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Abstract  
 
 
This thesis investigates the structure and function of planktonic food webs at two sites 
between Greenland and the Svalbard Archipelago, covering a coastal ecosystem influenced by 
Atlantic water masses (Kongsfjorden, 78º N) and a more oceanic system off the East 
Greenlandic shelf, influenced by the outflow of Arctic water and sea ice from the Arctic 
Ocean (northwest Fram Strait, 75 - 80º N). In Kongsfjorden, a seasonal study was conducted 
with sampling at six occasions between March and December 2006. Logistical constrains 
prohibited a similar extensive seasonal investigation in the ice-covered waters of northwest 
Fram Strait. Sampling fell into the onset (April-May 2008) and end (September 2006/2007) of 
the productive season. All four studies investigated the stocks of pico- to micro-sized 
autotrophs and heterotrophs, i.e. heterotrophic bacteria, proto- and metazooplankton. 
Production rates of autotrophs and heterotrophic bacteria were measured in Kongsfjorden. 
Ratios of heterotrophic and autotrophic biomass (H:A) and of specific bacterial and primary 
production (µBac:µPhyto) allowed to asses the overall structure and function of the investigated 
planktonic food webs and to compare them to published data from other Arctic regions. The 
emerging picture provides three distinct food web modes, where mode A is characterized by 
H:A < 1 and µBac:µPhyto > 1, new production, and large-celled phytoplankton. Mode B and C 
are characterized by dominance of heterotrophs (H:A > 1), more regenerated production, and 
small-celled phytoplankton. The difference between mode B and C is a difference in the 
specific production ratio, with µBac:µPhyto smaller and larger 1, respectively. According to this 
scheme, Arctic plankton communities appear to prevail under mode B and C most of the year. 
In Kongsfjorden, e.g. five of the six months sampled fell under mode B and C, with mode C 
being typical for light-limited winter communities. From own and literature data, it is 
suggested that the food web mode controlling physical factors are the amount of incident 
photosynthetically active radiation (PAR), ice cover, nutrient concentration, and water column 
stability. Due to an approximately latitudinal change in these physical settings, the relative 
prevalence of the three food web modes changes from the marginal seas to the central Arctic 
Ocean, with mode A most likely being absent from the highest latitude waters. In general, 
Arctic plankton communities appear to sustain on average a 3-fold higher H:A biomass ratio 
for a given phytoplankton stock than the world’s coastal oceans, which may mainly be due to 
extensive import of long-lived copepods from sub-Arctic European seas through advection. It 
is argued that the large stock of heterotrophs plays a crucial role in structuring Arctic plankton 
communities, with the potential to prohibit phytoplankton bloom formation (mode A) through 
extensive grazing. 
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1. Preface 
 

I remember watching the stars as a child, holding my breath in deep excitement and respect 

for this seemingly infinite number of twinkling lights. Despite my parents’ repeated assertion 

that the number of stars was all but endless, alone the view of the milky way has evoked the 

same deep feeling of an incomprehensible quantity ever since. It was not before my time at 

university that I learned that not only was there an estimate for how many stars there are in 

our universe (1021; van Dokkum & Conroy 2010), but that the number of bacteria inhabiting 

our world’s oceans is estimated to be 10 million times higher (1028; Whitman et al. 1998). No 

wonder that I became curious. In nature, organisms that numerous must be keystones species 

in the food webs they are part of.  

 

This thesis does not focus on bacteria exclusively, but includes also microbial plankton 

organisms that are several orders of magnitude larger (see Box 1). Yet, this work is dedicated 

to those parts of the marine food web closely linked to bacteria. The motivation for this thesis 

is anchored in a persistent fascination for brain-blowing large numbers and an enthrallment 

for how small things (nanoscale) can impact the structure and function of entire ecosystems. 

 

 

2. Introduction 

2.1 Marine planktonic food webs: the basic functional modes 
 

Bacterial biomass largely exceeds the joint biomass of fish and mammals in the World Ocean 

(Pomeroy et al. 2007), suggesting that bacteria play a vital role in marine food webs. Indeed, 

bacteria can be placed at the base of marine food webs together with phytoplankton, i.e. the 

main primary producers in the sea. Marine heterotrophic bacteria are, however, part of the 

secondary production as they utilize dissolve organic carbon (DOC), which is ultimately 

derived from the photosynthetic conversion of inorganic into organic carbon. While 

photosynthesis leads to the formation of particulate organic carbon, it also includes a variable 

fraction of extracellular organic carbon (Mague et al. 1980, Gosselin et al. 1997, Vernet et al. 

1998), which is concentrated in the matrix around small-celled organisms, aggregates, and 

faecal pellets, or dilutes in the sea (Azam & Malfatti 2007). Further, organic carbon is added 

to the dissolved pool by processes such as viral cell lysis (Bratbak et al. 1992, Suttle 2005),  
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Fig. 1: Conceptual diagram of the planktonic food web, indicating the main functional groups 
of organisms, grouped according to size and modes of nutrition and energy acquisition (see Box 
1). Basic trophic interaction between the different organism groups are indicated by black 
arrows, as well as the potential recycling of organic carbon and nutrients by broken arrows. 
Figure modified from Fenchel (1987). 

 

excretion and sloppy feeding by phagotrophs (Roy et al. 1989, Nagata & Kirchman 1991, 

Møller 2007). The dependence of bacteria on DOC as well as inorganic nutrients (Zweifel et 

al. 1993, Rivkin & Anderson 1997, Sala et al. 2002) links them tightly to the dynamics and 

production of phytoplankton (Cole et al. 1988, Ducklow & Carlson 1992, Ducklow 1999). 

This circumstance is reflected by a remarkably constant relationship between bacterial and 

primary production in the World Ocean, averaging about 0.15 to 0.2 (Cole et al. 1988, 

Ducklow et al. 1999). The ratio between bacterial and phytoplankton biomass ranges, on the 

other hand, by an order of magnitude (Ducklow 1999), indicating that stocks expand until 

removal processes cap them, i.e. engulfment by predators (Fenchel 1982, Sanders et al. 1992, 

Vaqué et al. 1994, Karayanni et al. 2008) or cell lysis due to viral infection (Suttle 2005). 

 

Heterotrophic nanoflagellates are the prime consumers of bacteria (Fenchel 1982, Sanders et 

al. 1992, Vaqué et al. 1994) and are a major trophic link between picoplankton (Box 1) and 

larger protozoan (unicellular) and metazoan (multicellular) predators. Among the larger 

protozoan predators, heterotrophic ciliates and dinoflagellates are predominating in most  
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Box 1 Classification of plankton 
 
Planktonic organisms can be classified in many different ways, e.g. according to: 
 
1. Size  
Cell size is relatively easy to determine by traditional microscopy, at the same time as it 
affects metabolic rates and ecological functions. It is therefore widely used to divide 
planktonic organisms into logarithmic size classes (Sieburth et al. 1978) of mesoplankton 
(2000 – 200 µm), microplankton (200 – 20 µm), nanoplankton (20 – 2 µm) and 
picoplankton (2 – 0.2 µm), as depicted in Fig. 1. 
 
A general trend appears to be that smaller organisms have i) higher specific affinity for 
nutrients due to a high surface area per unit volume (Jumars et al. 1993), ii) higher growth 
rate under nutrient or light limitation (Banse 1982, Thingstad & Sakshaug 1990), iii) 
decreased sinking rates (Smayda 1970), but iii) increased vulnerability to density control by 
grazing, since the numerical response time of grazers decreases with size (Kiørboe 1993). 
Most planktonic predators display size-selectivity and have a rather constant predator-prey 
size ration (Hansen et al. 1994). 
 
2. Mode of energy acquisition 
Organisms can acquire metabolic energy in two basic ways, i.e. by either heterotrophy or 
autotrophy. Heterotrophs consume particulate or dissolved organic matter to supply energy 
for synthesis of cellular components. Autotrophs, on the other hand, gain energy from the 
fixation of inorganic carbon, for example by photo- or chemosynthesis.  
 
Autotrophs and heterotrophs are found among unicellular and multicellular eukaryotes, as 
well as among prokaryotes, such as bacteria. A large number of protists are mixotrophic 
(Stoecker et al. 1989), i.e. combining both auto- and heterotrophy. In the present work, all 
organisms containing chloroplasts are classified as (photo-) autotrophs, although a large 
fraction of them may combine photosynthesis (i.e. conversion of inorganic into organic 
carbon by using light as energy source) with consumption of organic matter. 
 
3. Modes of nutrition 
Organisms can take up nutrition by engulfment of other organisms, called phagotrophy, or 
by diffusion of dissolved organic or inorganic nutrients over the cell surface, i.e. osmotrophy. 
By this classification, both heterotrophic bacteria and autotrophic phytoplankton are 
osmotrophs. As the surface area-to-volume ratio increases with decreasing size, smaller 
osmotrophs are generally the better competitors for a shared limiting substrate. Both, bacteria 
as well as phytoplankton need inorganic nutrients for growth and may be in competition for 
those in many ecological settings in the sea (Currie & Kalff 1984, Bratbak & Thingstad 
1985). 
 

 

marine ecosystems (Pierce & Turner 1992, Sherr & Sherr 2007), preying not only on 

nanoflagellates, but on a large variety of organisms of all sizes, down to pico-sized particles 

(Hansen et al. 1994). Consequently, ciliates and dinoflagellates are not only predators on 

nanoflagellates, but partly compete with them for the same source of food. Coexistence of 

competitive and predator-prey relationships is also encountered between ciliates, 
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dinoflagellates and larger metazoan predators, such as copepods. Depending on the copepod 

species and the ecosystems’ trophic state, copepods graze not only on larger phytoplankton, 

such as diatoms, but prey upon protozooplankton, i.e. heterotrophic nanoflagellates, ciliates, 

and dinoflagellates (Stoecker & Capuzzo 1990, Kleppel et al. 1991, Levinsen et al. 2000b, 

Calbet & Saiz 2005). Predation by copepods on protozooplanton can generate trophic 

cascades within the microbial plankton community, profoundly shaping composition and rates 

of lower trophic levels down to primary producers and bacteria (Pace et al. 1999, Zöllner et al. 

2009). Thus, a multitude of trophic interactions coexist in the sea, hampering the study of 

carbon and nutrient flow from the dissolved pool to metazoans, i.e. higher trophic levels. To 

cope with this complexity, simplified models of planktonic food chains have been developed 

(e.g. Fig. 1).  

 

The simplest of these theoretical planktonic food chains places large phytoplankton, such as 

diatoms at the base of the chain. Diatoms are grazed upon by copepods, which in turn are prey 

for fish (depicted at the right hand side of Fig. 1). The counterpart to this “classical” model 

was described by Azam et al. (1983) as “microbial loop”. In this model bacteria form the 

basis of the food chain, utilizing DOC of phytoplankton origin (depicted at the left hand side 

of Fig. 1). The term “loop” was chosen because the bacterial based food chain requires an 

increased number of trophic level for photosynthetically fixed energy to reach copepods and 

fish. Each trophic interaction leads to loss of about 10 – 20% energy due to respiration 

processes (Ryther 1969). Most of the originally induced energy is thus respired before 

reaching higher trophic levels. In this process, carbon and nutrients are released to the 

dissolved pool, returning them to their source and thus closing the “loop”. 

 

In nature, the classical and microbial food chains do not only coexist beside each other, but 

interweave in a multitude of different ways to one food web. Nevertheless, various biotic and 

abiotic factors lead to the modulation of planktonic food webs of more classical or microbial 

character (Legendre & Rassoulzadegan 1995). In general, differences in food web structure 

can be found between coastal and open-ocean ecosystems (Ryther 1969, Cushing 1989, 

Legendre & Rassoulzadegan 1995, Gasol et al. 1997). While autotrophs (i.e. phytoplankton) 

contribute more to total plankton biomass in coastal seas, heterotrophs (i.e. heterotrophic 

bacteria, proto- and metazooplankton) dominate in open oceans (Legendre & Rassoulzadegan 

1995, Gasol et al. 1997). Metazooplankton, and especially copepods, dominate the 

heterotrophic biomass in coastal waters, while the composition of heterotrophs appears more  
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Fig. 2: Development of important a) biotic and b) abiotic factors from the prebloom to 
postbloom phase of a theoretical high-latitude system, modified from Berreville et al. 2008 

 

equally partitioned between bacteria and the bulk of proto- and metazooplankton in the open 

sea (Gasol et al. 1997). This indicates that a greater proportion of photosynthetically fixed 

energy flows through microbial food webs under stratified oligotrophic conditions, whilst 

being more directly channelled to metazoan plankton and fish in more eutrophic waters 

(Cushing 1989, Uye et al. 1999). The dominance of copepods in turn, leads to a strong 

predation pressure on, and subsequent suppression of protozooplankton stocks in coastal areas 

(Ratkova et al. 1998, Levinsen & Nielsen 2002), generating a food web of more classical 

character. 

 

A crucial abiotic factor, generating the described differences between coastal and open-ocean 

systems, is the concentration and supply of inorganic nutrients (Legendre & Rassoulzadegan 

1995, Duarte et al. 2000), with coastal systems being generally more eutrophic than the open  

sea. The more eutrophic nature of coastal areas leads at least temporarily to the build-up of 

larger phytoplankton stocks than in open seas (Valiela 1995). Plankton communities in open-

ocean sustain, however, on average a 10-fold higher heterotrophic biomass for a given 

autotrophic biomass than coastal planktonic systems (Gasol et al. 1997). This is caused by the 

higher phytoplankton growth rates occurring in oligotrophic systems (Goldman et al. 1979,  
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Fig. 3: Theoretical classification of the two main modes of planktonic food webs, determined by 
the specific production ratio of bacteria versus phytoplankton (µBac:µPhyto) and the biomass ratio 
of heterotrophs (H = heterotrophic bacteria, proto- and metazooplankton) and autotrophs (A).  

 

Laws et al. 1984), fuelled through the efficient recycling of nutrients by the heterotrophic 

microbial community (Azam et al. 1983). In contrast, the build up of large phytoplankton 

stocks and direct transfer to metazooplankton leads to the loss of a larger fraction of 

autotrophic biomass (i.e. nutrients) to deeper water layers and the benthos in coastal areas 

(Wassmann 1990, Baines et al. 1994). This results, in turn, in larger seasonal changes in 

structure and functioning of coastal plankton communities compared to open-ocean systems 

(Cushing 1989). 

 

The seasonal change in plankton structure in high- and mid-latitude coastal areas consists 

primarily of a shift from a nitrate-based new production to an ammonium-based regenerated 

production (Dugdale & Goering 1967, Eppley & Peterson 1979), regulated by the plankton 

communities’ capacity for nutrient regeneration. In general, new production occurs after the  

replenishment of inorganic nutrients in the euphotic zone from deeper water layers through 

mixing events, advection or upwelling (Fig. 2). Storms during autumn and winter can erode 

water column stratification and amend surface waters with nutrients. Subsequently, new 

production and large stocks of phytoplankton, dominated by large cells such as diatoms, are 

recurrently encountered in coastal seas during spring (Ryther 1969, Cushing 1989). The 
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vernal bloom is initiated by the increase in photosynthetically active radiation (PAR), and in 

some areas also by the shallowing of the mixing depth (Sverdrup 1952, Platt et al. 1991). The 

build-up of a large autotrophic biomass and often the presence of a food web of classical 

character, results in the depletion of essential nutrients in the surface waters (Valiela 1995). 

The subsequent resource-control of autotrophs changes the balance between competing 

species and groups of organisms, leading to a restructuring of the food web to one of more 

pronounced microbial character. Production becomes thus sustained by the microbes’ nutrient 

regeneration (Azam et al. 1983), often associated with rises in water temperature and 

shallowing of the surface mixed layer (Cushing 1989, Kiørboe 1993).  

 

In summary, planktonic food webs shift between two main patterns, as depicted in Fig. 3 as 

mode A and B. Mode A reflects a more classical plankton community generated by new 

production with an autotrophic biomass dominating over that of heterotrophs (H:A < 1). 

Concomitantly, bacteria exert a higher specific production rate than the autotrophs 

(µBac:µPhyto > 1). In mode B, heterotrophs dominate planktonic biomass (H:A > 1), sustained 

by fast-growing autotrophs (µBac:µPhyto < 1), which in turn are fuelled by the efficient 

recycling of nutrients by the microbes.  

 
 

2.2 Specificities of Arctic marine ecosystems 
 

Arctic seas are distinct from other marine ecosystems in a number of ways, such as extreme 

seasonal changes in solar radiation and sea ice cover. Sea ice affects plankton communities 

twofold, by limiting penetration of PAR to the water column and strongly stratifying the water 

column due to freshwater release in connection with sea ice melt in summer. The strong water 

column stratification efficiently impedes the replenishment of nutrients to the upper mixed 

layer. Thus, strong water column stratification and shorter seasonal photoperiod results in 

lower annual primary production in ice-covered high-latitude systems, compared to lower 

latitude open water regions (Wassmann & Slagstad 1993, Reigstad et al. 2002, Sakshaug 

2004).  

 

While sea ice impinges the overall productivity in Arctic seas, sea ice melt in spring/summer 

initiates intense blooms of phytoplankton along the ice edge, often dominated by diatoms 

(Sakshaug & Skjoldal 1989). These blooms (mode A) are highly transient due to the fast 
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depletion of nutrients in the fresh surface layer, lasting seldom longer than 20 days (Perrette et 

al. 2011). They are, however, crucial for pelagic secondary production (Ringuette et al. 2002, 

Leu et al. 2011), and may generate up to 65% of the annual primary production in productive 

seas like the Barents Sea (Sakshaug 2004). Hence, substantial vertical export of biogenic 

matter out of the euphotic zone may be connected to these blooms, thus fuelling much of the 

benthic production in Arctic marginal shelf seas (Piepenburg et al. 1997, Reigstad et al. 

2008). 

 

Pomeroy and Deibel (1986) postulated that temperature-inhibited bacterial production 

allowed for the development of these extensive phytoplankton blooms in perennially cold 

seas, since only little of the photosynthetically produced material might be subjected to 

bacterial degradation. In later years, several studies (e.g. Thingstad & Martinussen 1991, 

Rivkin et al. 1996, Wheeler et al. 1996, Rich et al. 1997, Yager et al. 2001) have casted doubt 

on the Pomeroy hypothesis and on whether bacterial growth is inhibited by low temperatures 

(Box 2). In fact, bacterial growth rates similar to those at lower latitudes have been reported 

from Arctic seas in summer (Rivkin et al. 1996, Anderson & Rivkin 2001). During winter, 

bacterial production is low (Sherr & Sherr 2003, Garneau et al. 2008) most likely due to the 

lack of labile DOC production through phytoplankton (Thingstad 2009).  

 

Among the many unresolved questions is how organisms, not only bacteria, survive months 

without larger food supply (Paffenhöfer et al. 2007). The presence of virtually all major 

prokaryotic and eukaryotic lineages in Arctic waters (Lovejoy et al. 2006, Bluhm et al. 2011, 

Lovejoy & Potvin 2011) demonstrates, however, the successful adaptation of organisms not 

only to low temperatures, but also to the extreme seasonality in food supply. 

 

Organisms have adapted differently to the long periods of food scarcity of polar seas. Among 

protists, mixotrophy is common (Stoecker et al. 1989, Putt 1990), although information on the 

extent and seasonal variation in mixotrophy is unknown from Arctic areas (but see Levinsen 

et al. 2000a). The best investigated adaptation to the pulsed Arctic food regime is that of 

larger copepods of the genus Calanus. These copepods synthesize large amounts of wax 

esters and fatty acids during the periods of elevated food supply (Lee et al. 2006). These 

internally sequestered lipids allow the copepods to survive the winter non-feeding at depth, 

and some can even fuel their reproduction based upon their internal lipid reserves (Conover & 

Huntley 1991, Falk-Petersen et al. 2009). The result of this strategy is twofold. It allows these  
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Box 2 Possible effects of low water temperatures  
 
Temperature influences all biochemical reaction rates, and subsequently the metabolism of 
all organisms, from prokaryotes to unicellular and multicellular eukaryotes (Gillooly et al. 
2001). Nearly all rates of biological activity increase exponentially with temperature. Many 
biological rates double or triple over a temperature increase of 10º C (e.g. Hansen et al. 
1997). It is thus only consequent that the impact of low water temperatures on planktonic 
communities in polar waters has repeatedly been an issue of debate. Especially the formation 
of extensive phytoplankton blooms in cold waters have lead to hypothesis that growth rates 
of phytoplankton and heterotrophs might be affected differently by temperature (Pomeroy & 
Deibel 1986, Rose & Caron 2007). 
 
For heterotrophic bacteria, the discussion on whether temperature is limiting their production 
has been ongoing since the article by Pomeroy and Deibel (1986). Yet, no consensus is 
reached, except for the notion that it might not be temperature per se which is limiting 
bacterial production in polar seas, but rather some combination of temperature with other 
factors, such as e.g. low concentrations of labile DOC (Pomeroy & Wiebe 1986, Thingstad & 
Martinussen 1991, Nedwell 1999, Middelboe & Lundsgaard 2003, but see Kirchman et al. 
2005, Kirchman et al. 2009). Others argue that the low bacterial production often observed in 
polar waters may be the result of low standing stocks, despite relatively high bacterial growth 
rates (Billen & Becquevort 1991, Rivkin 1991, Rivkin et al. 1996). High rates of bacterivory 
(Laurion et al. 1995, Anderson & Rivkin 2001, Duarte 2005) and viral lysis (Wells & 
Deming 2006, Payet & Suttle 2008) have been argued to be responsible for the low bacterial 
stocks. Hence, some authors disagree with the notion that heterotrophic bacteria and the 
microbial food web connected to them are of less importance in the cycling of carbon in 
polar waters than elsewhere (Rivkin et al. 1996, Wheeler et al. 1996, Rich et al. 1997, Yager 
et al. 2001). 
 
For protists, Rose and Caron (2007) suggested that the growth of heterotrophs were more 
severely hampered by decreasing temperatures than that of phototrophic protists. They 
speculate that the difference could be due to different temperature-dependence of catabolic 
and anabolic processes. The authors themselves appreciate, however, that data on growth 
rates of heterotrophs at temperatures <5º C are scarce. It thus remains the focus of future 
work to support or reject the ideas put forward by Rose and Caron (2007). 
 
The observed and expected climatic changes in polar regions have stimulated various 
experimental investigations of how increased water temperatures may alter polar microbial 
communities (for review see Sarmento et al. 2010). The results suggest that increased water 
temperatures will not affect different rates equally, and may profoundly alter food web 
structure and function. 
 
The present work does not want to negate the effects low water temperature may have on 
organisms, and subsequently food web structure and function, but does not discuss this issue 
further in detail. 
 

 

copepods to time reproduction so that their offspring can take full advantage of the vernal 

peak in autotrophic biomass and their copepodites to grow and mature through more than one 

productive season (Falk-Petersen et al. 2009).  
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The longevity of Calanus allows for long-range transportation of these heterotrophs with 

ocean circulation through the Arctic Ocean and adjacent seas (Mumm 1993, Kosobokova & 

Hirche 2000, Carmack & Wassmann 2006). The Atlantic species C. finmarchicus, for 

example, is encountered in the central Arctic Ocean (Mumm 1993, Thibault et al. 1999, 

Kosobokova & Hirche 2000), where it most probably does not reproduce (Kosobokova & 

Hirche 2000, Slagstad et al. 2011). Kosobokova and Hirche (2000) argue that the Arctic 

Ocean hosts both an autochthonous and allochthonous metazooplankton community, with the 

autochthonous biomass being low. 

 

The Arctic marine ecosystem differs from those at lower latitudes due to the extreme 

seasonality in light, sea ice cover, and strong haline water column stratification, resulting in 

variable timing of the spring bloom and a generally shorter productive season. The presence 

of virtually all major prokaryotic and eukaryotic lineages in Arctic waters suggests the 

successful adaptation of organisms to low water temperatures and strong seasonality in food 

supply. Arctic metazooplankton composition and biomass appear highly allochthonous. 
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3. Aims and objectives 

 

The aim of this thesis is it to describe some of the above depicted trophic dynamics through 

the simultaneous description of stocks and rates of heterotrophic bacteria, phototrophic and 

heterotrophic protists, as well as copepods in two regions of the European Arctic and at 

different times of the year. The great heterogeneity of the physical environment in the western 

part of the European Arctic, namely Fram Strait, called for comparative studies in contrasting 

(i.e. coastal versus open-sea), but adjacent ecosystems, dominated by Atlantic versus Arctic 

water masses, respectively. Towards the end the perspective is widened, addressing the 

pelagic food web structure and function in the entire Arctic Ocean, based on own and 

literature data. 

 
 

The specific objectives were: 
 

1. To describe the structure and function of the planktonic food web in a high-latitude 

coastal ecosystem over the course of a year (Paper I, II) 
 

2. To compare the planktonic food web structure of a high-latitude coastal ecosystem 

with that of an adjacent open-sea ecosystem (Paper I, II, III, IV) 
 

3. To identify regulatory mechanisms shaping planktonic food web structure (Paper I, 

II, III, IV) 
 

4. To discuss whether high-latitude planktonic food webs are substantially different from 

those encountered at lower latitudes (Paper I, II, III, IV) 
 

 

 

4. Fram Strait – the study area 
 

Fram Strait, situated between northeast Greenland and the Svalbard Archipelago, is the only 

deep gateway between the Arctic Ocean and sub-Arctic seas. It is a place of extensive water 

mass exchange with the North Atlantic (Fig. 4). Two opposing current systems characterise 

the hydrographic and dynamical regime in Fram Strait (Schlichtholz & Houssais 2002, 

Schauer & Beszczynska-Möller 2009). The West Spitsbergen Current (WSC), a continuation 

of the North Atlantic Current, is flowing northwards along the shelf slope of West  
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Fig. 4: Overview of the study area between northeast Greenland and the Svalbard Archipleago. 
The main current systems are indicated, with the West Spitsbergen Current (WSC, red arrows) 
transporting warm, saline water of Atlantic origin into the Arctic Ocean, while the East 
Greenland Current (EGC, blue arrow) exports sea ice and cold, fresh water of Arctic origin 
southwards. Recirculation of Atlantic water occurs between the EGC and WSC (broken red 
arrow). The sampling areas are indicated by boxes. Box 1: Paper I & II, box 2: Paper III, box 3: 
Paper IV. 

 

Spitsbergen, transporting warm and saline Atlantic Water (AW; >2ºC and salinity >34.91) 

into the Arctic Ocean. To the west, the East Greenland Current (EGC; 1º and >6ºW) exports 

cold Arctic Water (ArW; <0ºC and salinity <34.7) in the upper layers from the Arctic Ocean 

southwards along the East Greenland shelf slope (Gascard et al. 1988, Schlichtholz & 

Houssais 2002). Between these two main currents, a complex transitional zone is found where 

AW from the east recirculates west and southwards, and mix with water masses of Arctic 

origin to the west (Gascard et al. 1988, Schauer & Beszczynska-Möller 2009). The 

stratification of the EGC and subduction of AW under ArW at and near the EGC front, results 

in strong vertical stability opposing the supply of nutrients to the surface mixed layer from 

below. 

 

Sea ice conditions and position of the ice edge in Fram Strait are mainly determined by 

dominating wind fields and heat fluxes from the sea (Germe et al. 2011). The latter results in  
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Table 1 Comparison of surface water mass characteristics of eastern and western Fram Strait. 
Concentration of dissolved organic carbon (DOC) and nutrients are given in µM. Nutrient 
concentration are those reported from winter in the surface layer. Total annual primary 
production is based on model simulations (mg C m-2 y-1). 
 

 

 Western Fram Strait Eastern Fram Strait 
 

Water origin Central Arctic North Atlantic 
Water mass Polar Water (PW) 1 Atlantic Water (AW) 1 

Temperature <0 ºC1 >2 ºC1 
Salinity <34.71 >34.911 
DOC 75.8 ± 10.22 58.2 ± 4.92 
Nitrate <83 10 - 124 
Phosphate ≤0.53 0.754 
Silicate 6 - 75 4.54 
Primary production (total) 20 - 606 100 - 1406 
Primary production (new) 13 - 327 55 - 1007 
Sea ice type first-year and multi-year first-year 
Sea ice extent perennial seasonal 

 
 

1Schlichtholz and Houssais 2002; 2Amon & Benner. 2003; 3Paper III; 4Reigstad et al. 2002; 5unpublished data 
M. Reigstad; 6Reigstad et al. 2011; 7Sakshaug (2004) 
 

much lower sea ice concentrations on the Atlantic influenced eastern side of the strait over the 

course of a year. Here, heat flux from the AW prevents local ice formation during winter and 

enhances melting of advected sea ice from the north. In the west, on the contrary, the EGC 

exports large quantities of Arctic sea ice (Gascard et al. 1988, Vinje et al. 1998). Historically, 

thick and old multiyear ice dominated the Arctic pack ice that is exported through Fram Strait, 

but the thinning of the Arctic sea ice is reflected by the increasing contribution of younger and 

hence thinner ice (Maslanik et al. 2011). Minimum sea ice extent in the western Fram Strait 

coincides with the annual ice minimum in the Arctic in September. Primary producers may 

therefore experience ice-induced PAR limitations during most of the year in the western part 

of Fram Strait. Thus, highly different production regimes exist at similar latitudes across Fram 

Strait (Wassmann et al. 2010, Reigstad et al. 2011).  

 

Model simulations suggest an annual primary productivity of 100 to 140 g C m-2 y-1 in the 

waters influenced by AW in the east (Reigstad et al. 2011). Total annual primary productivity 

decreases sharply towards the west to about 20 to 60 g C m-2 y-1 on the northeast Greenland 

shelf (Reigstad et al. 2011). Beside light limitation due to ice cover, low concentrations of 

nitrate in the ArW (<8 µM; Table 1) may limit the overall phytoplankton production in the 

west (Lara et al. 1994). Owing the heterogeneity of the pack ice, interannual variations in 

primary production are much larger in the west than in the aestival ice-free east (Wassmann et 

al. 2010).  
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The hydrographic differences across Fram Strait make it an ideal place to study ecosystems 

with contrasting water temperatures, ice conditions, and biogeochemical characteristics, such 

as concentrations of nutrients and dissolved organic carbon (Table 1). In the present work, 

financial and logistic restrictions prohibited an entirely ship-based field program for sampling 

the different open-sea hydrographical regions in Fram Strait on a seasonal scale. The seasonal 

investigation of the planktonic food web was thus conducted in Kongsfjorden, with the 

support of the scientific land base in Ny Ålesund (Paper I & II). 

 

Kongsfjorden, situated at the west coast of Spitsbergen (largest island of the Svalbard 

Archipelago), is facing the Fram Strait to the west and has been argued to be part of the 

eastern Fram Strait system (Hop et al. 2006). The absence of a sill and presence of a cross-

shelf trench allows water mass exchange across the ocean-shelf-fjord boundary, resulting in 

frequent advection of warm AW from the WSC into the fjord (Svendsen et al. 2002, Cottier et 

al. 2005). The extent and frequency of advection events varies between years. They have been 

shown to heavily impact the floral (Hodal et al. in press) and faunal (Basedow et al. 2004, 

Willis et al. 2006, Willis et al. 2008, Walkusz et al. 2009) plankton community. In late 

January to early March (Cottier et al. 2007) and mid-May and mid-July 2006 (F. Cottier pers. 

comm.), an extensive inflow of AW was recorded by an oceanographic mooring in the outer 

basin of the fjord. Local processes led, however, to the modification of these advected water 

masses inside the fjord. Strong winds led to intense cooling and mixing of the water column 

in March, resulting in a homogenous water column of 0.6 ± 0.1ºC and salinity of 34.7 ± 0.2 

(Paper I & II). From the time of the snow-melt (May/ June) and onwards, the fjord was 

influenced by freshwater run-off from glaciers and land, resulting in a shallow stratified water 

column with surface water salinities of 33.8 ± 0.9. Consequently, local processes 

(atmospheric cooling, freshwater run-off) and mixing with other water masses within the fjord 

(Svendsen et al. 2002), result in a very different hydrographical regime than off the shelf.  

 

In summary, the studies on plankton food web structure derive from two different Arctic 

marine environments. The seasonal study, presented in Paper I and II, is from a high-latitude, 

ice-free Atlantic influenced coastal system, while the work presented in Paper III and IV is 

from the Arctic influenced, ice-covered waters of northwest Fram Strait.  
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5. Results and discussion 

5.1 Kongsfjorden: Seasonal changes in planktonic food web structure and function in 

a high-latitude coastal ecosystem 

 

The structure and function of a high-latitude coastal planktonic food web was investigated in 

Kongsfjorden (Paper I & II) at six occasions over the course of one year (2006), covering a 

pre-bloom (March), phytoplankton bloom (April), post-bloom (May), as well as summer 

(July), autumn (September) and winter (December) situation. Stocks and rates of autotrophs 

(i.e. biomass of pico-, nano- and micro-autotrophs, as well as total primary production) and 

heterotrophs (i.e. biomass of heterotrophic bacteria, proto- and metazooplankton, as well as 

bacterial production) were measured from six depths (1, 5, 10, 15, 25 and 50 m) at one station 

in the mid section of the fjord. Consequently, neither a high temporal nor spatial resolution 

was obtained, but all efforts were directed to sampling as many planktonic groups as possible  

simultaneously, allowing a discussion regarding the planktonic food web as a whole. The 

result of Paper I & II are summarized in Fig. 5 and Fig. 6. 

 

Example of a mode A planktonic food web 
According to the specific production and biomass ratios of autotrophs and heterotrophs, the 

high-latitude coastal planktonic food web in Kongsfjorden had a more pronounced microbial 

character during most parts of the year (mode B; Fig. 5a; Paper I, II). Only in April, when a 

dense bloom of phytoplankton was encountered the food web was classified as mode A (Fig. 

5a and Fig. 6 upper right panel). The large autotrophic biomass was the result of the seasonal 

increase in irradiance at concomitantly high concentrations of inorganic nutrients (Paper I), 

and a low stock of metazoan grazers (Paper II). The latter most probably lead to low grazing 

pressure on both protozooplankton as well as large phytoplankton. While the increasing stock 

of protozooplankton may have impeded bloom formation of small phytoplankton, the growth 

of large phytoplankton was most likely neither controlled by protozoan nor metazoan grazers, 

thus allowing the bloom formation of large-sized phytoplankton, such as diatoms and 

autotrophic dinoflagellates (Paper II).  

 

A special feature of the phytoplankton bloom encountered in April was the prodigious 

abundance of the prymnesiophyte Phaeocystis pouchetii (Paper I). Phaeocystis is 

polymorphic, with its life cycle including solitary flagellated cells of 3 to 8 µm size, as well as  
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Fig. 5a,b: The planktonic food webs in Kongsfjorden for the different months sampled (Paper I 
& II), according to a) the specific production ratio of bacteria and phytoplankton (µBac:µPhyto) 
and the biomass ratio of heterotrophs (H = heterotrophic bacteria, proto- and metazooplankton) 
and autotrophs (A), as well as b) biomass distribution of autotrophs (Auto), bacteria (Bac), 
protozooplankton (Proto) and metazooplankton (Meta).  

 

gelatinous colonies of non-flagellated cells, reaching diameters of up to 2 cm (Verity et al. 

1988, Rousseau et al. 1994). In Kongsfjorden in April, Phaeocystis was present in both 

solitary as well as colonial forms (pers. obs.). Blooms of the colonial form are recurrent in 

boreal and Arctic waters (Degerlund & Eilertsen 2010), and have also been reported from 

warm water areas (Schoemann et al. 2005 and references therein). The mechanisms causing 

these extensive blooms are still under debate. It might be that Phaeocystis escapes grazer 

control by colony-formation, at least when metazoan grazers are largely absent, as protozoans 

may not be efficient grazers on the large gelatinous colonies (Nejstgaard et al. 2007 and 

references therein). Thus, gaps in grazing control on phytoplankton may have lead to the 

formation of the high autotrophic biomass (Riegman et al. 1993, Irigoien et al. 2005) 

encountered in Kongsfjorden in April. 

 

The phytoplankton bloom was most likely at its peak or the beginning of senescence, as 

suggested by the low specific autotrophic growth (µPhyto = 0.02 d-1). The long generation time 

of the phytoplankton population was most likely due to the onset of resource limitation for 

some species, as well as self-shading for large parts of the phytoplankton stock (concentration 

of Chl a remained high with 9 to 10 µg Chl a l-1 down to 50 m, while primary production 

dropped markedly below 5 to 10 m depths). Bacteria, on the other hand, thrived with high 
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specific growth rates (µBac = 0.45 d-1), most probably utilizing high concentrations of labile 

DOC from the senescing autotrophs and carbohydrate-releasing Phaeocystis (Thingstad & 

Martinussen 1991, Verity et al. 1991, Janse et al. 1999). This facilitated the build-up of a large 

bacterial stock as encountered in the post-bloom situation in May, resulting in a very different 

plankton biomass distribution than in April (Fig. 5b). 

 

Three examples of mode B planktonic food webs 

Example 1: While plankton biomass was distributed according to a regular upward pointing 

biomass pyramid with a broad autotrophic base in April, the biomass pyramid became 

inverted in May (Fig. 5b), as the concentration of essential nutrients became more limiting 

(N:P = 1.7) and primary production most probably largely based on regenerated nutrients 

(Paper I). Under these conditions (mode B; Fig. 6 middle left panel), bacterial biomass was as 

large as that of total zooplankton (proto- and metazooplankton), resulting in a biomass ratio 

(H:A = 15) similarly high to that found in winter. Metazoans dominated total zooplankton, 

and meroplankton, copepod nauplii, and small copepodids contributed >50% to the total 

metazooplankton biomass (Paper II), as often encountered in coastal and shelf waters at this 

time of the year (Turner et al. 2001, Pasternak et al. 2008).  

 

The high contribution of meroplankton and copepod nauplii suggested that the extensive 

phytoplankton bloom in April had not only fuelled reproduction of holoplankton, but also that 

of benthic animals, most likely due to an efficient pelagic-benthic coupling as result of the 

high autotrophic biomass (Wassmann & Reigstad 2011). Vertical export and most probably 

substantial grazing by an increased metazoan community, lead to a reduction of 

phytoplankton and protozooplankton biomass in May compared to April by a factor of 60 and 

7, respectively (Paper I and II, respectively). The potential top-down control of the 

phytoplankton in May was illustrated by a very high population growth rate (µPhyto = 1.2 d-1). 

In contrast, the large biomass of bacteria experienced most likely a weak substrate limitation 

as indicated by i) the low specific growth of the population (µBac = 0.03 d-1), ii) a good linear 

correlation of log-transformed bacterial biomass and log-transformed bacterial production 

(yLog BB = 1.787 + 0.236xLog BP; r2 = 0.906; p < 0.05) according to Ducklow (1992), as well as 

iii) low bactivorous biomass (heterotrophic nanoflagellates, the main predators on bacteria, 

contributed only 8 % to the already low total protozooplankton biomass). The data do not  
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Fig. 6: Simplified food web structure of the plankton communities in Kongsfjorden based on 
the findings of Paper I & II. Numbers in the boxes are integrated biomass (mg C m-2) and the 
thick grey and green arrow are bacterial and primary production (mg C m-2 d-1), respectively. 
Nutrient concentrations (N: nitrate, P: phosphate, Si: silicate) are given in µM. Concentrations 
of dissolved organic carbon (DOC) in µg l-1. The black arrows indicate possible ways of 
interaction between different food web compartments, with the thickness of the arrows 
suggesting main trophic interactions, as discussed in the text under 5.1. Note that the size of the 
biomass boxes and production arrows are not scaled to the real numbers but are a qualitative 
visualisation only.  
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allow for a conclusion on whether bacterial growth was limited by carbon or nutrients. 

However, in a field study and subsequent modelling exercise, Møller and Nielsen (2000) and 

Thingstad et al. (2002) demonstrated that bacteria experienced carbon limited growth under 

conditions similar to those encountered in Kongsfjorden in May, i.e. high joint biomass of 

copepods and heterotrophic dinoflagellates keeping autotrophic biomass low and nutrient 

regeneration high. 

 

Example 2: In summer (July), the water column became strongly stratified due to fresh-water 

run-off from land and the biomass distribution became more squared (H:A closer 1; Fig. 

5a,b). Despite the already low concentration of essential nutrients in May, autotrophic 

biomass increased by a factor of 5 in July (Fig. 6 middle right panel), depleting nutrient 

concentration further to a N:P ratio of 0.3 (Paper I). Pico- and nano-sized autotrophs 

dominated the phytoplankton stock, as typical for stratified oligotrophic conditions (Thingstad 

& Sakshaug 1990, Agawin et al. 2000). The small phytoplankton may have been in direct  

competition for inorganic nutrients with bacteria, due to the generally increasing affinity for 

nutrients with decreasing size. The low growth (µBac = 0.05 d-1) and large stock of the 

bacterial community suggested that bacteria i) were substrate limited either by DOC or 

inorganic nutrients, and ii) experienced little predation, despite heterotrophic nanoflagellates 

dominating with 87% the increased stock of protozooplankton. It can be speculated that nano-

sized protozooplankton grazed on the faster growing pico- and nano-autotrophs instead for 

bacteria. The larger protozooplankton, such as heterotrophic ciliates and dinoflagelates, 

experienced most likely strong predation by the large stock of metazooplankton at a time 

when >70% of autotrophs were <10 µm, and consequently largely unavailable for the biomass 

dominating calanoid copepods (Frost 1972, Hansen et al. 1994). It thus appears that a 

complex and tight food web structure prevailed in July, with predation by metazooplankton 

on large protozooplankton (i.e. heterotrophic ciliates and dinoflagellates) most probably 

cascading via heterotrophic nanoflagellates down to pico- and nano-sized autotrophs as 

suggested by the inverse size of predator and prey stocks. 

 

Example 3: A similar complex food web was encountered in September (Fig. 6 lower left 

panel). Despite erosion of the shallow water column stratification and replenishment of 

nutrients to the surface layer (N:P = 6.2), primary production was only half of that measured 

in July (Paper I), reflecting the shorter day length and lower solar angle in September. Small 

autotrophs continued to dominate the phytoplankton community (85% of chlorophyll a was 
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<10 µm, Paper I), but diatoms increased in abundance (Paper II), most probably fuelled by the 

increased nutrient concentrations and subsequently new production. The elevated diatom 

biomass was mirrored by increased abundance of heterotrophic dinoflagellates, known to 

graze on large phytoplankton (Hansen 1991, Sherr & Sherr 2007). Together with ciliates, 

heterotrophic dinoflagellates constituted 80% of the total protozooplankton biomass (Paper 

II). The increased biomass of large protozoans was most likely possible due to decreased 

abundance of metazooplankton, as well as diatoms constituting an alternative food source for 

large calanoid copepods, thus relieving the grazing pressure on protozooplankton (Ratkova et 

al. 1998, Levinsen & Nielsen 2002). 

 

 

Two examples of mode C planktonic food webs 

The encountered planktonic food webs in March and December were not described by either 

mode A nor B. Heterotrophs dominated the food web both in terms of biomass (H:A >> 1) as 

well as specific production (µBac:µPhyto > 1); a situation referred to as mode C hereafter (Fig. 

5a). Under this scenario (Fig. 6 upper left and lower right panel), bacterial production 

appeared uncoupled from that of autotrophs, most likely fuelled by semi-labile DOC 

remaining from the previous productive season (Thingstad et al. 1997, Sintes et al. 2010). 

Bacterial growth could therefore have been limited by the quality of DOC (Thingstad 2009), 

but was with 0.2 d-1 not exceptionally low. This may have been due to the large substrate 

variety bacteria are able to process during winter (Sala et al. 2008). At the same time, the 

bacterial community experienced most probably strong grazing pressure from a ravenous 

protozooplankton community, as suggested by the disconnection of bacterial biomass and 

production (Ducklow 1992). 

 

The temporal decoupling of primary and secondary production, as depicted by mode C, is 

intuitive in December, when primary production was negligible due to the complete absence 

of sunlight. In March, however, the sun had returned to Kongsfjorden, with daylight lengths 

of about 12 hours per day. The depth of the euphotic zone was estimated to approximately 40 

m at noon (E. Nøst Hegset pers. comm.). Autotrophic production appeared nevertheless 

restricted by PAR, as indicated by the low primary production measured (4 mg C m-2 d-1) at 

wintry high concentrations of essential nutrients (N:P = 13.5, Paper I). This may have had two 

reasons. Firstly, solar elevation is low at 78º N in March, leading to sun rays hitting the sea 
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surface at a very low angle which in turn results in relatively low quantities of solar energy 

per square metre (Sakshaug 2004). Secondly, very strong winds prevailed during the sampling 

period in March, which may have dispersed autotrophs repeatedly below the eutrophic zone in 

the unstratified water column. The very high H:A biomass ratio in March was mainly 

explained by the large stock of metazooplankton, which most likely had been advected into 

the fjord (Willis et al. 2006, Willis et al. 2008) in conjunction with a major inflow of AW just 

prior to sampling (Cottier et al. 2007). 

 

 

Regulatory mechanism determining food web structure in Kongsfjorden 

The observed shifts in food web structure and functions in Kongsfjord followed largely the 

theoretical models depicted in Fig. 2 and Fig. 3. The prebloom (mode C) occurred in cold, 

unstratified waters replenished by nutrients, but primary production was still limited by PAR. 

A vernal phytoplankton bloom (mode A) developed after the spring equinox when light was 

no longer limiting, lowering the concentration of mineral nutrients within the euphotic zone. 

Different from the conceptual model in Fig. 2, the bloom developed in cold and unstratified 

waters, as also seen in boreal waters (Townsend et al. 1992, Eilertsen 1993). First during the 

prebloom/summer phase (mode B), water temperatures rose and a strong pycnocline 

developed. Concentration of mineral nutrients decreased continuously, until replenished 

through limited erosion of the pycnocline in autumn. The elevated concentrations of mineral 

nutrients resulted, however, neither in elevated autotrophic production nor a mode A food 

web as hypnotized by Fig. 3, most likely due to decreasing day length in September. 

 

Beside abiotic factors, the discussion above points to the crucial role of phagotrophs (i.e. 

proto- and metazooplankton) in structuring the food web (e.g. Riegman et al. 1993, Verity & 

Smetacek 1996). This was nicely illustrated by the formation of a extensive bloom of diatoms 

and Phaeocystis most likely due to a miss-match with their metazoan grazers in time and 

space. A miss-match between the vernal biomass increase of phytoplankton and 

metazooplankton (Paper II) has been suggested previously in Kongsfjorden (Willis et al. 

2006), due to the dependence of metazooplankton biomass on advective processes, as also 

seen in other coastal systems (Aksnes et al. 1989, Reigstad 2000). 
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In conclusion, Paper I and II demonstrate that the planktonic food web in the coastal 

ecosystem of Kongsfjorden was dominated by heterotrophs (H:A > 1) during most of the year 

(mode B and C). Autotrophic biomass exceeded that of heterotrophs only in spring (mode A). 

The data suggest that the food web structure is not only a result of abiotic factors, such as 

light and nutrients, but heavily dependent on the abundance and size-structure of 

phagotrophs (i.e. protozooplankton versus metazooplankton). Further, advection of long-lived 

heterotrophs (i.e. copepods) as well as reproduction of benthic fauna may lead to a strong 

modulation of coastal planktonic food webs.  

 

 

5.2 Western Fram Strait: Does an adjacent oceanic ecosystem differ from that 

encountered in Kongsfjorden? 

 

Logistical constrains prohibited a similar extensive seasonal investigation of the plankton 

community in the ice-covered Arctic waters of northwestern Fram Strait as in Kongsfjorden. 

Sampling fell into the onset and end of the productive season, in April/May and September, 

respectively. In April/May (2008), a total of six stations were sampled between 75 and 80º N 

within the outflow area of ARW (Paper III). Stocks and rates of autotrophs (i.e. biomass of 

pico-, nano- and micro-autotrophs, as well as total primary production) and heterotrophs (i.e. 

biomass of heterotrophic bacteria, proto- and metazooplankton, as well as bacterial 

production) were measured from six depths (5, 10, 20, 30, 40 and 60 m). In September of two 

successive years (2006 and 2007), a total of eight stations were sampled between 78 and 80º 

N, of which five were situated in the outflow area of ArW and three further east in the central 

Fram Strait dominated by AW (Paper IV). The field work focused on adequate sampling of 

small copepods and neither measurements of bacterial biomass nor primary and bacterial 

production were conducted. Thus, only stocks of autotrophs (i.e. biomass of pico-, nano- and 

micro-autotrophs) and some heterotrophs (i.e. proto- and metazooplankton) were measured 

from five depths (10, 20, 30, 40 and 60 m). 

 

Prebloom in ice-covered waters – a mode B food web 

Differently from Kongsfjorden, northwest Fram Strait is perpetually covered by varying 

amounts of drift ice, exported from the central Arctic Ocean. This has profound effects on the  
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Fig. 7: Comparison of biomass distribution between autotrophs (Auto; split into phototrophic 
nanoflagellates, dinoflagellates, diatoms), heterotrophic bacteria (Bac), protozooplankton 
(Proto; split into phagotrophic nanoflagellates, dinoflagellates, ciliates), and metazooplankton 
(Meta; split into large and small copepods) in Kongsfjorden (upper row) and northwest Fram 
Strait (lower row) during prebloom (left column) and autumn (right column), based on Paper I-
IV. The data from northwest Fram Strait are average biomasses of six prebloom stations (Paper 
III) and five autumn stations influenced by ArW (Paper IV). The biomass ratio of heterotrophs 
and autotrophs (H:A) is given in numbers. Note that the prebloom food webs were described in 
Kongsfjorden and northwest Fram Strait in March and April/May, respectively, suggesting an 
delay in the onset of the productive season in ice-covered waters. 

 

onset, duration, and intensity of the productive season (Sakshaug 2004, Reigstad et al. 2011). 

Hence, the planktonic food web in northwest Fram Strait still prevailed in a prebloom 

situation in April-May (Paper III), when the open water ecosystem in Kongsfjorden was 

already at termination of an extensive phytoplankton bloom (mode A) and shift towards a 

microbial postbloom community (mode B; Paper I & II). The prebloom food web encountered 

in northwest Fram Strait in spring, thus resembled in terms of biomass distribution more the 

prebloom community described from Kongsfjorden in March (Fig. 7 upper and lower left 

panel), with heterotrophic biomass exceeding that of autotrophs by a factor of 5 to 37 

(compared to a H:A of 31 in Kongsfjorden in March).  

 

A major difference between the planktonic prebloom communities in Kongsfjorden and 

northwest Fram Strait appears to have been the way carbon was cycled, and subsequently the 

metabolic balance of the plankton community as a whole. Unfortunately, clear evidence for 

this assertion can not be provided due to problems with the rate measurements for both 
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bacteria as well as phytoplankton in northwest Fram Strait in spring. Problems with the 14C 

isotope for primary production as well as too short incubation times for determination of 

bacterial production, in conjunction with overall very low rates, hampered the detection of 

production rates. However, concomitant plankton community oxygen measurements in 

northwest Fram Strait indicated positive net community production (Paper III, Vaquer-Sunyer 

et al. submitted for publication). This suggested that production of phytoplankton exceeded 

that of bacteria, which is in contrast to Kongsfjorden in March. There bacterial production had 

exceeded that of phytoplankton by a factor of five (Paper I), most likely keeping the 

planktonic system in a net heterotrophic state.  

 

Possible reasons for this difference between the two prebloom communities may have been 

different degrees in i) light-limitation of phytoplankton, ii) DOC-limitation of 

bacterioplankton, and/ or iii) grazing pressure on the autotrophic and bacterial communities. 

In Paper III it is argued that the bacterioplankton in Fram Strait was released from grazing 

pressure due to the presence of fast-growing pico-autotrophs but experienced substrate 

limitations, as seen also in other Arctic prebloom communities (Vaqué et al. 2008). In 

Kongsfjorden, on the other hand, light appeared to have limited phytoplankton production and 

the grazing pressure of the phagotrophic community may have been more directed towards 

the bacterioplankton (Paper I and discussion under 5.1). Consequently, the functioning of the 

two planktonic prebloom communities appeared profoundly different, despite similar biomass 

distribution (Fig. 7). This functional difference is reflected by the food webs’ modes, as the 

prebloom community in Kongsfjorden was of mode C (Fig. 5a), while the positive net 

community production measured in northwest Fram Strait suggested that the encountered 

planktonic food webs were of mode B (H:A > 1 and µBac:µPhyto < 1). 

 

Autumn – the planktonic food web as Calanus descents to depth 

The large calanoid copepods of the genus Calanus often dominate Arctic metazooplankton in 

terms of biomass during the productive season, but leave the surface layer in late summer to 

overwinter at depth (Falk-Petersen et al. 2009 and references therein). The descent of Calanus 

has been suggested to lead to a restructuring of the food web in the photic zone, with 

increased biomasses of protozooplankton and small copepods (Hansen et al. 1999, Levinsen 

& Nielsen 2002, Madsen et al. 2008). This notion is partly supported by a small collection of 

biomass data of protozooplankton and Calanus from Arctic literature (Fig. 8), suggesting that  
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Fig. 8: Protozooplankton biomass (mg 
C m-2) in relation to that of Calanus 
spp. as described from Kongsfjorden 
(Paper II), northwestern Fram Strait 
(Paper IV) and in literature from other 
Arctic areas (see Appendix). 
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protozooplankton biomass exceed that of Calanus as the biomass of the calanoids decreases 

below approximately 500 mg C m-2. 

 

In the plankton community in Fram Strait in September (Paper IV), Calanus was encountered 

at relatively low numbers in the upper 200 m of the water column and the total biomass of 

protozoopankton and small copepds (i.e. copepods < 1 mm, such as Oithona spp., Oncaea, 

Microcalanus, hapacticoids) exceeded the biomass of Calanus at most stations (Paper IV). 

Calanus biomass was also reduced in Kongsfjorden in September (Paper II). But unlike in 

Fram Strait, in Kongsfjorden the biomass of protozooplankton and small copepods did not 

exceed that of the large calanoids. While the stocks of protozooplankton was by a factor of 

1.7 higer in Fram Strait than in Kongsfjorden, small copepods biomass in Kongsfjorden was 8 

times lower than that recorded from Fram Strait (Fig. 7 upper and lower right panel). The 

relatively low biomass of small copepods in Kongsfjorden in September may well have been 

the result of inadequate sampling with a WP-2 net of 90 µm mesh size, as suggested by a 

comparative sampling of small copepods with net and Go-Flo bottles in Fram Strait (Paper 

IV). For Oithona spp. for example, sampling by bottles increased the biomass estimates of 

this species by a factor of up to 6 compared to WP-2 nets with 90 µm mesh size (Paper IV). It 

is thus likely that small copepods contributed more to total zooplankton biomass in 

Kongsfjorden than reported in Paper II. 
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Small copepods, such as e.g. Oithona spp., are known to preferentially prey on moving 

organisms, such as ciliates and flagellates (Drits & Semenova 1984, Svensen & Kiørboe 

2000). Small copepods are thus important predators on protozooplankton (Turner 2004), and 

their abundance may explain why protozooplankton biomass does not increase more at times 

when Calanus is less abundance in the surface layer (Fig. 8). In Fram Strait in September, 

Oithona nauplii were found at high abundances (30 × 103 to 21 × 105 ind m-2) and their 

grazing calculated to range from 0.2 to 772 mg C m-2 d-1 (Paper IV). Assuming a similar 

productivity of ciliates and dinoflagellates as in Kongsfjorden in September (76 mg C m-2 d-1, 

Paper II), Oithona nauplii alone may have preyed 0.3 to 1000% of the protozoan production 

in Fram Strait. Hence, the absence of Calanus spp. may not always result in a strong relieve in 

grazing pressure on protozooplankton. This notion is supported by the observations in 

Kongsfjorden (Paper II), where the highest biomass of protozooplankton was encountered as 

low abundance of Calanus coincided with high autotrophic biomass in April, offering 

alternative prey items for small copepods and their nauplii, thus relieving the grazing pressure 

on the protozoan stock. 

 

In summary, the prebloom food webs in northwest Fram Strait (Paper III) appeared similar to 

that encountered in Kongsfjorden in March in terms of biomass partitioning. In their function 

and food web mode, however, the two prebloom systems appeared profoundly different, with 

the prebloom system in northwest Fram Strait being net autotrophic and of food web mode B, 

compared to a food web of mode C in Kongsfjorden. Low abundance of Calanus spp. alone 

seem not to result in largely increased protozooplankton biomass, most likely due to 

predation pressure from small copepods, such as Oithona spp. and their nauplii (Paper IV). 

 

 

5.3 Regulatory mechanisms shaping Arctic planktonic food webs 

 

The heterogeneous nature of high-latitude seas (Carmack & Wassmann 2006) makes it 

difficult to compare or even extrapolate the findings on a planktonic food web from one area 

to the entire Arctic. The plotting of biomass and production ratios allows, however, to 

reassess the overall validity of the food web modes (A - C) observed in Kongsfjorden (Paper I 

& II) and northwest Fram Strait (Paper III & IV) for other parts of the Arctic, and deduce 
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some common abiotic or biotic factors regulating planktonic food web structure and function 

in the Arctic. 

 

Complete datasets on biomass and production of the entire range of autotrophic and 

heterotrophic plankton organisms are scares from the Arctic regions. Only 16 studies from 

Arctic marine systems were found, which had investigated simultaneously most of the 

autotrophic and heterotrophic plankton groups (see Appendix). Unfortunately, station-specific 

biomass and/or production data could only be retrieved from 10 of these studies. This set of 

data stems from as different Arctic regions as the central Arctic Ocean, heavily ice-covered 

coastal systems (Franklin Bay, NE Greenland), and more productive shelf/coastal areas 

(Barents Sea, Disko Bay, Kongsfjorden). All studies were conducted during some part of the 

productive season (March to September). 

 

The data compilation demonstrates that planktonic food webs of mode A, B, and C are found 

throughout the Arctic Ocean (Fig. 9). Of the 54 data points, 46% fall under mode B, 30% 

under mode C and only 24% under mode A. This distribution suggests that food webs of 

mode B dominate throughout most of the productive season, while food webs of mode A are 

transient and therefore less frequently sampled.  

 

The data falling under mode A in Fig. 9a stem from very divergent Arctic areas, such as 

relatively open waters of the Chukchi Sea (Wheeler et al. 1996, Gosselin et al. 1997, Rich et 

al. 1997, Sherr et al. 1997), the marginal ice zone in the Barents Sea (Reigstad et al. 2011 and 

references therein), a northeast Greenlandic fjord after ice break-up (Nielsen et al. 2007), and 

the ice-free Kongsfjorden (Paper I & II). Nutrient concentrations and water column stability 

differed greatly between the regions, with e.g. a shallow mixing depth and nitrate 

concentrations >4.5 µM in the Chukchi Sea (Gosselin et al. 1997), versus an unstratified 

water column and nitrate concentrations <1 µM in Kongsfjorden (Paper I). This suggests that 

the described mode A food webs ranged from early to late phytoplankton bloom stages, as 

indicated by the different degrees of nutrient depletion, and were taking place in water 

columns of different stratification. Most of the data show a dominance of large phytoplankton 

cells, as e.g. centric diatoms dominated the phytoplankton biomass with 61 to 98% in the 

Chukchi Sea (Gosselin et al. 1997) and 62 to 74% in Young Sound (Rysgaard & Nielsen 

2006). The dominance of diatoms is, however, not denotative for mode A food webs, as 

demonstrated by the substantial contribution of Phaeocystis pouchettii to the autotrophic  
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Fig. 9: Comparison of own and published data, plotted as specific production ratio of bacteria 
and phytoplankton (µBac:µPhyto) and the biomass ratio of heterotrophs and autotrophs (H:A). On 
the right side, the biomass distribution between phytoplankton (Auto), bacteria (Bac), 
protozooplankton (Proto), and metazooplankton (Meta) is given for mode A – C, based on the 
data presented on the left side. See Appendix for data sources. 
 

biomass in Kongsfjorden in April (Paper I). In its colonial form Phaeocystis may, however, 

act as large celled phytoplankton. Thus, large phytoplankton appear characteristic for mode A, 

and diatoms are certainly more common in mode A phytoplankton communities than for those 

of mode B and C.  

 

Nevertheless, diatoms have been described to dominate autotrophic biomass also in mode B 

food webs, as under a vernal bloom (Nielsen & Hansen 1995) and summer subsurface bloom 

near the pycnocline (Nielsen & Hansen 1999) in Disko Bay. Similarly, diatoms became 

important contributors to phytoplankton biomass in Kongsfjorden in September (Paper I & 

II). Generally, however, phytoplankton appears to be dominated by small flagellates and 

autotrophic picoeukaryotes during mode B, as e.g. reported from the central Arctic Ocean 

(Gosselin et al. 1997, Sherr et al. 2003, Olli et al. 2007), Kongsfjorden (Paper I), the 

northwestern Fram Strait in spring (Paper III), and as also reported from the White and 

Barents Sea (Wassmann et al. 2005). While nutrient concentrations vary greatly between the 

stations classified as mode B (nitrate 0.03 to 7 µM), shallow mixing depths appear to be a 

common physical setting for food webs of mode B, as water column stratification was 

described by all studies reviewed here (Nielsen & Hansen 1995, Gosselin et al. 1997, Nielsen 

& Hansen 1999, Paper I & II). Increasing surface water temperature may be another abiotic 

factor characteristic for mode B food webs (Nielsen & Hansen 1995, 1999, Paper I & II), but 

was not associated to this mode everywhere (Gosselin et al. 1997). 
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The third scenario, food webs of mode C, seems to appear wherever autotrophic production is 

limited by PAR, as under the heavy ice cover in the central Arctic Ocean (Wheeler et al. 

1996, Gosselin et al. 1997, Rich et al. 1997, Sherr et al. 1997) and Franklin Bay (Vaqué et al. 

2008) or in open waters during the polar night, as discussed above for Kongsfjorden (see 5.1). 

Under the land-fast ice in Franklin Bay, growth of low-light adapted autotrophic pico- and 

nanoeukaryotes led to a continuously decreasing H:A biomass ratio from January (H:A of 6.5 

± 4.8) to May (H:A of 1.5 ± 0.02; Vaqué et al. 2008), underpinning PAR as driving factor for 

Arctic food webs of mode C, as also demonstrated experimentally (Terrado et al. 2008, 

Estrada et al. 2009). An interesting question is whether mode C food webs will shift into 

mode A or B when sufficient PAR is supplied. While the vernal increase in autotrophic 

production is traditionally thought to result in high phytoplankton biomass and mode A food 

webs, this is not compulsory as demonstrated by the data from Disko Bay after ice break-up 

(Nielsen & Hansen 1995), most probably due to the presence of a large phagotrophic 

community at the onset of the productive season. Similar scenarios have been described from 

as different high-latitude marine systems, such as the Amundsen Gulf (Forest et al. in press) 

and the north Norwegian shelf (Ratkova et al. 1998, Verity et al. 1999). 

 

The reviewed data on Arctic planktonic food webs suggest that mode B prevails throughout 

most of the productive season (March to September), while dominance of autotrophic biomass 

and mode A food webs appears less frequent. Mode A food webs are encountered in water 

columns of different stability, while mode B food webs seem to be connected to stratification 

and partly increased surface water temperature. Light is the limiting factor for production in 

mode C food webs. Predation appears to have profound structuring effects and has the 

potential to prohibit the formation of mode A food webs, despite the presence of favourable 

abiotic conditions. 

 

 

5.4 Geographic distribution and duration of planktonic food web modes in the Arctic 

 

The reviewed data on Arctic planktonic food web structure (Fig. 9) suggest that the duration 

of the different food web modes (A – C) varies throughout the Arctic. Determination of the 

exact duration and geographical distribution is not possible based on the data reviewed here. 

Since the mode of planktonic food webs appears strongly determined by physical factors (i.e.  
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Fig. 10: Conceptual overview of the duration of the three ecosystem modes (A – C) in the 
European Arctic along a latitudinal gradient. Modified from Leu et al. (2011) and Wassmann & 
Reigstad (2011). 
 

seasonal photoperiod, sea ice cover, and water column stability) a general trend may, 

however, be deduced from our knowledge on large-scale physical settings in the Arctic. 

 

Mode C planktonic food webs 

Photosynthetically active radiation is insufficient for primary production between 4 and 6 

months at 70ºN and 90ºN, respectively. It can thus be speculated that Arctic planktonic food 

webs prevail in mode C for up to half a year (Fig. 10). The presence of sea ice may limit 

planktonic production also after the seasonal return of the sun and keep food webs in mode C. 

This circumstance is nicely illustrated by the studies from Franklin Bay (70ºN, Vaqué et al. 

2008), northwest Fram Strait (75-80ºN, Paper III), and Kongsfjorden (78ºN, Paper I & II) in 

April/May. While the planktonic community was determining an extensive phytoplankton 

bloom (mode A) in the open-waters of Kongsfjorden, a mode C food web prevailed under the 

closed ice-cover in Franklin Bay, at the same time as a prebloom mode B community was 
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encountered under the drift ice in northwest Fram Strait. Consequently, sea ice strongly 

modifies the time food webs prevail under mode C regionally.  

 

Mode A planktonic food webs 

A regression of log-transformed H:A biomass ratios versus log-transformed volumetric 

autotroph biomass of the reviewed data of Arctic planktonic food webs (see Appendix) 

indicates that mode A food webs occur at an autotroph biomass of ≥39 µg C l-1 (YH:A= -

0.6551 XA + 1.0442, r2 = 0.7034), which equals an average chlorophyll concentration of about 

1.6 µg Chl a l-1 within the euphotic zone (assuming an chlorophyll a to carbon conversion 

factor of 0.04; Sakshaug et al. (2009)). Chlorophyll concentrations of that order of magnitude 

are observed in spring along the ice edge, where the ice melt leads to water column 

stratification and favourable phytoplankton growth conditions (Gran 1931, Sakshaug & 

Skjoldal 1989). The ice melt can start as early as March in the Atlantic-influenced Arctic 

domain and span until early September at high latitudes, with most of the melting taking place 

from June onwards (Perrette et al. 2011). Thus, mode A food webs may occur progressively 

later in the season towards the North (Fig. 10), as observed by remote sensing (Perrette et al. 

2011). The limited information available from the highest latitudes suggests that 

phytoplankton concentrations of ≥1.6 µg Chl a l-1 are rare (Gosselin et al. 1997, Sherr et al. 

2003, Olli et al. 2007), and extensive blooms do not occur near the Pole. This is most likely 

due to very short and dynamic opening in the ice-pack (Sakshaug 2004) and the presence of a 

large ravenous phagotrophic community (Olli et al. 2007).  

 

The duration a planktonic food web prevails under mode A depends largely on i) the 

concentration of winter accumulated nitrate, which is low in large parts of the Arctic Ocean, 

ii) the water column stability, which determines the degree of nutrient replenishment to the 

euphotic zone, but also on iii) the grazing rate of the phagotrophic community. Phytoplankton 

blooms along the ice edge last locally seldom longer than 20 days (Perrette et al. 2011). 

Wherever nutrients are replenished to the surface mixed layer through e.g. topographic 

steering, wind-induced mixing or up-welling, additional phytoplankton blooms may be 

encountered (Wassmann et al. 2006). This can, for example, be the case along the northern 

Arctic Ocean shelf breaks, given the absence of sea ice (Carmack & Chapman 2003, 

Tremblay et al. 2011). In strongly stratified regions, phytoplankton accumulation is also found 

at the nutricline in summer (Martin et al. 2010).  
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Mode B planktonic food webs 

Planktonic food webs of mode B are encountered during the prebloom (e.g. Paper III) as well 

as postbloom phase (Fig. 5, Paper I & II), i.e. within the period in which surface irradiance 

can penetrate into the water column either due to snow or ice melt. Assuming that the 

planktonic food web only experiences an ice edge phytoplankton bloom (mode A) of 20 days 

duration (Perrette et al. 2011) and the ice retreat allows a productive season of 70 to 200 days 

(Sakshaug 2004), Arctic systems will prevail under mode B for 70 to 90% of the productive 

season. Even though mode B food webs may be less dominant in some areas with a weaker 

stratified water column (e.g. southern Barents Sea and Bering Sea), the example illustrates 

that food webs of more microbial character (mode B and C) dominate throughout most of the 

year in Arctic seas, while food webs of autotrophic dominance (mode A) are rather sporadic 

and highly transient events in space and time. 

 

High vertical export of organic matter from the upper water column to the benthos is 

associated with planktonic food webs under mode A (Fig. 11), as observed in the Barents Sea 

in spring (Reigstad et al. 2011 and references therein). Ecosystems under mode B and C, on 

the other hand, are characterized by high retention of organic material in the upper mixed 

layer, as demonstrated by the extremely low vertical export rates in northwest Fram Strait 

during the vernal pre-bloom phase, and close to the North Pole even in summer (Olli et al. 

2007). The latitudinal shift in the relative duration of the different food web modes (Fig. 10) 
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explains why rich benthic populations are found towards the margins of the Arctic (e.g. in the 

Barents Sea and Bering/Chukchi Sea). 

 

A latitudinal gradient appears to exist in the relative prevalence of different food web modes 

(A - C) in the Arctic. These are partly controlled by light, sea ice, and water column stability, 

but also by the presence of heterotrophs. It is suggested that the frequency of planktonic food 

webs of mode A decreases with increasing latitude and water column stratification. 

Throughout the Arctic, food webs of mode B and C may prevail throughout most of the year, 

only interrupted by sporadic events of phytoplankton accumulation in late spring and summer 

(mode A).  

 

 

5.5 Arctic plankton biomass distribution: similarities with coastal or open ocean 

communities? 

 

The biomass distribution of plankton communities was reviewed for marine environments by 

Gasol et al. (1997). The authors found plankton communities of oligotrophic, oceanic regions 

to sustain on average a 10-times higher H:A biomass ratio for a given stock of phytoplankton 

than coastal, as depicted by the grey lines in Fig. 12. Thus, systems of different productivity 

seem to support dissimilar heterotrophic biomasses. 

 

Productivity varies greatly between different areas in the Arctic. The average annual primary 

production per unit area in the Barents Sea, for example, is with 90 g C m-2 y-1 close to the 

global average of 110 g C m-2 y-1 (Sakshaug et al. 2009). The Central Arctic Ocean, on the 

other hand, has with about 10 to 20 g C m-2 y-1 (Sakshaug 2004) by far the lowest annual 

primary production anywhere in the ocean. Despite this large heterogeneity in productivity, 

the H:A biomass ratios of plankton communities from different Arctic regions fall onto one 

line in relation to autotrophic biomass (YH:A = -0.643XA + 2.0698, r2 = 0.6456, Fig. 12). This 

relationship suggests that Arctic plankton communities maintain on average a 3-fold higher 

H:A biomass ratio than coastal communities. For autotrophic biomass approximately ≥3000 

mg C m-2, Arctic planktonic food webs sustain a similar high or even higher H:A biomass 

ratio as open ocean food webs, while at lower phytoplankton biomasses Arctic communities 

appear to maintain less heterotrophs (Fig. 12). One reason for the lower H:A biomass ratio at  
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Fig. 12: Changes in the biomass ratio of heterotrophs and autotrophs (H:A) with changing 
autotrophic biomass (mg C m-2) from different Arctic systems (see Appendix for data sources). 
The underlying grey lines for coastal and open ocean systems are plotted according to Gasol et 
al. 1997. 
 

low autotrophic biomasses may be the dominance of mode C food webs. That is, while 

oceanic plankton communities can sustain a large stock of heterotrophs at the lowest 

phytoplankton concentrations through maintenance of high primary production through 

efficient nutrient recycling (Gasol et al. 1997), Arctic food webs of mode C are light-limited 

and can therefore only sustain a smaller fraction of heterotrophs. 

 

While Arctic plankton communities may sustain a similar high heterotrophic stock as open 

ocean communities during mode A and B, they resemble coastal communities in the biomass 

partitioning between the different functional groups of heterotrophs, with metazooplankton 

dominating total heterotrophic biomass (Fig. 9, Table 2). A large fraction of the 

metazooplankton encountered in especially the European Arctic may, however, not be of 

authochthonus production, but allochthonously advected into the Arctic by ocean currents, as 

discussed under 2.2 of the introduction. At no times, bacteria seem to contribute equally much 

to total heterotrophic biomass in Arctic seas as reported from oceanic plankton communities 

(Table 2). 

 

Arctic bacterial biomass is on average 23% of that of phytoplankton (Table 3), but the 

fraction varies greatly with food web mode, with as little as 6% or as much as 71% of  
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Table 2: Mean (± standard error) biomass of heterotrophs (H), as well as relative biomasses of 
metazooplankton (M), protozooplankton (P), and bacterioplankton (B) compared to total 
heterotrophic biomass. The data for coastal and open oceans are according to Gasol et al. 
(1997), while the information on Arctic plankton communities (mode A – C) is based on the 
data presented in Fig. 9. 
 

   

 World-wide Arctic-wide 
   

 Coastal Ocean Open Ocean Mode A Mode B Mode C All modes 
       

H 1535±196 2521±479 2622±352 2858±380 2399±220 2689±217 
M/H 0.56 0.34 0.57 0.48 0.67 0.54 
P/H 0.16 0.20 0.22 0.17 0.15 0.18 
B/H 0.28 0.46 0.21 0.35 0.18 0.28 
       

 

 

phytoplankton under mode A and B, respectively. This demonstrates that Arctic plankton 

communities may at times sustain as much bacterial biomass relative to that of phytoplankton 

as some open ocean communities (e.g. equatorial Pacific), but at all times profoundly less 

than the warm water plankton communities in the Arabian Sea and the waters around Hawaii 

and Bermuda (Table 3). In general, polar seas appear to maintain a relative low and constant 

bacterial stock (Table 3, Kirchman et al. 2009), despite temporally high rates of growth 

(Rivkin et al. 1996, Anderson & Rivkin 2001). This results in a mean bacterial production 

much lower in Arctic seas than elsewhere, comparable only to that reported from the Ross Sea 

and sub-north Pacific (Table 3). Relative to primary production, Arctic bacterial production is  

 
Table 3: Phytoplankton and bacterioplankton properties, such as biomass (mg C m-2), 
production (mg C m-2 d-1), and growth rates (d-1), in different seas. The table was adopted from 
Ducklow (1999) and expanded by data from the review by Gasol et al. (1997) for coastal and 
open ocean, as well as calculated means for Arctic plankton communities (mode A – C), based on 
the data presented in Fig. 9. 
 

          

 Biomass 
(mg C m-2) 

Production 
(mg C m-2 d-1) 

Growth rates 
(d-1) 

 P B B/P P B B/P P B B/P 
          

North Atlantic 4500 1000 0.2 1083 275 0.25 0.3 0.3 1 
Equat. Pacific, spring 1700 1200 0.7 1083 285 0.26 0.64 0.13 0.2 
Equat. Pacific, autumn 1940 1467 0.75 1548 176 0.11 0.8 0.12 0.15 
Sub north Pacific 1274 1142 0.9 629 56 0.09 0.5 0.05 0.1 
Arabian 1248 1448 1.2 1165 257 0.22 0.93 0.18 0.19 
Hawaii 447 1500 3.6 486 nd nd 1.1 nd nd 
Bermuda 573 1317 2.7 465 70 0.18 0.81 0.05 0.06 
Ross Sea 11450 217 0.02 1248 55 0.04 0.11 0.25 2.3 
          
          

Open ocean 1966 1132 0.58 1300 nd nd 1.0 nd nd 
Coastal ocean 2921 541 0.19 794 nd nd 0.48 nd nd 
          
          

Arctic (mode A) 8949 550 0.06 630 105 0.17 0.06 0.25 3.87 
Arctic (mode B) 1419 1009 0.71 249 36 0.14 0.21 0.05 0.22 
Arctic (mode C) 782 430 0.55 32 54 1.69 0.07 0.28 4.11 
          

Arctic (all modes) 3313 752 0.23 302 59 0.19 0.13 0.17 1.28 
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with 19%, however, similar to that reported from other regions of the world’s oceans (Table 

3, Cole et al. 1988, Ducklow 1999). Here, one should however keep in mind that 

disproportionally many of the reviewed data stem from the productive season (March to 

September) in coastal and marginal seas of the European Arctic (see Appendix). This may 

bias the here drawn picture of Arctic plankton communities. For example, the here included 

data from the central Arctic are from the Arctic Ocean Section project (e.g. Wheeler et al. 

1996, Gosselin et al. 1997, Rich et al. 1997), which reported substantially higher stocks and 

rates of phytoplankton and bacteria than later reports (Sherr & Sherr 2003, Sherr et al. 2003, 

Olli et al. 2007, Hodal 2011). This circumstance urges for caution in drawing final 

conclusions on the structure and function of Arctic plankton communities, but calls for future 

work to integrate further datasets from other Arctic regions and times of the year with the 

ideas on Arctic planktonic food webs outlined here. 

 

Summarizing, the here reviewed Arctic plankton communities appear to sustain a 3-fold 

higher H:A biomass ratio for a given phytoplankton stock than coastal plankton communities. 

In the biomass partitioning of heterotrophs, Arctic communities appear to resemble coastal 

food webs, with relatively low bacterial contribution but a predominance of metazooplankton. 

A large fraction of these metazoans may not be of autochthonous production, but advected 

into the Arctic by ocean currents. Despite relatively low stocks of bacteria, bacterial 

production was calculated to be with 19% of primary production similar to reports from other 

marine systems.  

 

 

6. Arctic planktonic food webs: a conclusion 
 

The studies on planktonic food webs in Kongsfjorden (Paper I & II) and northwest Fram 

Strait (Paper III & IV), together with a small review of published data from other Arctic 

regions (Appendix), illustrate that Arctic plankton communities are basically not distinct from 

those found at lower latitudes. As in other marine systems, Arctic plankton communities 

respond to alterations in controlling abiotic factors with changes in food web structure and 

function (i.e. changes in food web mode; Fig. 5, Paper I & II). The relative short seasonal 

photoperiod, sea ice cover, and strong haline stratification limit the productive season to an 

increasingly narrow time window towards the North. Arctic food webs belong therefore 
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largely to mode B and C (Fig. 10). For Arctic seas, as for other pelagic ecosystems, it thus 

appears that “it is the microbial food web that tracks changes in physical and chemical 

processes; diatoms leave and enter the system according to their own unique biology” (from 

Verity & Smetacek 1996, p. 285).  

 

Food webs of mode A, with a dominance of large-celled phytoplankton, such as diatoms, 

seem indeed to be only relative short-lived events of autotrophic biomass dominance and 

extensive vertical export of biogenic matter to depth (Fig. 11). Assuming that all new 

production takes place under mode A, this transient food web mode could contribution to total 

annual primary production as much as 65% in a productive region of the Arctic, such as the 

Barents Sea, and as little as <3% at the highest latitudes in the central Arctic Ocean (Sakshaug 

2004). As discussed for other pelagic ecosystems (Riegman et al. 1993, Verity & Smetacek 

1996), predation by the large stock of phagotrophs (i.e. protozooplankton and 

metazooplankton) seems to have profound effects on food web structure and function in the 

Arctic (Paper I - IV), and has the potential to prohibit the formation of mode A food webs, 

despite the presence of favourable abiotic conditions. 

 

Arctic plankton communities appear to sustain on average a 3-fold higher heterotrophic 

biomass for a given phytoplankton stock than the world’s coastal pelagic ecosystems (Fig. 

12). This may mainly be caused by extensive import of long-lived copepods from sub-arctic 

European seas through advection, and not due to authochthonous secondary production 

(Kosobokova & Hirche 2000, Slagstad et al. 2011), as typical for open ocean plankton 

communities (Gasol et al. 1997). In many ways, the Arctic marine ecosystems have 

similarities with those found in the world’s coastal oceans, due to outbursts of phytoplankton 

blooms (Fig. 9), as well as the large contribution of metazooplankton and small contribution 

of bacteria to total heterotrophic biomass (Table 2).  

 

 

7. Epilogue 
 

Based upon a few detailed investigations across Fram Strait-Kongsfjorden, and a small review 

of published data, the present work has adopted a “bird’s eye perspective”, describing 

planktonic food web structure and functions by reducing them to biomass and production 

 39



ratios of heterotrophs and autotrophs. In addition, an old paradigm, revolving around resource 

acquisition and growth-limiting abiotic factors (i.e. bottom-up control) versus regulation by 

grazers (i.e. top-down control) was applied. Despite of their importance in structuring 

planktonic food webs and determining their overall function, important regulatory 

mechanisms, such as e.g. species composition, life history strategies, viral activity, 

allelophaty, and mixotrophy, to mention just some, were not even attempted to be studied or 

discussed. In a time when we hardly understand the complexity of Arctic ecosystems, let 

alone their changes, the simple description of Arctic planktonic food webs presented here 

reflects rather an attempt to depict some basic patterns than the reality of insurmountable 

details that must be the focus of future investigations.  
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Appendix 
Biological variables gathered from different Arctic marine environments, used to calculate biomass 
and specific production ratios presented in Fig. 8 (8), 9a,b (9), 11 (11) and 12 (12). PP: primary 
production; BP: bacterial production; A: phytoplankton biomass; BB: bacterial biomass; Protozoopl.: 
protozooplankton; Metazoopl.: metazooplankton. 
 
       

Region Month No. Variable Original unit Depth References 
       

Arctic Ocean9,12 Jul-Sep 12 PP mg C m-2 d-1 0-30 Rich et al. 1997 
   BP mg C m-2 d-1 0-30  
   PB mg C m-2 0-50 Sherr et al. 1997 and 

references therein 
   BB mg C m-2 0-50 Sherr et al. 1997 
   Protozoopl. mg C m-2 0-50 Sherr et al. 1997 
   Metazoopl. g C m-2 0-100 Wheeler et al. 1996 
       
       

Franklin Bay9 Apr-May 6 PP µg C l-1 d-1 3 unpublished data S. Brugel 
(Beaufort Sea)   BP µg C l-1 d-1 3 Vaqué et al. 2007 
   PB µg C l-1   
   BB µg C l-1   
   Protozoopl. µg C l-1   
       
       

Disko Bay8,9,12 Jun-Jul 8 PP mg C m-3 d-1 0-30 Nielsen & Hansen 1995 
   BP mg C m-3 d-1   
   PB mg C m-3   
   BB mg C m-3   
   Protozoopl. mg C m-3   
   Metazoopl. mg C m-3 0-50  
       
       

Disko Bay8,9,12 Aug-Sep 8 PP mg C m-2 d-1 0-30 Nielsen & Hansen 1999 
   BP mg C m-2 d-1   
   PB mg C m-2   
   BB mg C m-2   
   Protozoopl. mg C m-3 0-30 Hansen et al. 1999 
   Metazoopl. mg C m-3   
       
       

NE Greenland8,9,12 June 8 PP mg C m-2 d-1 0-36 Nielsen et al. 2007 
   BP mg C m-2 d-1   
   PB mg C m-2   
   BB mg C m-2   
   Protozoopl. mg C m-2   
   Metazoopl. mg C m-3   
       
       

NW Fram Apr-May 6 PB mg C m-2 0-60 Paper III 
Strait8,11,12   BB mg C m-2   
   Protozoopl. mg C m-2   
   Metazoopl. mg C m-2 0-100 unpublished data K. Solovyev 
   Export mg C m-2 d-1 90 unpublished data C. Wexels 

Riser and M. Reigstad 
       
       

NW Fram  Sep 6 PB mg C m-2 0-60 Paper IV 
Strait8,12   Protozoopl. mg C m-2   
   Metazoopl. mg C m-2   
       
       

Kongsfjorden8,9,12 Mar-Dec 6 PP mg C m-2 d-1 0-50 Paper I & II 
   BP mg C m-2 d-1   
   PB mg C m-2   
   BB mg C m-2   
   Protozoopl. mg C m-2   
   Metazoopl. mg C m-2   
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Continuation of Appendix. 
 
       

Region Month No. Variable Original unit Depth References 
       

Barents Sea8,9,11,12 May, Jul 6 PP mg C m-2 d-1 0-60 Reigstad et al. 2011 and  
   BP mg C m-2 d-1  references therein 
   PB mg C m-2   
   BB mg C m-2   
   Protozoopl. mg C m-2   
   Metazoopl. mg C m-2 0-100  
   Export mg C m-2 d-1 90  
       
       

Barents Sea8,12 May 4 PB mg C m-3 0-50 Hansen et al.1996 
   BB mg C m-3   
   Protozoopl. mg C m-3   
   Metazoopl. mg C m-3   
       
 

Note: Further datasets on Arctic plankton communities exist from the Arctic Ocean (Hodal 2011, Olli 
et al. 2007, Sherr & Sherr 2003, Sherr et al. 2003), North Water polynya (Klein et al. 2002, Lovejoy et 
al. 2002, Ringuette et al. 2002, Mei et al. 2003), Northeast Water polynya (Smith et al. 1997, Pesant et 
al. 1998, Pesant et al. 2000), and the Chukchi Sea (Campbell et al. 2009, Gradinger 2009, Kirchman et 
al. 2009, Mathis et al. 2009, Sherr et al. 2009, Sukhanova et al. 2009). Unfortunately, the station-
specific biomass and production data from these studies could not be retrieved within the timeframe of 
the present work. It thus remains for future work to integrate these important and extensive datasets 
with the ideas on Arctic plankton communities outlined in this thesis. 
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