-
cent years, there has been increasing interest in utilizing machine learning
techniques, particularly gnns, within the Operations Research (OR) field to
improve the accuracy and efficiency of optimization problems [73].

One of the most prominent applications of gnns in OR is the vrp. In this
problem, the goal is to find the optimal path or sequence of paths between
various nodes in a network. The vrp can be challenging, mainly when the
network is large and complex, and there are many possible routes that a vehicle
can take.
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A gnn can analyze the interactions between the different nodes in a network
and learn to predict the optimal path between them, by leveraging the inherent
structure of the network [23].

Several recent studies have explored the applicability ofgnns in solving routing
problems. For example, Kool et al. (2018) [13] proposed an effective attention-
layer-basedmodel across vrpwith up to 100 nodes. Similarly, Li et Yan (2021) [74]
presented a learning-augmented local search framework aimed at solving large-
scale vrp. Arnold et al. (2019) [75] propose an algorithm that utilizes machine
learning to optimize the neighborhood ranking to provide a good foundation
for route optimization. The results were promising but did not compare against
the benchmark models using random initiation with no computational com-
plexity [76].

Overall, gnns offer exciting opportunities for improving the accuracy and ef-
ficiency of vrps in and other related domains. Their ability to learn from
historical data and leverage the inherent structure of networks makes them a
promising tool for addressing complex optimization challenges.



5
Green Vehicle Routing
Problem

The Green Vehicle Routing (gvrp) field was introduced by Erdogan and Miller-
Hooks in 2012 [77] and is rapidly gaining prominence. In their recent arti-
cle "Green vehicle routing problem: A state-of-the-art review" [12], the au-
thors comprehensively analyzed 323 papers published between 2000 and 2020
on the theme. Notably, 95% of these papers were published during the last
decade.

This section introduces several Green Vehicle Routing variants discussed in
the literature and highlights important measures to consider when optimizing
routes. Furthermore, a framework for calculating fuel consumption in high
elevation areas [11] is presented.

Road transportation significantly contributes to increasing atmospheric pollu-
tion [48], and the European Commission’s key goal for 2030 is to cut at least
40 percent in greenhouse gas emissions compared to the 1990 levels [78]. The
instantaneous engine-out emissions rate for Greenhouse Gas (ghg) is directly
related to the rate of fuel use [79]. For these reasons, reducing fuel consumption
is of great importance to Remiks.
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5.1 From VRP to GVRP

Numerous authors [12, 11, 48, 79] have asserted that by expanding the typical
VRP to consider not just the economic impact but also the environmental and
social impact, there is potential to reduce Carbon Dioxide (co2) emissions.
Bektas and Laporte (2011) [79] describe the Pollution Routing problem as a
case where each vehicle emits an amount of ghg when traveling over a node
(𝑖, 𝑗). They have found that emissions depend on several factors, such as gravity,
slope, load, and speed. The gravity and slope variables are fixed, whereas the
load and speed variables can be controlled. Asghari et al. (2020) [12] define
the Green vrp as the research of minimizing energy consumption to overcome
pollution in transportation activities.

Today, the Remiks fleet consists of conventional fossil fuel-powered vehicles
only.

5.2 Classification of Green Vehicle Routing
Literature

This section will introduce some directions of gvrp relevant to the Remiks
problem that has been proposed in the literature [12].

Type of Engine Different pollution rates and restrictions apply depending
on the choice of engine. The investment cost of other engines, charging sta-
tions, etc., has to be considered. This work will consider diesel engines only,
as Remiks’s waste collection vehicles today are diesel-powered. In literature,
routing problems for alternative fuel-powered engines often concern electric-
powered vehicles or bio-fuel-powered vehicles [80, 81, 82, 83].

Objectives Green VRP is a multi-objective VRP [8]. Sustainability is a busi-
ness principle encompassing environmental, social, and economic considera-
tions, known as the triple bottom line. A business is sustainable when it achieves
equal profitability in all three areas. The triple bottom line is vital for any com-
pany, as customer and employee satisfaction is essential for long-term economic
profit. In the same way, a business will not last by having a low carbon footprint
alone. It is necessary to have financial gain as well.

One way of achieving sustainability and lowering the Remiks vehicles’ fuel
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Figure 5.1: Visualization of the Triple Bottom Line [84]. The Triple bottom line is
a business concept that measures environmental, social, and economic
value.

consumption is to incorporate the aspects of the Triple Bottom Line into the
objective function [12]. Economic objectives could be reducing travel or fuel
costs, while environmental objectives could be reducing fuel consumption or
𝐶𝑂2-emissions. Social objectives can be customer- or employee satisfaction or
minimizing risk. Sustainability can be introduced through the objective func-
tion, as one of the multiple objective functions, or be presented as constraints
or penalties to the problem [12].

Scenarios While translating a real-world problem into a tractable mathemat-
ical formulation, verifying and evaluating the simplification and calculations
is essential. Hence, choices must be made regarding the degree of realism,
strategic decisions, and restrictions [23].

Examples of decisions regarding the degree of realism are whether to use Eu-
clidean distance or real road distance. For our experiments, real road distance
and inclination are included to account for the topography of Tromsø. As the
city center of Tromsø is located on an island, Euclidean distance might not pro-
duce feasible solutions. Further, several neighborhoods on the Tromsø island
are in areas with steep inclinations. Steep roads are generally associated with
high fuel consumption [11], and in Tromsø, avoidance of steep arcs is especially
important due to icy roads during the winter months. The Map in Figure 5.2
displays the central parts of Tromsø and how the nodes are situated.

Strategic constraints encompass various factors, such as vehicle types, the pre-
scribed number of fuel stations, and the optimal capacity [85]. Additional exam-
ples of potential constraints include time windows specifying drivers’ working



46 chapter 5 green vehicle routing problem

Figure 5.2: Map of the central parts of Tromsø. The circles on the Map visualize house-
holds. The color of the circles indicates what day they are visited by the
Remiks’ vehicles.

hours or break times, total load limitations, and more. In the case of Remiks,
this optimization involves the simultaneous utilization of five vehicles consid-
ered within the optimization framework. The objective is to optimize Remiks’
operations under the current conditions, ensuring practicality and ease of im-
plementation. The scenario which we optimize for will be further described in
Chapter 7.

Interaction with traditional VRP The Green vrp is primarily focused on
addressing environmental concerns. However, there exists a diverse range of
vrp types that can be integrated with Green-VRP models [85]. The selection of
a specific VRP type depends on the routing problem’s objectives and relevant
constraints.

Solution methodologies As described in Chapter 2, routing problems can
be solved using various methodologies. Just as traditional vrp, the gvrp can
be solved using exact, heuristic, or metaheuristic methods, either individually
or combined [86].
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5.3 Fuel calculation methods proposed in
literature

Green logistics has received increasing and close attention from governments
and business organizations in the last decade [87]. This section will broadly
present promising methods for modeling fuel consumption in green vehicle
routing problems.

Huertas et al. (2022) [11] have proposed a method to accurately determine
the fuel consumption of cargo vehicles per kilometer, considering the influence
of altitude, road gradient, and vehicle age. The study found that various fac-
tors, such as vehicle technology, maintenance levels, fuel characteristics, driver
behavior, and external factors like topography, road conditions, and traffic, all
play a significant role in determining the actual fuel consumption of the vehicle.

It has been demonstrated that inefficient driving behaviors and traffic conges-
tion can significantly contribute to higher fuel consumption [88, 89]. Therefore,
many freight transport companies have installed GPS systems to track real-time
position, fuel consumption, and other engine operating variables. Remiks is a
company that utilizes this data to improve fuel economy, enhance safety, and
optimize vehicle utilization [11].

Woensel et al. (2001) [90] propose a model for measuring the impact of vehicle
speed on air pollution. They consider both static factors, such as the vehicle
specificities and road infrastructure, and the dynamic traffic flow parameter.
Their proposed emission model evaluates the consequences of using constant
speed as a parameter for calculating emissions. It concludes that for speeds
from 0−37𝑘𝑚/ℎ and from 105𝑘𝑚/ℎ and above, emissions are underestimated
using constant speeds. They also found that emissions are overestimated in
speeds from 37− 105𝑘𝑚/ℎ using constant speeds. The minimum𝐶𝑂 emission
happened when the vehicle drove at a constant speed of 71𝑘𝑚/ℎ. The Remiks
vehicles will have a constant speed below 37𝑘𝑚/ℎ in urban areas. Woensel et
al. propose a method for accurately calculating emissions for vehicle driving in
velocities below 37𝑘𝑚/ℎ.

In 2011, Bektas and Laporte [79] introduced the Pollution Routing Problem
to reduce overall 𝐶𝑂2 emissions by efficiently dispatching vehicles. Their ap-
proach incorporates vehicle distance, travel time, fuel consumption, road angle,
load, and ghg emissions. The authors also suggest modeling fuel consumption
as a function of speed, similar to Woensel et al. (2001) [90]. However, Bektas
and Laporte [79] focus on vehicles with speeds above 40𝑘𝑚/ℎ, as lower-speed
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vehicles require a different approach. They found that acceleration and decel-
eration caused by frequent stops significantly contribute to emissions. Bektas
and Laporte [79] concluded that minimizing emissions does not necessarily
reduce economic cost, as labor cost and the number of vehicles are the dom-
inant economic factors. Using fewer vehicles can also reduce environmental
costs. Additionally, they observed that minimizing distance does not necessarily
minimize fuel or driver costs. Minimizing financial cost often results in higher
energy consumption.

The following chapter will explain the adopted fuel calculation algorithm pro-
posed in this thesis. The algorithmwas developed in the review of the previously
outlined scientific literature.



Part II

Method and data
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6
The Deep Policy Dynamic
Programming method for
Green Waste Vehicle
Routing

Having established a foundation in the theoretical background of operational
research, graph neural networks, and green vehicle routing, we are now ready
to introduce the Deep Policy Dynamic Programming algorithm [1], and its
adaptation to solve Green Vehicle Routing Problems.

The primary objective of this algorithm is to combine the strengths of learned
neural heuristics with those of Dynamic Programming to develop sustainable
routes for waste collection in cities with varying topography. To achieve this,
we will first formulate a framework for calculating fuel consumption based
on topography and distance. This framework will be leveraged to create a
cost matrix that serves as input data for a pre-trained Graph Convolutional
Network. Subsequently, Dynamic Programming will be employed at the output
prediction of the network to generate feasible routes optimized for minimizing
fuel consumption.

This section introduces a framework that employs the Deep Policy Dynamic
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Programming algorithm to tackle Green Vehicle Routing Problems in cities
characterized by diverse topography. More details on the data are provided in
the next chapter.

6.1 Fuel consumption determination

The energy needed for a vehicle to move is determined by the forces that resist
its motion, which include Rolling resistance (𝐹𝑟 ), Drag (𝐹𝑑 ), gravity 𝐹𝑔, and
inertial forces. The power produced by the engine (𝑃𝑒) is the aggregate of the
power required to overcome each of these forces, divided by the mechanical
efficiency of the powertrain [11]. The fuel consumption of the vehicle is di-
rectly linked to its power output. Additionally, the𝐶𝑂2 emissions of the vehicle
are proportional to the amount of fuel it consumes, as stated by Huertas et al.
(2022) [11].

To calculate the vehicle’s fuel consumption, it is necessary to consider several
factors, such as the vehicle’s speed, road conditions, engine efficiency, load
capacity, and driving behavior. These factors determine the vehicle’s fuel con-
sumption during a tour.

Figure 5.1 shows a simplified figure of the forces that act on a vehicle.

Figure 6.1: Simplification of the forces that act on a vehicle in constant velocity. 𝐹𝑟
represent rolling resistance , 𝐹𝑑 represent drag forces and 𝐹𝑔 represent
gravitational forces.

𝐹𝑟 represent rolling resistance , 𝐹𝑑 represent drag forces and 𝐹𝑔 represent grav-
itational forces. The right-hand part of Equation 6.1 represents the chemical
energy contained in the fuel consumed by the vehicle [11].



6.1 fuel consumption determination 53

Huertas et al (2022) [11] describe the power delivered by the engine as follows,

𝑃𝑒 =
(𝐹𝑑 + 𝐹𝑟 + 𝐹𝑔 +𝑀𝑀𝑓 𝑖𝑎)𝑉

𝜇𝑚
= 𝑣 𝑓 𝜌 𝑓 𝐿𝐻𝑉 𝜇𝑡ℎ . (6.1)

The forces acting on the vehicle are defined as follows,

𝐹𝑑 =
1
2
𝑐𝑑𝜌𝑎𝐴𝑓𝑉

2, (6.2)

Where,

𝑉 is the velocity,
𝑐𝑑 is the drag coefficient of the vehicle,
𝐴𝑓 is the area of the vehicle,
𝜌𝑎 is the density of air.

𝐹𝑟 = 𝑓𝑟𝑀𝑔𝑐𝑜𝑠𝜃 (6.3)

and

𝐹𝑔 = 𝑀𝑔𝑠𝑖𝑛𝜃, (6.4)

Where,

𝑓𝑟 is the friction coefficient of the road,
𝑀 is the total mass of the vehicle,
𝑔 is the gravitational force, and
𝜃 is the road gradient in degrees.
𝜇𝑡ℎ is the engine thermal efficiency
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𝑀𝑓 𝑖 = 1 + 0.04𝑁𝑇𝐷𝑖 + 0.0025𝑁 2
𝑇𝐷𝑖, (6.5)

Where,

𝑁𝑇𝐷 is the engines’ transmission ratio.

To determine the route with the least environmental impact, the volumetric
flow rate 𝑣 𝑓 is calculated for all nodes and presented as a distance matrix. The
volumetric flow rate is presented in 𝑔/𝑠.

𝑣 𝑓 = (𝑃𝑒/(𝐿𝐻𝑉 𝜌 𝑓 𝜇𝑡ℎ)) (6.6)

Here, 𝜌 𝑓 is the density of the fuel.

Further, the volumetric flow rate is multiplied with a time use matrix in sec-
onds, resulting in a matrix of fuel consumption in grams per distance. This is
transformed into liters by multiplying the matrix with the density of diesel in
𝐿/𝑔.

The resulting matrix represents the fuel consumption per Liter between all
edges in the input data set. Now, we can use this matrix as input in the Graph
Convolutional Network.

In order to perform multi-objective optimization, we use the weighted sum
method [91], and use 𝛼 as a scaling factor. We obtain an estimate of the fuel
consumption from the distance matrix using the mean fuel efficiency of the
Remiks vehicles, 𝜇𝑓 𝑢𝑒𝑙 .

We now have two matrices that provide insights into fuel consumption. The
matrix 𝑓 𝑢𝑒𝑙 considers the fuel consumption associated with changes in eleva-
tion, while the matrix 𝑓 𝑢𝑒𝑙𝑑𝑖𝑠𝑡 takes into account the fuel consumption related
to driving distance.

When combining these, the following equation has been used:

𝑚𝑖𝑛
∑︁
𝑖=0

(𝑓 𝑢𝑒𝑙𝑑𝑖𝑠𝑡 + 𝛼 · 𝑓 𝑢𝑒𝑙) , (6.7)
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Where,

𝑓 𝑢𝑒𝑙 represents the calculated fuel matrix,

𝑓 𝑢𝑒𝑙𝑑𝑖𝑠𝑡 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝜇𝑓 𝑢𝑒𝑙
=

𝑘𝑚

𝑘𝑚/𝐿 = 𝐿,

and
𝜇𝑓 𝑢𝑒𝑙 = 1.34𝑘𝑚/𝐿.

6.2 Graph Convolutional Network for extracting
promising edges

Having derived an algorithm for calculating the fuel consumption matrix, we
are ready to employ our model. The figure below shows a simplification of
the operations that are performed in the network. The stages in the figure are
explained below.

Figure 6.2: Visualization of the Graph Convolutional network, inspired from [15]. The
figure shows an example where the nodes are fully connected.

Input layer Initially, two-dimensional coordinates 𝑥𝑖 are received as input
node features and normalized 𝑥𝑖 ∈ [0, 1]2. These coordinates are embedded
into h-dimensional features:

𝛼𝑖 = 𝐴1𝑣 𝑓 + 𝑏1, (6.8)

where 𝐴1 ∈ Rℎ×2 and 𝑏1 ∈ Rℎ×1 is a bias vector.

Further, the input coordinates are utilized to calculate the fuel consumption 𝑣 𝑓

using the algorithm described above and embedded as a
ℎ

2
-dimensional feature
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vector, represented by 𝑑𝑖, 𝑗 . The edge input feature 𝛽𝑖 𝑗 is:

𝐴2𝑑𝑖, 𝑗 + 𝑏2, (6.9)

where 𝐴2 ∈ R
ℎ

2
×1
.

At the input layer 𝑥𝑙=0𝑖 = 𝛼𝑖 and 𝑒𝑙=0𝑖, 𝑗 = 𝛽𝑖, 𝑗 . The feature vector 𝑥𝑙𝑖 and edge
feature vector 𝑒𝑙𝑖, 𝑗 refer to the feature vector associated with node 𝑖 and edge
𝑖 𝑗 at layer 𝑙 , respectively.

Graph Convolutional Layers The node feature and edge feature at the
following layers are defined,

𝑥 ℓ+1𝑖 = 𝑥 ℓ𝑖 + ReLU
(
BN

(
𝑊 ℓ

1𝑥
ℓ
𝑖 +

∑︁
𝑗∼𝑖
𝜂ℓ𝑖, 𝑗 ⊙𝑊 ℓ

2𝑥
ℓ
𝑗

))
, (6.10)

with 𝜂ℓ𝑖 𝑗 =
𝜎

(
𝑒ℓ𝑖 𝑗

)
∑
𝑗 ′∼𝑖 𝜎

(
𝑒ℓ
𝑖 𝑗 ′

)
+ 𝜖

,

and
𝑒ℓ+1𝑖, 𝑗 = 𝑒ℓ𝑖, 𝑗 + ReLU

(
BN

(
𝑊 ℓ

3 𝑒
ℓ
𝑖, 𝑗 +𝑊 ℓ

4𝑥
ℓ
𝑖 +𝑊 ℓ

5𝑥
ℓ
𝑗

))
, (6.11)

Where𝑊 ∈ Rℎ×ℎ, is the sigmoid function, 𝜖 is a small value, ReLU is the
rectified linear unit, and BN represents batch normalization.

In arbitrary graphs, diffusion processes are isotropic because there are no spe-
cific orientations, making all neighbors equally important. However, this is not
always the case, as a neighbor in the same community of nodes may share
different information than a neighbor in a separate community. To make the
diffusion process anisotropic, we use learnable normalized edge gates 𝑒𝑙𝑖, 𝑗 that
enable pointwise multiplication operations, as proposed by Marcheggiani and
Titov (2017) [92].

The batch normalization is performed to enable fast training of deep architec-
tures. As mentioned in Chapter 3, including residual connections is crucial for
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minimizing the impact of the vanishing gradient issue during backpropaga-
tion [20].

MLP classifier and output The edge representations are linked to the
ground-truth vrp tour for the training data through a softmax output layer. The
model parameters can be trained end-to-end by minimizing the cross-entropy
loss via gradient descent.

To calculate the likelihood of an edge being included in the vrp tour of a graph,
the edge embedding 𝑒𝑙𝑖 𝑗 from the final layer is utilized. This probability can be
interpreted as generating a probabilistic heatmap across the adjacency matrix
of tour links.

Each 𝑝𝑉𝑅𝑃
𝑖,𝑗
∈ [0, 1]2 is given by a :

𝑝𝑉𝑅𝑃𝑖,𝑗 = 𝑀𝐿𝑃 (𝑒𝐿𝑖,𝑗 ) (6.12)

Training Inmany practical scenarios, obtaining or constructing the necessary
training data and training the models can be costly or infeasible. To overcome
this challenge, instead of engaging in computationally intensive training, we
leverage the training data and weights provided by Joshi et al. (2019) for the
tsp [20], and Kool et al. (2021) for the vrp [1]. This approach can be seen as
a form of One-shot learning [15], wherein we harness the knowledge acquired
from one task to enhance learning or performance on a different, yet related,
task.

Joshi et al. (2022) propose that training on randomly generated routing prob-
lems enables the transfer of the learned policy to larger and more complex
real-world scenarios [15].

For the tsp, the model is trained using a training set consisting of 1 million pairs
of problem instances and solutions solved with the Concorde solver [93, 20].
For the vrp, the model is trained using 1 million instances, each consisting of
100 nodes, randomly generated based on a fixed distribution [94]. The solutions
are obtained using the Lin-Kernighan heuristic [95, 1]. The pre-trained model
employs a batch size of 48, a learning rate of 10−3, and undergoes 1500 epochs
with 500 training steps. Checkpoints with the lowest validation losses are saved
and utilized for testing.
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6.3 Deep Policy Dynamic Programming for
finding feasible solutions

We can approximate the solution from the derived heatmap using the Deep
Policy Dynamic Programming algorithm [1]. Classic dynamic programming
was introduced in Chapter 2. The Deep Policy Dynamic Programming is imple-
mented on the sparse heatmap generated for the method described in Section
6.3. The heatmap derives a policy for scoring partial solutions. The Dynamic
Programming (dp) algorithm starts with a beam of a single initial solution.
Further, it iterates through the following steps:

1. All solutions on the beam are expanded.

2. Dominated solutions are removed from the dp state.

3. The best B solutions, according to the scoring policy, define the beam for
the next iteration.

These steps are repeated until the optimal solution is found.

The scoring policy is established using the heatmap values, prioritizing (partial)
solutions with the highest total heat while also considering the potential heat
for the unvisited nodes. The policy thus selects the B solutions which have the
highest score, defined as:

𝑠𝑐𝑜𝑟𝑒 (𝑎) = ℎ𝑒𝑎𝑡 (𝑎) + 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 (𝑎), (6.13)

where,

ℎ𝑒𝑎𝑡 (𝑎) =
𝑡−1∑︁
𝑖=1

ℎ𝑎𝑖−1,𝑎𝑖 . (6.14)

The potential is calculated as follows:

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 (𝑎) = 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙0(𝑎) +𝑤𝑖
∑︁
𝑗 (𝑎)

ℎ 𝑗,𝑖∑𝑛−1
𝑘=0 ℎ𝑘,𝑖

, (6.15)

Where 𝑤𝑖 is the node potential weight given by:
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𝑤𝑖 = (𝑚𝑎𝑥 (ℎ 𝑗,𝑖)) (1 − 0.1( 𝑐𝑖0

𝑚𝑎𝑥 𝑗 (𝑐 𝑗0)
− 0.5)).

The total heat of the edges is determined by adding up the heat values as the
solution progresses. When dealing with unvisited nodes, we estimate the poten-
tial heat that can be achieved by selecting edges leading to those nodes. This
estimation considers the remaining edges available. This approach ensures that
important edges are not disregarded in the early stages and remain accessible
for future utilization.

By scaling the heatmap values for incoming edges, the remaining potential for
node 𝑖 is initially equal to the maximum possible value 𝑤𝑖 . Still, it decreases
as better edges become infeasible due to neighboring nodes being visited. The
node potential weight𝑤𝑖 is determined by the maximum incoming edge value,
which is then adjusted by a factor between 0.95 and 1.05 to give more weight
to nodes closer to the start node. This modification encourages the algorithm
to retain edges that allow for a return to the start node. The combined heat
and potential function efficiently identify promising partial solutions.

Figure 6.3: Visualization of the Dynamic Programming approach. The Dynamic Pro-
gramming algorithm is employed on the heatmap of promising edges to
limit the algorithm’s search space. The Figure is inspired by [1].

The dpdp approach equals traditional Dynamic Programming brute force if
using a beam size, 𝐵 = 𝑛 × 2𝑛 for a tsp [1]. In beam search, only a predeter-
mined number of best partial solutions are kept as candidates. Smaller B values
allow trading performance for computational cost.

The algorithm keeps track of variables for each partial solution, such as cost,
overall distance, current node, and set of visited nodes. Dominated solutions
are removed, and the dp state is defined as the tuple of visited nodes and
the current node. The algorithm maintains a minimum-cost solution for each
unique dp state by removing dominated solutions. The memory required for
executing the dp algorithm is O(B), where B is the beam size, allowing for
efficient execution in iterations [1].
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6.4 Optimization and Hyperparameters

The threshold is a critical parameter for the dpdp approach, as it is used to
define the sparse heatmap that the dynamic programming approach is running
on [1]. A low threshold rules out most edges, as it will predict close to 0 for
all values above the threshold. A higher threshold will rule out fewer edges,
resulting in higher computational complexity.

We employ empirical experimentation to identify the optimal threshold for the
Remiks dataset. The threshold value is affected by the positioning of the nodes
in the data sets and their overall interdependence. When nodes are situated
close to each other, a higher threshold is necessary compared to those with
more distance between them. It is essential to determine a suitable threshold
to avoid the risk of eliminating too many or too few edges. More details on the
utilized data are provided in the next chapter.

The experiments below are performed on 1 unit on the GPU cluster operated
by the UiT Machine Learning Group [96]. We have performed the experience
on nodes within one of Remiks central zones, Friday - zone 2.

Figure 6.4: Threshold experiment performed to find the optimal tradeoff between
computational time and cost.

The experiment displayed in Figure 6.4 was conducted on 20 different instances
of 50 nodes for all five zones visited on Thursdays. This involves both district
and central zones. We have employed the experiment on threshold values
ranging from 10−9 to 0.9999. There were no feasible solutions for threshold
values above 0.99 for these instances. We observe that a threshold = 10−6 uses
the shortest computational time, while a threshold = 10−5 gives the lowest
mean cost for these instances. As our experiments concern a relatively small
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number of nodes, the computational time is insignificant for these experiments.
We, therefore, choose to move forward with threshold=10−5, which yields the
lowest mean cost.

Figure 6.5: Beam size experiments performed to find the optimal tradeoff between
computational time and cost.

The experiments displayed in Figure 6.5 is performed on 20 instances of 50
nodes for the same five zones as the Threshold experiments in Figure 6.4. We
observe that beam size = 105 yields the lowest cost at the minimum time and
choose this beam size for future experiments.

6.5 Summary

The strength of the Dynamic Programming Approach is that it is able to solve
new, unseen problems in one shot based on policies learned during train-
ing [15].

Since the model only requires evaluation once per instance, it can explore
numerous beams extensively. The beam size, denoted as B, determines the
number of top partial solutions to retain based on the scoring policy.

In accordance with our Problem Definition, we have devised a methodology
for calculating fuel consumption using actual distance and elevation matrices
obtained via the Google Maps commercial API [21].

We have introduced the Neural Network employed for route optimization and
modified the method to minimize fuel consumption, thus fulfilling Target 2 as
specified in our Problem Definition.

Furthermore, we have conducted tests to identify effective hyperparameters as
starting points for future experiments. We are now prepared to delve deeper
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into the utilized data set, generously provided by Remiks.



7
Data gathering and
augmentations

The effectiveness of machine learning and data analysis tasks depends on the
quality and abundance of available data. However, due to various constraints,
acquiring precise and diverse datasets can be challenging.

Data gathering encompasses the collection of pertinent data from various
sources, while data augmentation techniques strive to enrich existing datasets
by introducing variations and augmenting their diversity [23]. This chapter
presents the data gathering and augmentation processes employed to create
the Remiks data set.

The data regarding the Remiks vehicles and the routes Remiks use today uti-
lized in this project are provided by Remiks [97].

7.1 Understanding the problem

Remiks were briefly introduced in the introduction, Chapter 1. The company
has two departments dealing with waste collection: Remiks Household and
Remiks Industry [17]. This thesis considers the first one.

63
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In Chapter 5, we introduced some criteria that should be fulfilled in order for a
routing problem to be feasible for implementation. In order for the approach to
be easily applicable to Remiks, we aim to use as realistic values and constraints
as possible. The proposed algorithm optimizes routes explicitly with regard to
inclination and real road distance. This is an approach that is not commonly
used in literature [11, 98] but which we find promising for creating realistic
routes in areas like Tromsø, where distance is not always the most efficient due
to mountains and hills.

Figure 7.1: Map of all households in Tromsø and Karlsøy municipality, with extra focus
on the most central parts of the area. The circles on the map visualize
households. The color of the circles indicates what day they are visited by
the Remiks vehicles.

Figure 7.1 visualize all nodes where Remiks collect household waste. As the
figure indicates, there are many islands, mountain barriers and bays where dis-
tance would create infeasible routes. We will look further into this in Chapter 8.

This thesis focuses on five specific Remiks vehicles. Each vehicle is assigned a
predetermined set of nodes to collect from on each workday of the week.

Most of the inhabitants in Tromsø and Karlsøy municipality live near the city
center, on the city island, which location is displayed in Figure 7.1.
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The existing route planning strategy involves assigning a single route to each
driver, which they drive repeatedly on a weekly basis and gradually become
familiar with. The drivers are given the autonomy to decide their preferred
driving approach based on factors such as weather conditions and traffic sit-
uations. During winter, when the roads are slippery, drivers often prioritize
driving through flat areas of their route initially to allow the vehicle to gain
weight and prevent slippage.

One of the main contributions of this thesis is to provide a framework that can
facilitate training for the new generation of drivers at Remiks. Currently, the
training of new drivers heavily relies on the expertise of experienced drivers. To
improve the learning experience for novice drivers, we aim to produce energy-
efficient routes that are true to the road map and inclination. We aspire that
these routes can serve as valuable tools to aid new drivers in acquiring famil-
iarity with their designated routes.

As a researcher working on an optimization project, it is important to under-
stand the problem to be optimized fully. Meeting the drivers and their leader-
ship group was essential in this process. The conversations with the employees
at Remiks were useful in developing an understanding of the problem and how
the task is currently being handled.

For the experiment section of this project, we will focus our research on the
nodes visited on Fridays, as they are distributed on the city island. On Fridays,
four out of the five vehicles are driving routes.

The tsp experiments of Chapter 8 will consider individual zones, while the
vrp experiments will consider a randomized selection of the nodes located on
the city island in order to explore other zone divisions than the ones currently
used by Remiks.

7.2 Data distribution

The GPS system used in Remiks’ vehicles [99] collects data on the vehicle’s
position and speed, expressed in kilometers per hour. These data points are
transmitted simultaneously, with an average frequency of one data point every
60 seconds. The telematics system does not report the altitude of the vehicle.
To obtain this information, we have relied on the Google Elevation API [21].
The elevation data was extracted as meters above sea level by providing the
nodes’ location as input.

https://developers.google.com/maps/documentation/elevation/start
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The Google Distance API [21] has also been utilized to collect the real road
distance matrix used to create realistic routes and to plot the obtained routes
on the map.

The Vehicle monitoring has been carried out by Co-Driver by Add Secure [99].
The telematics system also reports engine operative variables, including the
accumulated fuel consumption. The specific fuel consumption is measured in
Liters and is reported for each vehicle at the end of the day.

The input data provided consists of the addresses of the households in Tromsø.

Node distribution in Remiks data compared to training data We
introduced the training data used for the dpdp model in Chapter 6.

The distribution of nodes in the Remiks dataset deviates from a random dis-
tribution. To align the values of the dataset with the scale of the training data
used for the model, the x and y coordinates are independently normalized
between 0 and 1.

When experimenting with the tsp we have mostly used the zones that Remiks
operates within today. Within these zones, the data points are located rela-
tively nearby each other. When normalizing the data points within one zone,
the obtained data distribution is pretty similar to the generated data distri-
bution that the model is trained on. The data distribution for tsp and vrp
is available for download, provided by Kool et al.(2021) [100] and Joshi et al.
(2019) [101].

In Figure 7.2, Subfigure a displays the histogram of the randomized training
data for the tsp. Subfigure b displays the histogram of the Remiks data of
zone 2 on a Friday. We can see that the data points in both data sets are evenly
distributed as the zone is located in near proximity to the depot.

Subfigure c and d display the histograms of Zone 1 and 5, with the depot. As
visualized in Figure 7.1, the depot of Remiks is located considerably distant from
the remaining nodes. Consequently, the nodes are not evenly distributed around
the depot. This spatial arrangement poses a unique challenge for optimizing the
routing process, as the routes need to account for the significant geographical
distance between the depot and the nodes.

As briefly discussed in Chapter 6, task similarity is essential when utilizing
transfer learning. The source task and the target tasks should be related or
have some degree of similarity. Therefore, the normalization and preprocessing



7.3 vehicle specifications 67

(a) Histogram of the randomized train-
ing data.

(b) Histogram of Remiks data for zone
5.

(c) Histogram of Remiks data for zone
1.

(d) Histogram of Remiks data for zone
5.

Figure 7.2: Histograms of data distributions.

of the Remiks coordinates are essential. As the Graph Convolutional Neural
network is trained on a large data set of one million instances [100], the model
should have learned valuable features and representations that are useful for
the Remiks coordinates [58].

7.3 Vehicle specifications

The vehicle specifications and their constraints are important to consider in
order to obtain a realistic estimation of fuel consumption.

The Remiks vehicles have a maximum load capacity of 19 tons. Each vehicle
weighs 13.5 tons when empty and can carry a maximum of 5 tons of household
waste. This limitation is not determined by the weight capability of the vehicle
but rather to prevent the degradation of waste due to compression.

Volvo manufactures all vehicles, which are regularly replaced after 6–7 years
due to the high maintenance costs and strict uptime requirements. Table 7.1
shows the model specifications of the vehicles studied in this project. As the
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Zone Make Model Model year Fuel type Wheel layout
1 Volvo FMX 420 2022 Diesel 4x2
2 Volvo FMX 420 2022 Diesel 4x2
3 Volvo FMX 420 2021 Diesel 4x2
4 Volvo FMX 430 2020 Diesel 4x4
5 Volvo FMX 430 2020 Diesel 4x4

Table 7.1: Table of vehicle specifications.

vehicle specifications and age does not vary significantly, we will use the same
approximation for all vehicles.

7.4 Fuel consumption

As described in Chapter 6, assumptions about a wide range of parameters are
required in order to calculate fuel consumption. The choice of these parameters
is described below:

Velocity𝑉 The Remiks vehicles drive at high velocities on their way to and
from pickup zones. In urban areas, vehicles drive at lower speeds and have
frequent stops in order to collect waste bins. 3.88𝑚/𝑠 equals 14𝑘𝑚/ℎ and is
a mean estimation based on the routes that the Remiks vehicles drive in the
Tromsø city center.

Drag coefficient𝑐𝑑 The drag coefficient of a vehicle is a dimensionless quan-
tity that represents the resistance the vehicle encounters as it moves through
a fluid, typically air. It is a measure of how streamlined or aerodynamic the
vehicle is. A lower drag coefficient indicates that the vehicle experiences less re-
sistance and is more efficient in overcoming air resistance. For the experiments
described in Chapter 9, 𝑐𝑑 = 0.6. This estimation is based on a publication by
Chowdury et al. (2019) [102].

Frontal area of the vehicle 𝐴𝑓 The frontal area of the vehicles is calcu-
lated based on information provided by Remiks. The vehicles frontal area of
the vehicles is 2.50 meters wide and 4.10 meters high. Thus, the frontal area
of the vehicles, 𝐴𝑓 = 10.25𝑚2.

Density of the fuel 𝜌 𝑓 The density of fuel refers to its mass per unit volume.
The density of diesel is about 0.85kg/L [103]. This is 15-20 percent higher than
the density of gasoline.
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The coefficient of rolling resistance 𝑓𝑟 The coefficient of rolling resis-
tance is a parameter that quantifies the resistance encountered when a vehicle’s
tires roll over a surface. It measures the energy required to overcome the fric-
tion between the tires and the road surface during rolling motion. 𝑓𝑟 for a truck
tire on an asphalt road should be between 0.006 and 0.01 [104] [105]. In this
work, 𝑓𝑟 is approximated as 0.008.

Totalmass of the vehicle𝑀 Remiks have provided numbers regarding the
mass of their vehicles. An empty vehicle weighs 13500 kilograms and can carry
5500 kilograms of waste. However, as the household waste gets degraded when
compressed, the practical limit is a maximum of 5000 kilograms of household
waste at once. The total vehicle mass used for calculations is a static weight of
𝑀 = 18500 kilograms.

Airdensity 𝜌𝑎 Air density refers to themass of airmolecules in a given air vol-
ume. For this project,we assume constant air density at 𝜌𝑎 = 1.293𝑘𝑔𝑚−3 [106].

Road gradient 𝜃 The road gradient is calculated using elevation obtained
and the reasonable road distance in between nodes obtained using Google
API [21]. The formula used is

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛( Δ𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛

Δ𝑅𝑜𝑎𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) (7.1)

Engine thermal efficiency 𝜇𝑡ℎ Thermal efficiency is calculated by dividing
the useful work output of the engine by the energy input from the fuel. It
is expressed as a percentage and represents the portion of the fuel’s energy
converted into useful work, while the remainder is lost as waste heat [107]. In
this work, 𝜇𝑡ℎ is estimated to be 0.55 [107].

Mechanical efficiency of the power train 𝜇𝑚 The mechanical efficiency
of a powertrain refers to the efficiency with which it converts the input me-
chanical power into output mechanical power. A diesel engine’s lowest theoret-
ical system efficiency is between 55-60 percent [108]. For this project, we use
𝜇𝑚 = 0.55. While engine efficiency focuses on the energy conversion within the
engine itself, the mechanical efficiency of the powertrain considers the losses
and efficiencies associated with power transmission and delivery to the output
device [10].

Low Heating Value 𝐿𝐻𝑉 Low Heating Value measures the energy released
when a fuel is completely burned. The low heating value of diesel is approxi-
mately 45.6𝑘 𝐽/𝑔 [109, 110].
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7.5 Summary

We aim to optimize Remiks’ operations while considering realistic assump-
tions to ensure practicality and ease of implementation. Therefore, the choice
of parameters and selection of constraints and objectives are of great impor-
tance.

We have collected, analyzed and prepared the data provided by Remiks, and
calculated the real distances and elevation matrices using Google Maps Com-
mercial API [21]. This process establish the groundwork for attaining Target 1
and 2 in our problem definition.
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Results and conclusion
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8
Results
In this Chapter, we will evaluate the performance of the method introduced in
Chapter 6 for two different types of Remiks routes. We will use multi-objective
optimization in order to obtain a route that minimizes both fuel consumption
and the number of kilometers to drive.

Further, we will evaluate the performance of dpdp for tsp using Euclidean
measurements in comparison to the state-of-the-art method Hybrid Genetic
Search (hgs) [111] on the Remiks dataset. Lastly, the potential of utilizing the
vrp as a means of zone selection is investigated.

For these experiments, we utilized pre-trained models provided by Kool et al.
(2021) [1]. We employed pre-trained models on 20 and 50 nodes for the tsp
and a pre-trained model of 100 nodes for the vrp.

8.1 Green Vehicle Routing

The implementation of multi-objective optimization enables a thorough anal-
ysis of trade-offs involving multiple objectives. This understanding empowers
decision-makers to make informed choices that align with their priorities and
preferences. In the context of Remiks, it is beneficial to have an objective func-
tion that concurrently minimizes both distance and fuel consumption. To estab-
lish a suitable relationship between these two factors, a scaling factor known
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as alpha, 𝛼 , is employed.

We utilize the equation for the weighted sum method [91], as displayed in
Chapter 6:

𝑚𝑖𝑛
∑︁
𝑖=0

(𝑓 𝑢𝑒𝑙𝑑𝑖𝑠𝑡 + 𝛼 · 𝑓 𝑢𝑒𝑙) , (8.1)

The construction of the Remiks routes is significantly different for routes that
visit nodes in the central parts of Tromsø and the routes that cover district areas.
To test the robustness of the method, we will test the proposed method on an
established Remiks route on the city island and a district zone covering a large
area.

8.1.1 Central zone

To compare the actual fuel consumption measured by the Remiks vehicle sen-
sors with the estimates used forminimization purposes is challenging. However,
the results are valuable when comparing the routes generated by the multi-
objective optimization with those calculated using road distance, or elevation
only.

We explore an area a few kilometers from the depot. This is the Remiks zone
that is most closely connected to Remiks. We chose to run experiments using
a sample of 20 nodes to ensure visual clarity and comprehensibility. Figure
8.1 visualize the results obtained by optimizing for fuel consumption including
both fuel consumption using Equation 8.1.

Through empirical trials, we found that 𝛼 = 0.2 gave the visually most optimal
routes when optimizing for 20 nodes. The experiment is visualized in Figure
8.2. We observe that 𝛼 = 0.2 produces relatively low values for both fuel
consumption and kilometers driven. To ensure consistent results, we impose
the constraint of having the tour both start and end at the depot.
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(a) Fuel minimisation for 20 nodes (b) Proposed route on map with elevation
curves.

Figure 8.1: Experiment with the objective of minimizing fuel consumption based on
inclination and driving distance.

Figure 8.2: Results of experiments performed with different scaling factors, 𝛼 , for 20
nodes.

Optimization based on inclination If the elevation is the only parameter
considered, the model will choose the pathwith the minimum slope. The design
makes the model choose long arcs to make the slope less steep. Further, the
model does not account for the additional fuel consumption from the extra
kilometers the vehicle travels due to this route choice. This outcome is not
ideal, and we need to modify our optimization algorithm accordingly. A route
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optimized for fuel consumption from inclination only is visualized in Figure
8.3.

(a) Elevation minimisation for 20 nodes. (b) Route on map with elevation curves.

Figure 8.3: Experiment with the objective of minimizing fuel consumption based on
inclination.
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Optimization based on real road distance When optimizing the routes
with road distance as the only parameter being considered, the route visualized
in Figure 8.4 is the result. For this area, the proposed route appears like a
visually good solution. However, the fuel consumption is higher than the one
obtained using the proposed method.

(a) Road distance minimization for 20 nodes. (b) Route on map with elevation curves.

Figure 8.4: Experiment with the objective of minimizing fuel consumption based on
road distance.

(a) Remiks route currently used. (b) Proposed route on map with eleva-
tion curves.

Figure 8.5: Remiks route compared to multiobjective optimization approach.

Comparison against Remiks’ current routes Through empirical trials,
we found that 𝛼 = 0.4 gave the visually most optimal routes when optimizing
for 50 nodes. We compare the route obtained from the proposed method to the
route currently employed by Remiks. We observe significant similarities.
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Comparison to Hybrid Genetic Search We have compared the results
of the dpdp approach on Euclidean distance to the results provided by the
hgs [111]. We observe that the two methods yield solutions with many of the
same arcs. The total distance traveled is lower for the hgs [111] algorithm, but
the difference is insignificant.

Figure 8.5 displays the route generated by dpdp next to the same route gener-
ated by the hgs algorithm [111] for the tsp. The hgs algorithm is specifically
designed for medium-sized instances of the vrp with up to 1000 nodes [112].
It exhibits notable speed advantages over the dpdp approach for smaller in-
stances. However, when dealing with larger instances, the dpdp shows promise
by employing supervised training of a large neural network and requiring only
a single model evaluation during test time as it only requires a single model
evaluation during test time and is able to generalize well [1].

(a) The route optimized with the dpdp [1] ap-
proach is 3.57km.

(b) The route optimized with the hgs [111]
approach is 3.56km.

Figure 8.6: Euclidean distance route optimization for 50 nodes.
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8.1.2 District zone

(a) Current Remiks district route, Mon-
day Zone 4.

(b) Route optimized to minimize fuel consump-
tion using the weighted sum method [91].

Figure 8.7: Comparison between route currently used by Remiks and route optimized
according to the proposed method for minimizing fuel consumption.

Figure 8.7a visualize the route currently used by Remiks for a district zone.
Figure 8.7b visualizes the optimized route using the weighted sum method
to find a good trade-off between minimum fuel consumption and minimum
distance. We observe that the proposed route has significant similarities to the
route currently used by Remiks.

Figure 8.8 visualize a plot of the experiment performed to find an optimal value
for 𝛼 .

We observe that the 𝛼-value remains the same for all values between 0.4 and
1.0. An 𝛼 = 0.2 − 0.3 gives higher fuel consumption, but fewer kilometers are
driven.
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Figure 8.8: Results of experiments performed with different scaling factors, 𝛼 , for 50
nodes.

In Figure 8.9, it can be observed that optimizing for Euclidean distance leads
to higher driving distance and fuel consumption performance compared to the
route optimized for fuel minimization. Although the heatmap appears visually
more attractive, the resulting outcomes clearly indicate an increase in both
driving distance and fuel consumption. A constraint has been introduced to
ensure the vehicle concludes its route at the same node in both scenarios to
facilitate a fair comparison between the optimizations. This particular node is
connected to the highway leading back to the depot.

For the route optimized for Euclidean distance, the Fuel consumption is 24,43
Liters, and the distance traveled is 286,11 Kilometers in road distance. For the
route optimized using the proposed method for minimizing fuel consumption,
the fuel consumption is 20,93 Liters and the total distance traveled is 278,29
Kilometers.
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(a) Route optimized with Euclidean distance. (b) Route optimized for fuel consumption and
road distance with 𝛼 = 0.2.

Figure 8.9: Comparison between Euclidian distance optimization and multi-objective
optimization on a district route.

8.2 VRP as a means of zone selection

In order to investigate the potential of using vehicle routing as a means for
zone selection, we utilize the dpdp framework on the Remiks nodes on the
Tromsø city island. Due to limitations with regards to distance and elevation
API[21], we minimize the Euclidean distance.

(a) Route optimized with Euclidean dis-
tance for 800 nodes.

(b) The Remiks zones currently visited on Fri-
days.

Figure 8.10: Visualization of proposed zones division for central Tromsø, compared
to the Remiks zones.
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Figure 1.10a displays a scenario where four vehicles cover 800 nodes. We ob-
serve that the routes have similarities to the ones currently used by Remiks.

8.3 Summary

This Chapter has visualized and evaluated the most relevant results obtained in
this project. According to Target 3 in our Problem Definition,we have compared
the proposed routes to the routes currently used by Remiks. In the next Chapter,
we will discuss these results further.



9
Discussion and Future
Work

In this section, we assess the effectiveness of the proposed approach compared
to Remiks’ current methods using metrics introduced in Chapter 2. These met-
rics include profitability, service quality, equity, consistency, simplicity, and re-
liability.

9.1 Key findings

9.1.1 Local Route optimization

We applied the proposed algorithm to the data points within the zones currently
used by Remiks. Further, we assessed its performance compared to Remiks’
current routes and against other optimization techniques.

When it comes to fuel consumption, comparing the actual fuel consumption
measured by vehicle sensors with the estimates used for minimization pur-
poses is challenging. The fuel consumption calculation algorithm relies heavily
on estimates due to the lack of exact numbers. Moreover, the algorithm cur-
rently considers only elevation and road distance variables, while factors such
as speed, time usage, and frequency of starts and stops could be beneficial to
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include. However, the results are valuable when comparing the routes gener-
ated by the multi-objective optimization with those calculated using Euclidean
distance, road distance, or elevation only. We can make meaningful compar-
isons regarding which of the three computed routes would have the lowest fuel
consumption.

We observed that the routes generated by the proposed algorithm closely re-
semble the ones currently used by Remiks for central and district zones. Remiks
have been using the same type of vehicles for waste collection in Tromsø since
2006 [113], and their employees are well-acquainted with their routes. More-
over, since the drivers finish their day’s work when they have collected waste
from all households on their routes, it is plausible that their routes are already
optimized for efficiency. In Tromsø, where steep hills can become slippery dur-
ing the winter season, it is advantageous for drivers to avoid driving uphill
whenever possible. The drivers can visit households on their route in any order,
usually considering weather and driving conditions.

The route optimization generates routes that closely align with Remiks’ deci-
sions based on nearly 20 years of experience. This is a significant achievement.
The 𝛼-parameter can be utilized to explore how to avoid steep roads during
icy winter conditions, to select shorter routes during the summer when road
conditions are favorable, or as a valuable asset to explore new routes if Remiks
changes their infrastructure to electric vehicles.

Further, the proposed algorithm could serve as a valuable tool for training new
drivers in selecting the most efficient routes. When new drivers learn their
routes, they often have an experienced driver alongside them or an experi-
enced driver available over the phone to guide them. As it is crucial not to
miss any areas, new drivers must become familiar with their routes before they
begin driving. The ability to experiment with various route options can be
a valuable supplementary tool. This could reduce both cost and time for the
company.

As Tromsø grows as a city and new households are added, the city’s infras-
tructure will change. The dynamic and easily updatable nature of the route
optimization algorithm makes it a valuable tool for determining how to opti-
mize routes in Tromsø in the future, considering factors such as new roads and
households.

9.1.2 Global Route Optimization

As the city expands, it becomes necessary to consider extending the number of
zones or adjusting their distribution to ensure that the routes can still be com-
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pleted within working hours on one single day. As the dpdp framework gener-
alizes well from small training instances to large test instances, solving the vrp
to determine the optimal selection of zones can be a valuable resource.

This approach, as opposed to traditional clustering methods [114], clusters the
nodes based on the actual driving distance between them and how the route
can be effectively modeled rather than relying on the nodes’ proximity.

From the Results in Figure 8.9, we observe that the algorithm generates routes
comparable to the official routes Remiks utilize today. The model is trained
on instances of 100 randomly generated points [1] and generalizes well for
problems concerning up to 800 nodes.

Further exploration of knowledge transfer from trivial vrp problems to larger
problem sizes is a promising area of future research.

9.2 Route attractiveness

Chapter 2 discussed the challenges of finding a suitable measure to evaluate
route performance. In this section, we will highlight a few key considerations
for the Remiks use case.

Simplicity Rossit et al. (2019) [49] emphasizes the importance of visual
attractiveness when optimizing routes. In Chapter 8, Section 1.2, we compared
a route optimized for Euclidean distance with one optimized to minimize fuel
consumption. We observed that while the former route appeared visually more
straightforward and more intuitive, the latter, despite its higher complexity,
proved to be more effective in terms of both fuel consumption and distance
minimization.

According to Vidal et Laporte (2019) [48], the visual simplicity of a route is
significant for creating intuitive courses. However, achieving an optimal route
relying on distance is impractical in areas such as Tromsø and Karlsøy munic-
ipality, where natural obstacles necessitate routes based on actual elevation
and road distance.

Consistency Inhabitants of Tromsø expect their waste to be collected at the
same time and day each week. Remiks’ current route planning system lacks
a fixed order for visiting households, creating challenges in meeting these ex-
pectations. Substitute drivers are unaware of the typical collection times for
unfamiliar routes. Implementing a system that suggests feasible ways consis-
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tently for all drivers would enhance reliability and provide customers withmore
consistent and predictable collection times.

Reliability Roadwork, traffic congestion, or accidents can render established
routes infeasible. By optimizing routes using the Google Maps API [21], we can
access real-time data on travel times for each road segment. This enables us
to generate routes that avoid congested or problematic areas. Running the
optimization algorithm each morning would provide drivers with updated sug-
gestions to avoid obstacles, enhancing the reliability of the waste collection
service.

Addressing these considerations in route optimization can lead to improved
route performance, enhanced customer satisfaction, and more efficient waste
collection operations. Continued research and development in these areas will
contribute to further advancements in waste management systems.

9.3 Can the avoidance of steep hills contribute
to lower the fuel consumption of the Remiks
vehicles?

Our hypothesis centered on the belief that avoiding steep hills would reduce
fuel consumption for Remiks vehicles. Initially, our fuel calculation relied solely
on the amount of slope between nodes, considering the real road distance. We
discovered that this approach resulted in the optimization algorithm favoring
long arcs with low elevation, which was not our intended outcome.

We recognized the need to incorporate a distance measure into the algorithm to
address this issue. By considering fuel consumption from elevation and road dis-
tance, we can avoid the unintended behavior of prioritizing long, low-elevation
arcs. This modification allows us to strike a balance between minimizing the
impact of elevation on fuel consumption while still optimizing routes based on
overall distance traveled.

Through this adjustment, we aim to create routes that are efficient in terms of
fuel consumption and take into account the practical considerations of accurate
road distances. We can achieve a more realistic and practical optimization
outcome by considering both factors simultaneously.
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9.4 Summary

In this Chapter, we have assessed the effectiveness of the DPDP approach in
waste management route optimization and outlined several promising lines
of research. We have found that the algorithm generates routes that closely
resemble Remiks’ existing routes, making it a valuable tool for training new
drivers. Further research is recommended to refine the optimization techniques
and incorporate real-time data and emerging technologies. The importance
of route simplicity, consistency, and reliability are emphasized. Our findings
indicate that both elevation and distancemeasures are important factors to take
into account when aiming to reduce fuel consumption. Further, we encourage
the incorporation of more variable factors such as speed and energy consumed
during the start and stop of the vehicles.

According to Target 3 in our Problem Definition, we have evaluated and com-
pared the proposed routes to the routes currently used by Remiks.





10
Concluding remarks
Our research delved into a methodology that facilitates the development of
energy-efficient waste collection routes. To augment the existing framework
of dpdp [1], we have integrated additional features pertaining to fuel con-
sumption. The implementation and testing of the proposed algorithm have
been conducted using real-world waste collection data generously provided by
Remiks. Furthermore, the solutions obtained from the algorithm are subject to
meticulous evaluation, drawing on Remiks’ valuable experience and feedback
to assess their efficacy and value. Our findings indicate that both elevation and
distance measures are important factors to take into account when aiming to re-
duce fuel consumption. We propose that the algorithm can be a supplementary
tool for enhancing driver training at Remiks.

10.1 Contributions

In this thesis, we have:

1. Integrated a formula for calculating fuel consumption by utilizing ob-
tained distance and elevation matrices, along with relevant data provided
by Remiks. We have maintained close and effective communication with
Remiks to ensure the proposed algorithm’s adaptability to their current
system.
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2. Successfully extended the DPDP algorithm introduced by Kool et al. (2021) [1]
to minimize fuel consumption. By leveraging this framework, we have
devised efficient and effective routes considering fuel consumption from
both distances traveled and inclinations.

3. Conducted a thorough evaluation and comparison of the proposed routes
with the routes currently utilized by Remiks. This evaluation process pro-
vides insights into the potential benefits and improvements the proposed
routes can offer Remiks regarding operational effectiveness and cost sav-
ings.

10.2 Future work

To guide future research, several key directions have been identified:

Scaling up tsp for a Higher Number of Nodes:While the current tspmodel
is trained to handle 100 nodes, there is a need to expand its capabilities to
accommodate a higher number of nodes. Scaling up the tsp model would
allow for more extensive route optimization, enabling waste collection services
to handle more prominent areas.

Incorporating a more dynamic fuel calculation: To improve the accuracy of
fuel consumption estimation, integrating variable factors into the fuel calcu-
lation algorithm would be advantageous. A more comprehensive and precise
fuel consumption model can be developed by incorporating speed, acceleration,
and deceleration variables. Additionally, accounting for the cumulative weight
of the vehicles would further enhance the accuracy of the fuel consumption
estimation.

Enhancing Slope Measurement Accuracy: The average slope between nodes
is used to measure elevation in the fuel calculation algorithm. Future research
could focus on developing a more accurate and precise method for measuring
slope. This could involve considering factors such as the steepness of individual
road segments or the incline/decline profile along a given route. The fuel
calculation algorithm can provide more reliable fuel consumption estimates by
improving the slope measurement.

Optimize the vrp for Fuel minimization: Currently, the vrp model focuses
on optimizing routes based on Euclidean distance. A valuable direction for
future work would be integrating fuel consumption minimization in the vrp
optimization process. This research has focused on implementing the tsp due
to API limitations.
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Expanding vrp for a Higher Number of Nodes: The vrp model has shown
promising results for up to 850 nodes. However, further advancements are
required to extend its capabilities and make it suitable for a more significant
number of nodes. By expanding the capacity of the vrpmodel, achieving more
accurate and optimized zone divisions could be possible, improving the overall
efficiency of waste collection operations.

Exploring these research areas would contribute to advancing waste man-
agement systems, enabling more efficient and optimized route planning for
waste collection services. These improvements have the potential to generate
cost savings, minimize environmental impact, and enhance customer satisfac-
tion.
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