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There are no facts, 

only interpretations.
(Friedrich Nietzsche)
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SUMMARY

The most widely applied vaccines in salmon aquaculture today are based on water-in-oil 

formulations that provide excellent antigen depots, protect the antigen from degradation 

and induce strong inflammatory responses. Unfortunately, these vaccines show little 

efficiency against intracellular pathogens and can also cause side-effects such as 

autoimmunity and lesions at the injection site. In the search for efficient and 

biocompatible vaccine adjuvants, considerable attention has been given to the 

biodegradable copolymer PLGA (poly-(D,L-lactic-co-glycolic)-acid) and its potential use 

for the construction of injectable particles. The present work explored the use of such 

particles for intramuscular delivery of a plasmid DNA in Atlantic salmon (Salmo salar 

L.). The overall aim was to evaluate the influence of particle-use on the overall tissue 

distribution of the pDNA, transgene expression, innate proinflammatory and antiviral 

immune responses, expression of cytotoxic T-cell markers and injection site 

histopathology.

The first step was to establish a preparation protocol for PLGA particles to ensure 

consistent results in terms of size and encapsulation efficiency for the entrapment of a 

model antigen (Paper I). This protocol was later used to prepare pDNA-loaded PLGA 

nano- (~320 nm) and microparticles (~4 μm) for in vivo and in vitro use (Paper II). 

Tissue samples gathered over a period of 70 days showed similar distribution profiles for 

naked pDNA and pDNA encapsulated into PLGA nanoparticles. For microparticle-

encapsulated pDNA the distribution profile highly resembled that obtained with the use 

of an oil adjuvant, demonstrating a potent depot at the injection site even at day 70.

Encapsulated pDNA was able to induce expression of a luciferase reporter gene, but at 

lower levels compared to administration of naked or oil-adjuvanted pDNA. Immune 

responses were assessed by quantitative PCR over a period of 7 days. Particle 

formulations proved superior for the induction of the proinflammatory cytokine IL-

with little differences observed between pDNA-loaded and empty particles. PLGA 

nanoparticles carrying pDNA were the strongest inducers of antiviral responses,

particularly in form of the Mx1 protein where significant levels of expression were 

observed in muscle tissue, spleen and head kidney samples. Histopathological 
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examinations of tissue samples from the injection site demonstrated strong inflammatory 

responses especially in samples from fish that had been injected with microparticle 

formulations. At day 30 post injection there appeared to be a chronic inflammation in the 

tissue similar to what was seen in fish injected with the oil adjuvant.

PLGA particles demonstrated central adjuvant properties following intramuscular 

administration of Atlantic salmon (Paper II), in the form of strong inflammatory 

responses as well as an ability to provide an injection site depot (microparticles). The use 

of nanoparticles was also found to induce innate antiviral responses that were not seen 

with naked or oil-adjuvanted pDNA and that could be beneficial to the immunogenicity 

of a viral vaccine. To better evaluate the potential of PLGA particles for delivery of DNA 

vaccines it will be necessary to conduct studies applying plasmids that encode 

immunogenic transgene proteins. Closer attention should also be paid to the 

inflammatory histopathology observed at the injection site, and any adverse effects this 

might have both for the health of the fish and the quality of the final consumer product.
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A brief history of Norwegian aquaculture

Given the extremely long coastline that provides prime condition for sea-farming, 

it may perhaps seem natural that Norway today is one of the world’s leading countries in 

salmonid aquaculture. The way leading to this point, however, has been long – and starts 

with the very first aquaculture more than 3000 years back1. The first documentation of 

aquaculture is from China as far back as 1122 B.C., although aquaculture likely started 

much earlier and may have developed independently at different corners of the world.

Fish farming in ponds has been the dominant method for most of the aquaculture history, 

and was also the beginning of Norwegian aquaculture.

As early as the 1850s the first hatcheries for rainbow trout (Oncorhynchus mykiss)

and Atlantic salmon (Salmo salar) were established for restocking purposes, with 

freshwater farming of rainbow trout for consumption initiated in 19102. With government 

funding, the first attempts to raise rainbow trout in sea-water took place only a couple of 

years later, although the project was soon stopped due to poor profitability. For more than 

four decades the aquacultural activity was nearly non-existent, until farming started again 

around the 1960s2. Rainbow trout was long the main species in Norway, and was farmed 

in sea-water tanks. In 1969 there was just one farmer who raised Atlantic salmon in sea-

water net pens, but the success of this experiment initiated an industry-wide transition. 

By 1977, Atlantic salmon had become the main species in Norwegian aquaculture, and 

the use of sea-water net pens was also defined as the standard farming technology3. From 

production figures for rainbow trout and Atlantic salmon of 433 and 98 metric tons, 

respectively, in the late 1960s2, the official figures for 2010 showed a combined volume 

of nearly one million metric tons, of which Atlantic salmon accounted for about 95%4. A

wide range of other fish species as well as crustaceans are farmed in addition to Atlantic 

salmon and rainbow trout, of which a few are Atlantic cod (Gadus morhua), Atlantic 

halibut (Hippoglossus hippoglossus), Arctic char (Salvelinus alpinus alpinus), blue 

mussels (Mytilus edulis) and noble crayfish (Astacus astacus)2. The total production 

volume of all species ranks Norway as number seven in the world in aquaculture output

as of 2010, whereas only China ranks higher in terms of export of fish and fish products5.

One of the greatest challenges in aquaculture has long been the mortalities and 

reduced production caused by a variety of infectious diseases. Cold water vibriosis, also 



10

known as the ‘Hitra disease’, was a major problem in Norway in the 1980s, and sparked 

the initiation of the ‘Healthy fish’ research program. As a result the causative agent 

(bacterium Vibrio salmonicidaa) was discovered and eventually a vaccine was developed, 

marking one of the economically most important achievements and contributions of 

aquaculture research6. Whereas most bacterial diseases are today kept under control 

through vaccination, intracellular bacteria and virus continue to cause problems for the 

aquaculture industry. The investigation of novel vaccine concepts is therefore of great 

importance, and requires an understanding not only of vaccinology but also of the 

immune system and its functions in fish. The following introduction aims to provide 

insight into the characteristics of fish immunology as well as some background on the use 

of vaccine delivery systems and DNA vaccination. Whereas much of what is known is 

based on experiments performed in mammalian species, references will be made to 

specific results obtained from research on different fish species.

Morphology of teleost immune organs

The morphology of teleost lymphoid organs varies between species, and whereas 

some have functional lymphoid tissues at hatching, most marine fish species with pelagic 

larvae are hatched with nearly non-existent lymphoid organs (reviewed7). The most 

important distinction between mammals and fish is that fish lack bone marrow and lymph 

nodes, which in mammals make up the primary lymphoid organs7. Instead, the thymus, 

anterior kidney (head kidney, or HK) and spleen are generally regarded as the major 

immune organs8. The thymus is the major site of T-cell lymphogenesis9,10, whereas the 

HK holds the highest concentration of developing B-cells11. The HK lacks excretory 

tissue, but acts as a secondary lymphoid organ through the clearance of soluble and 

particulate antigens from the blood circulation by sinusoidal macrophages and endothelial 

cells12,13. Although the HK does contain low levels of antibody-secreting cells, the 

highest abundance of mature B-cells is found in the spleen8,11,14. Like the HK, the spleen 

also plays an important part in trapping blood-borne antigens12. Other lymphoid organs in 

a Vibrio salmonicida has later been renamed Aliivibio salmonicida



11

fish are the mucosa-associated lymphoid tissues (MALTs), which include the novel

interbranchial lymphoid tissue (ILT)10,15.

Despite the differences between fish and mammalian species with regard to 

immune organs, fish possess morphological and/or functional equivalents of most innate

and adaptive immune cells. The most central cells in innate cellular immunity are the 

phagocytic cells (macrophages and neutrophils) and non-specific cytotoxic cells (NCCs), 

although other granulocytes (eosinophils, basophils), natural killer-like (NK-like) cells 

and thrombocytes can also be found in fish (reviewed16,17). The existence of a dendritic 

cell (DC) equivalent in zebrafish (Danio rerio) was recently suggested and only this year 

a study reported on the functional identification of DCs in rainbow trout18-20. The main 

cells of adaptive cellular immunity are the T-cells, which act through recognition and 

response to peptide antigens associated with major histocompatibility complexes (MHCs) 

class I and II16. The first evidence of the existence of T-cells in teleosts dates back to the 

1970s21, whereas B-cells were first detected in the late 1960s through the discovery of 

immunoglobulin (Ig) in mucosal secretions15.

A general introduction to fish immunology

The ability to withstand infection and eliminate invading pathogens is essential to 

all life-forms and is present to some degree in all multicellular organisms (reviewed22,23). 

With more than 23000 extant species, fish comprise one of the largest and most diverse 

animal phyla and also represent a major transition point in the evolution of immunity 

(reviewed24). Somewhere between jawless and jawed vertebrates there took place what is 

often referred to as ‘the immunological big-bang’, comprising two waves of gene

duplication and the acquisition of recombination activator genes (RAG1 and RAG2), 

which gave rise to the adaptive immune system (reviewed22,25). Jawed fish are hence the 

earliest vertebrates known to possess not only a ‘primitive’ innate immune system, but 

also a more complex series of immune responses known as adaptive immunity.
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Table 1 - Summary of the main components of the innate and adaptive immune system that have been found in 

teleosts (based on a selection of research and review papers8,10,15,18)

Division Component Effector

Lymphoid tissues

Primary
Head kidney

Thymus

Secondary
Head kidney

Spleen

Others

Mucosa-associated lymphoid tissues 

(MALTs)

Interbranchial lymphoid tissues (ILTs)

Innate components

Constitutive
Physical barriers; epithelial and mucosal 

linings of skin, gills and alimentary tract

Cellular

Granulocytes

Non-specific cytotoxic cells (NCCs)

Monocytes/Macrophages

Natural killer (NK)-like cells

Neutrophils

Dendritic cells (DCs)

Humoral

Antimicrobial peptides (AMPs)

Natural antibodies

Complement system

Other acute-phase proteins

Cytokines

Pattern recognition receptors (PRRs)

Adaptive components

Cellular

Cytotoxic (CD8+) T-lymphocytes (CTLs)

CD4+ T-helper lymphocytes (TH cells)

Cytokines

Humoral

B-lymphocytes

Antibodies

Cytokines
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The innate immune system is comprised of constitutive factors that are always 

present, and inducible factors that are subject to up-regulation during an immune 

response23. The constitutive factors are the physical barriers posed by the epithelial and 

mucosal linings of the skin, gills and alimentary tract, which also contain a large amount 

of the antibacterial enzyme lysozyme23. Lysozyme has a broader specter of activity in 

fish than it does in mammals, showing high efficiency towards both Gram-negative and 

Gram-positive bacteria, and has been shown to increase in response to infection long 

before a specific immune response can be mounted23,26. Innate immunity, although often 

referred to as non-specific, has through millions of years of evolution acquired a great 

efficiency for the recognition of structures that are highly conserved among a wide 

variety of pathogens. These structures, known as pathogen associated molecular patterns 

(PAMPs), are recognized by a series of pattern recognition receptors (PRRs) that are 

present on most immune cells as well as a few non-immune cells such as fibroblasts and 

epithelial cells (reviewed12,27). Pathogens that manage to breach the constitutive factors of 

innate immunity may be recognized and bound by PRRs to activate complement and cell 

signaling pathways, hence up-regulating the inducible innate immune factors12.

Complement proteins have a variety of functions, including lytic, proinflammatory, 

chemotactic and opsonic activities, which ties them to non-specific phagocytic 

processes12,26. The activation of cell signaling pathways induces inflammatory mediators 

such as chemokines and cytokines. Cytokines act as immune response modulators and 

play and important part in in the development of adaptive responses, whereas chemokines 

are a superfamily of cytokines of which one of the most essential functions is the 

mediation immune effector cell-movement to sites of infection12,28. Two of the most

important cytokines in mediating inflammatory responses are tumor-necrosis factor alpha 

(TNF- -1 beta (IL- . Both are induced almost immediately upon 

infection and play key roles in the migration of effector cells to the site of infection29, as 

well as contributing to the development of adaptive responses30. The discovery that 

human recombinant TNF-

macrophages indicated a conserved TNF- ided 

evidence of a cytokine network that regulates immune responses in fish in a manner 

comparable to what is known from mammals31. The cytokine has later been cloned in a 
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variety of species32-34. TNF- hown to induce IL-

enhance leukocyte migration in vitro as well as modulate the phagocytic responses of HK 

leukocytes30. Rainbow trout IL- -mammalian IL-

to be isolated35, and has since been found in a number of species36-40. The existence of a 

second IL- Cyprinus carpio L.)41, as 

well as for rainbow trout and Atlantic salmon42.

The distinction between innate and adaptive immunity, however common, is still 

an artificial one. Monocytes, macrophages, DCs and plasmacytoid DCs (pDCs) are 

known antigen presenting cells (APCs) in mammals (reviewed43), and provide an 

important bridge between innate and adaptive immunity through the presentation of 

pathogen-derived antigen to adaptive immune cells. Macrophages are so far regarded as

the most important phagocytes and APCs in fish and are able to process exogenous 

antigen for presentation either by MHC class II, or by MHC class I following a delivery 

of the exogenous antigen to the cytoplasm (reviewed44,45). Along with B- and T-

lymphocytes, RAG genes and memory formation, the MHC complexes make up the

fundamental features of adaptive immunity, all of which are present in teleost fish8,23.

Interestingly, the genome sequence of Atlantic cod has revealed what was long suspected, 

namely that the MHC class II gene has been lost from this species, along with the CD4 

co-receptor46.

The presentation of peptides by MHC class II results from an endosomal

processing of exogenous antigen and enables the stimulation of CD4+ T-cells (helper T-

cells)16. Depending on the nature of the innate signaling pathways, these CD4+ T-cells 

will differentiate into different subsets of effector cells of which the best defined are T-

helper 1 (TH1) and T-helper 2 (TH2) cells (reviewed47,48). Cytokines play an important 

part in regulating the polarization of naïve CD4+ T-cells, and in the absence of PRR 

mediated signaling molecules the T-cells themselves produce the cytokine IL-4 to drive 

TH2 differentiation, promoting humoral immunity48. There are still uncertainties 

regarding the existence of TH2 responses in fish47, but the T-cell system shares many 

characteristics with its mammalian counterpart. It has also been suggested that the 

antibody repertoire of fish is less diverse than in mammals, with IgM long being the only 

known functional immunoglobulin in teleosts. However, more recent research has 
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revealed the existence of also IgD and IgT/Z (reviewed15). Macrophages and DCs, the 

primary responders to infection, provide both cytokines and co-stimulatory signals that 

promote the differentiation of TH1 effector cells. IL-12 is regarded as the classic TH1

promoting cytokine, but a range of other cytokines may also favor TH1 differentiation, 

including type I interferons (IFNs)48.

Healthy individuals of both fish and mammals express type I IFNs at low levels, 

but the expression will be further up-regulated upon stimulation of intracellular PRRs49,50.

Despite the transient induction period even in the continued presence of an inducer, type I 

IFNs are the most important mediators of innate antiviral immune responses and 

contribute to inhibit viral replication, induce apoptosis to clear infected cells and also 

induce a wide variety of antiviral proteins (reviewed49,51). One of the most studied 

antiviral proteins is Mx1, a type I IFN-induced protein belonging to a subfamily of the 

large GTPases (reviewed52). As in mammals the expression of Mx in fish is generally up-

regulated by IFN-signaling, although some degree of up-regulation may take place in 

response to infection without any IFN involvement52,53. As Mx will normally accumulate 

to much higher levels than IFNs and express for a much longer period of time, it can also 

be used as a tool for tracking the activity of type I IFNs54. Mx is thought to exert its 

antiviral function by interfering with viral replication, although not all Mx proteins 

possess antiviral activity52. The Mx1 protein has demonstrated antiviral activity against 

infectious pancreatic necrosis virus (IPNV) in Atlantic salmon, where it was found to be 

expressed exclusively in the cytoplasm55. Although this sets it apart slightly from Mx1 in 

most other species where the protein is expressed in the nucleus, it does coincide with 

cytoplasmic replication of IPNV52. Most fish species seem to express Mx solely in the

cytoplasm55,56, although studies in Atlantic halibut suggest expression in both the nucleus 

and the cytoplasm57. Just like type I IFNs the Mx protein seems to be up-regulated by 

infection rather than initiated by it, and has been shown to express at varying levels in 

(apparently) healthy Japanese flounder (Paralichthys olivaceus)58.

Type I IFNs also provide an important link between innate and adaptive immunity 

through the up-regulation of MHC class I59-61, and are critical for the clonal expansion of 

CD8+ T-cells as well as for the generation of specific and non-specific memory cells62,63.

Hence, whereas the differentiation of effector CD8+ T-cells requires the specific binding 
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with antigen and MHC class I, the final destiny of the cells depends on exposure to type I 

IFNs, demonstrating the importance of both APCs and inflammatory stimuli for the 

development of adaptive immune responses.

The activation and differentiation of naïve CD8+ T-cells into effector cytotoxic T-

lymphocytes (CTLs) through the processing and presentation of antigen peptides on 

MHC class I is an important aspect of the immune response to intracellular 

pathogens63,64. Non-specific cell mediated cytotoxicity (CMC) in fish is conducted by 

NCCs (suggested precursors of NK cells), NK-like cells and neutrophils, whereas 

adaptive CMC responses require MHC class I, CD8 and T-cell receptors (TcRs)

(reviewed65,66)

teleost fish, including Atlantic salmon, rainbow trout and Japanese flounder, together 

encoding the ortholog of the CD8 co-receptor in mammalian T-cells67-69. Rainbow trout 

CD8 + cells express CTL effector molecules and are found in high abundance especially 

in respiratory tissue, whereas the number in blood is not so high70. The study indicates 
+ cells, with little 

- + cells has also been observed in 

ginbuna crucian carp (Carassius auratus langsdorfii) against allogeneic targets71.

Although MHC class I is found on nearly every nucleated cell, the presentation by MHC 

class I on APCs appears to be more effective for the induction of CTL responses

(reviewed16,44).

The differentiation and proliferation of CD8+ T-cells is mainly governed by the 

two T-box transcription factors T-bet and Eomesodermin (Eomes)72,73. T-bet is expressed 

and induced by TH1 cells and was initially believed to be the only transcription factor 

vital to CD8+ T-cell differentiation and proliferation. It now appears that Eomes is able to 

uphold the effector functions of CTLs in the absence of T-bet, but as the transcription 

factors exert their influence at different stages of the differentiation they are both required 

in order to sustain the full range of effector functions72-74. Cells lacking both T-bet and 

Eomes instead differentiate into an IL-17 secreting lineage reminiscent of a helper T-cell 

fate implicated in autoimmunity and extracellular microbial defense73,75.
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The adaptive immune system plays a critical role in the protection against 

recurrent infections through the generation of memory cells as well as both soluble and 

membrane-bound antigen-specific receptors (reviewed76). Although teleost fish are in 

possession of an adaptive immune system, a high degree of pathogenic exposure from an 

early ontogenetic stage combined with an observed temperature-sensitivity of adaptive 

responses suggests that they rely more heavily on innate responses than mammals8,23,77,78.

Mechanisms of cellular uptake

All mammalian cells are able to internalize fluids, molecules and particles by 

different mechanisms collectively referred to as endocytosis (reviewed79). The two main 

types of endocytosis are phagocytosis and pinocytosis, from which pinocytosis can be 

further divided into; 1) receptor mediated endocytosis (also known as clathrin-mediated 

endocytosis or CME), 2) caveolae-mediated endocytosis (CvME), 3) fluid phase 

endocytosis of bulk solutes (macropinocytosis) and 4) clathrin- and caveolae independent 

endocytosis (Fig. 2) (reviewed80,81). Phagocytosis is normally applied by professional 

APCs as a means of ingesting larger particles (0.5-10 μm) such as bacteria, and involves 

the recognition of PAMPs by PRRs on the surface of the phagocyte79. Pinocytosis, on the 

other hand, is a constitutive formation of vesicles that contain macromolecules and 

extracellular fluid. CME is commonly considered the ‘classical route’ of cellular entry 

and is carried out by almost every nucleated cell as a means of taking up essential 

nutrients. Prior to internalization, macromolecules are concentrated on the cell surface 

through receptor binding in clathrin-coated pits (CCPs)81. Caveolae are flask-shaped 

structures of 60-80 nm82 that are especially abundant in muscle, endothelial cells, 

fibroblasts and adipocytes81. Caveolae vesicles have been reported as capable of 

bypassing lysosomes as well as internalize compounds much larger than the size of the 

caveolae, although the actual properties are still debated (reviewed83). Macropinocytosis 

involves the formation of transient membrane ruffles that protrude to engulf extracellular 

fluid and particles like bacteria, necrotic cells and viruses (reviewed84).
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Figure 1 - Depiction of different endocytic pathways (figure from Hillarieau and Couvreur85)

Endosomal sorting

Internalization by CME shows evidence of a pre-early endosome sorting process 

involving variations in adaptor proteins of the CCPs86. Subpopulations of CCPs 

internalize cargo destined for degradation, and transport it to a class of rapidly moving 

early endosomes on microtubules that mature quickly towards late endosomes. The 

majority of internalized material is delivered to a more static type of early endosomes that 

mature more slowly86. The recycling-ligand transferrin is non-selectively delivered to all 

early endosomes and therefore becomes more enriched in the static population86.

Toll-like receptors (TLRs)

The most studied PRRs in fish are toll-like receptors (TLRs), a class of trans-

membrane proteins that each is highly specific for a variety of pathogenic structures

(reviewed27,61). A common way to classify the TLRs is by distinguishing between those 

that bind PAMPs at the cell surface, and those that recognize internalized PAMPs. While 

most TLRs are expressed on the cell surface, TLR 3, 7, 8 and 9 bind PAMPs exclusively 

in endosomal/lysosomal compartments and recognize agonists such as pathogen-derived 

nucleic acids61,87,88. The key features of TLR recognition and signaling appear to be 

highly conserved among vertebrates, and studies conducted in fish have found TLRs to 

respond to similar agonists and induce the expected cytokines89,90.
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A TLR that receives attention in this thesis is TLR9, one of the intracellular TLRs 

and recognizer of CpG motifs (described later) in bacterial deoxyribonucleic acid 

(DNA)87. Innate immune cells that recognize CpG motifs by TLR9 are DCs, monocytes, 

macrophages and neutrophils91, but although TLR9 does exist in fish it is not yet clear 

whether it binds CpG motifs in a direct manner as observed in mammals92. It has, 

however, been shown that endosomal maturation of CpG-containing DNA (CpG-DNA)

is necessary for TLR9 signaling in fish just as it is in mammals, where the process 

triggers a translocation of TLR9 from the endoplasmatic reticulum (ER) and Golgi 

apparatus to the endosomes87,93-95. TLR9 has been shown to up-regulate in response to

stimulation with CpG-DNA in a variety of fish species, such as Atlantic salmon96,

rainbow trout97 and Japanese flounder98. Rainbow trout and Japanese flounder both 

expressed TLR9 in spleen, HK, PBLs and gills, whereas expression was also found in the 

posterior kidney, heart and ovaries of Atlantic salmon. The protein sequence of Atlantic 

salmon TLR9 also revealed a conservation structural features that are crucial for 

signaling and adaptor functions in mammalian TLR9, further supporting the likelihood 

that both expression and function are conserved across teleost and mammalian lineages96.

Vaccines – weapons of mass protection

In 1796 Edward Jenner was the first to conduct an immunization, steering the 

world down the path that would eventually lead to the eradication of small-pox99. The 

background for what can well be called a daring experiment was the discovery that milk-

maids who had been exposed to the less pathogenic cow-pox rarely or never contracted 

small-pox. Using lymph from a pustule on the hand of milk-maid who was infected cow-

pox, Jenner successfully immunized a boy so that later exposure to small-pox induced no 

signs of illness99. The closest method applied today is the live-attenuated vaccine, which

is one of the five principle types along with; inactivated vaccines, subunit, toxoids and 

genetic based vaccines (reviewed100). The purpose of vaccination is ultimately to prime 

the immune system for specific pathogens by stimulating the formation of a long lived, 

antigen-specific memory cell population. 
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Vaccination in aquaculture

The existence of adaptive immune responses in fish makes them eligible for 

vaccination. The major breakthroughs in vaccines for farmed fish came with the 

introduction of adjuvants during the 1980s, but the first successful vaccination was 

carried out some 40 years earlier when Duff immunized cutthroat trout (Oncorhynchus 

clarkiib) with killed Aeromonas salmonicida and achieved protection against furunculosis 

upon challenge101. A brief overview over the developments in fish vaccinology, with 

emphasis on topics relevant to this thesis, is provided in table 2.

In the early stages of modern aquaculture, large amounts of antibiotics became the 

solution for combating emerging diseases. The use of antibiotics in Norwegian 

aquaculture reached its peak in 1987, with an accumulated weight of nearly 50 metric 

tons for the production of no more than 50 000 metric tons of fish102. The introduction of 

efficient oil-adjuvanted vaccines against bacterial diseases in the late 1980s meant a 

drastic reduction in the use of antibiotics. Today the annual production volume is about 1 

million metric tons, whereas the use of antibiotics has been reduced by more than 99%4.

The methods of vaccination applied in aquaculture vary depending on species, 

developmental stages and whether the fish are farmed in an enclosed environment or in 

sea-cages. The superior method for achieving protective immunity is injection, despite 

the fact that the need for anesthesia and handling subjects the fish to substantial stress77.

Most injected vaccines are delivered intraperitoneally, whereas DNA vaccines are most 

efficient when injected into muscle103,104. Vaccination by immersion is a far more 

applicable method when the fish are small (<10g), and can be performed as dip 

vaccination or as spray, shower or bath (reviewed77). Oral vaccination is so far inferior to 

both injection and immersion, but if made effective it would require the least amount of 

labor as well as virtually no stress for the fish. 

Among the greatest challenges in today’s aquaculture industry is the lack of 

efficient vaccination strategies for combating diseases caused by intracellular pathogens.

Conventional vaccines are generally strong inducers of humoral immune responses and 

have proven efficient against bacterial diseases that originally caused enormous losses to 

the industry77. However, they are largely incapable of inducing the immune responses 

b Previously named Salmo clarkii
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necessary to resist infection by virus and intracellular bacteria. Live attenuated vaccines 

and DNA vaccines have shown great potential for inducing cellular responses (TH1,

CTLs) (reviewed105,106), but their use is limited due to risks of reversion to virulence (live 

attenuated) and potential chromosomal integration, amongst others (DNA vaccines). 

Hence, the need for strategies that will enhance cellular responses as well as maintain the 

general welfare of the fish is pressing.

Adjuvants and vaccine carriers

‘Adjuvare’ is latin and means to help or aid, which is exactly the purpose of 

adjuvants. And adjuvant is simply defined as a compound with the ability to increase 

and/or modulate the immunogenicity of an antigen107. Immune responses to vaccination 

are largely dependent on three signals107. The most central of these is the signal provided 

by the antigen (signal 1), which surveys the information required for a specific immune

response. Signal 2 derives from the receptor-ligand interaction between APCs and T-cell 

antigens and is required in order to avoid aborted responses. The activation of APCs and 

orientation of the TH response depends on signal 0, which is generally triggered through 

antigen recognition by PRRs.

The use of killed/inactivated pathogens or component vaccines suffers the 

drawback that both methods are poor inducers of adaptive immune responses, 

necessitating the use of adjuvants that can contribute to the immunogenicity of the 

vaccine64. The use of adjuvants dates back to the 1920s (reviewed108), but due to the slow 

progress in the field of fish vaccinology their potential in aquaculture was not fully 

appreciated until the introduction of oil-adjuvants in the late 1980s109.
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Table 2 - A brief overview of the developments in fish vaccinology through the years. Unless otherwise stated the 

data has been gathered from reviews by Van Muiswinkel110 and Plant and LaPatra111.

Developments in fish vaccinology

2012

2010
First PLGA-immunization by injection; intraperitoneal delivery of PLGA 

particles containing A. salmonicida membrane proteins112.

2008
First reported delivery (oral) of PLGA-encapsulated DNA to fish; study with 

Japanese flounder113.

2005
First licensed DNA vaccine for fish; Apex-IHN® for protection of salmonids 

against IHNV114.

1997
First use of an encapsulated vaccine; oral administration of Vibrio 

anguillarum encapsulated into alginate microspheres115.

1996

First use of PLGA particles in fish; oral intubation of Atlantic salmon with 

PLGA particles containing human gamma globulin (HGG)116.

First DNA vaccination of fish; rainbow trout was injected intramuscularly 

with a plasmid coding an IHNV antigen117.

1995
First commercial viral vaccine; Norvax® Protect-IPN was licensed in 

Norway118.

1981
First adjuvanted vaccine meant for injection and protection against A. 

salmonicida was licensed.

1976
First licensed fish vaccine; orally administered killed Yersinia ruckeri to 

protect against enteric redmouth disease.

1951
The (possibly) first report on viral immunization; intraperitoneal injection of 

carp with formalin-killed virus (likely spring viraemia virus).

1942

First report of successful vaccination; oral administration of chloroform-killed 

A. salmonicida induced protection in cutthroat trout against furunculosis after 

challenge by injection or cohabitation101.

Intraperitoneal injection of killed or attenuated bacteria induced protection 

against Aeromonas hydrophila upon challenge.

1938
Induction of protective immunity in fish after injection with killed Aeromonas 

punctate.

1935
Heat-killed V. anguillarum induced a specific and temperature related 

agglutinin response after injection in eels.
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The function of adjuvants

Adjuvants provide starting signals for and accelerate the immune response, and 

may also provide a functionally appropriate type of immune response (TH1 vs. TH2), 

increase the generation of (especially) memory T-cells and alter/modify the response in 

terms of specificity and breadth (reviewed119,120).

Adjuvants can be broadly categorized as particulate and non-particulate adjuvants.

Particulate adjuvants owe at least some of their adjuvant properties to their microscopic 

particulate nature and generally exert their full potential when the immunogenic 

compound can be incorporated into or associated with the particle to ensure that antigen 

and adjuvant are distributed similarly and delivered to the same population of APCs

(reviewed121-123). Many common adjuvants fall into this category, including water-in-oil 

emulsions, aluminium salts, immune-stimulating complexes (ISCOMs™), liposomes and 

various polymeric nano- and microparticles121,123. Non-particulate adjuvants generally 

exert immunomodulatory functions, and often benefit from an association with 

particulate adjuvants. The category of non-particulate adjuvants encompasses amongst 

others saponins, cytokines, TLR agonists (flagellin, Poly I:C, CpGs), Lipid A and

-glucan)121.

Adjuvants have also been classified according to whether they act on signal 0, 1 

or 2107. Most specific adjuvants, such as TLR agonists, act on signal 0 as well as 

indirectly on signal 2 through the activation of APCs and induction of cytokines and are 

classified as type A adjuvants. Type B adjuvants, comprising amongst others 

microspheres and some emulsions, exert their influence on signal 1 by enhancing antigen 

capture and presentation to T-cells by MHCs. As antigen presentation is not sufficient on 

its own, these adjuvants will require a co-delivery of immunostimulatory signals such as 

type A adjuvants. Finally, type C adjuvants are specific ligands of co-stimulatory 

molecules, with the ability to directly enhance signal 2.

The knowledge that adaptive immune responses require time to reach robust 

levels at low temperatures means that an efficient depot might be essential for the 

acquisition of protective responses in cold-water species such as Atlantic salmon77. The 

major success of mineral oil-adjuvants can largely be attributed to their depot effects, 

including an injection site depot with gradual vaccine release and a protection of the 
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vaccine against degradation124. Although oil adjuvants induce immediate and strong 

expression of pro-inflammatory signals in Atlantic salmon, the expression can be 

transient and difficulties concerning the administration of especially small volumes can 

lead to large variations between fish50,77. Oil-adjuvanted vaccines may also induce certain 

side effects, such as autoimmunity, chronic inflammations and adhesion of peritoneal 

organs to each other or to the cavity wall125,126. The perhaps most widely applied and 

efficient oil adjuvants for research purposes are Freund’s complete (FCA) and Freund’s 

incomplete (FIA) adjuvant, both composed of a mineral oil with surfactant and differing 

from each other only in that FCA contains heat-killed Mycobacteria127. Unfortunately, 

both may induce rather severe side effects and do not always provide a sufficient 

immunological response. Other mineral oil adjuvants, such Montanide™ and Alphaject, 

have been developed to maintain the advantageous effects seen with the Freund’s 

adjuvants, but with a reduced risk of side effects120. Aluminum compounds have long 

been the most common adjuvants for human as well as veterinary vaccines and induce 

rapid and lasting antibody responses in addition to TH2 responses through an enhanced 

uptake by APCs (reviewed128,129). Their exact mechanism of action is, however, still 

largely unknown and like oil adjuvants they are not optimal for the induction of CTLs. As 

a presentation of peptide by MHC class I is required for the activation of CTL responses, 

a good adjuvant for the induction of cellular immunity would be one that enables 

cytosolic antigen delivery as well as an up-regulation of TH1 responses. ISCOMs™ as 

well as various polymeric nano- and microparticles provide good opportunities for 

targeting antigens to APCs and have also been shown to induce CTL responses

(reviewed130,131).

The vaccination of aquatic animals offers challenges not only in terms of 

immunogenic factors such as temperature dependent immune responses and a lack of 

investigative tools for immune response research purposes, but also with regard to 

vaccination strategies. Given the high number of fish it is clear that repeated 

immunizations would be highly impractical at best. Aside from the need for vaccines 

with the ability to induce efficient cellular immunity, the use of efficient depot-creating 

adjuvants is therefore critical in order to achieve maximum protection.
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Poly(D,L-lactic-co-glycolic)-acid (PLGA)

The potential of the biodegradable polymer PLGA for biomedical use has been 

the subject of research since the 1970s132. Ever since PLGA was approved for use in 

human and veterinary medicine by the American Food and Drug Administration (FDA), 

it has been applied for a wide range of products such as sutures133, orthopedic fixtures134

and as delivery matrices for pharmaceuticals135. The 1980s brought about the exploration 

of micro-sized (>1000 nm) PLGA particle constructs as carriers for delivery of vaccines 

and drugs136-138, whereas a more recent development is the application of nano-sized

(<1000 nm) particles with the intention of enhancing TH1-responses to vaccination139.

Qualities of PLGA

PLGA is a copolymer of lactic and glycolic acid that is synthesized by random 

ring-opening copolymerization of the cyclic dimers (1,4-dioxane-2,5-diones), where the 

monomeric units are linked together by ester linkages to create a linear, amorphous 

aliphatic polyester product140 (Fig. 2). As a synthetic, thermoplastic polyester with a glass 

transition temperature (Tg PLGA has a chain structure that is sufficiently 

rigid to provide the mechanical strength necessary for formulation of drug delivery 

systems141. Amorphous DL-PLGA and DL-polylactic-acid (PLA) are generally used for 

the purposes of drug and antigen delivery as their polymer stereochemistry allows for a 

homogenous dispersion of antigens in the polymer matrixes141. The ability to vary the 

ratio of lactic to glycolic acid is, along with the high biocompatibility and non-toxic 

effect on biological systems142,143, one of the key characteristics for the application of 

PLGA in vaccine delivery.

PLGA particle preparation

The most applied methods for preparation of PLGA particles are coacervation144,

spray-drying145 and the double emulsion solvent-evaporation technique. Also known as 

water-in-oil-in-water, or w1/o/w2, the double emulsion solvent-evaporation method was 

first described by Ogawa et al. in 1988137,146 and has since become the most frequently 

applied method for the encapsulation of antigens. 



26

Table 3 - Process for preparation of PLGA particles by the double emulsion solvent evaporation method 

(w1/o/w2).

Procedure

First water phase (W1)
Antigen is dissolved in a 600 μl aqueous solution containing 0.2 % poly 

vinyl alcohol (PVA).

Oil phase (O) PLGA is dissolved in 6 ml of the chosen organic solvent (5% w/v).

First emulsion (W1/O)

The two solutions are emulsified by sonication, homogenization or 

magnetic stirring to create the first emulsion (w1/o) of nano- or microsized 

droplets, commonly for durations of 20 sec to 5 min. The force and duration 

of this step especially influence antigen integrity and encapsulation. 

Second water phase (W2)

+

Second emulsion (O/W2)

The first emulsion (w1/o) is transferred to a second aqueous phase (w2)

containing 2 % PVA. Depending on applied force of emulsification 

(sonication/homogenization/stirring) this step may last for 1-10 min and is a 

critical determinant of the final particle size.

The dispersion of droplets in the w-phase creates the water-in-oil-in-water 

(w1/o/w2) emulsion.

Solvent evaporation

The dispersion of droplets during the second emulsification contributes to 

the hardening of the particles by facilitating solvent extraction into the w-

phase during solvent evaporation. Adding additional dH2O will facilitate the 

process.

During a stirring process lasting from 5-20 h (until the solvent is completely 

evaporated) the size of the particles is reduced through a packing of the 

polymer matrix that entraps antigens from the w-phase.

Washing

Resulting particles are washed 3 times in a stepwise process centrifugation

process (500-25000 x g depending on particle size) in order to remove 

excess PVA from the particle surfaces.

Lyophilization

Washed particle suspensions are aliquoted to small containers and diluted 

with a lyoprotectant (1:3 in trehalose (5 mg/ml)). Aliquots are frozen at -80 

-dried at <0.01 hPa for a minimum of 48 h until all water is 
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Particle preparation by this method produces spherical particles with a negative surface 

charge due to the common use of polyvinyl alcohol (PVA) as a stabilizer147. Table 3 

provides a general outline of the procedure. A selection of different formulation variables 

is presented in Paper I, whereas examples of specific formulation parameters can be 

found in Paper II.

The process of lyophilization creates pockets with high particle concentrations 

and can induce aggregation and an irreversible fusion of nanoparticles148. Crystallization 

might cause mechanical stress on nanoparticles and result in destabilization. 

Cryoprotectants and lyoprotectants prevent stress during freezing and drying, 

respectively. As such, both affect properties that may extend the shelf-life of the final 

product. Trehalose, both a cryo- and a lyoprotectant, is the most preferred for several 

reasons; low chemical reactivity, no internal hydrogen bonds which means it can form 

more flexible bonds with the nanoparticles, higher Tg and less hygroscopicity148,149.

Stepwise washing is crucial for the removal of residual polymer, solvent and stabilizer 

from the final particle product, and also allows for a rough separation of particles by size.

Some solvent and stabilizer will, however, always remain attached to the polymer.

Figur 2 - The chemical structure and biodegradation products of poly(lactic-co-glycolic)acid. The ratio of lactic 

to glycolic acid is symbolized by the letters x and y, respectively (picture obtained from Kumari et al.150)
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Particle characteristics – traversing the maze

The w1/o/w2 preparation protocol offers a range of opportunities for tailoring the 

final particles characteristics to suit specific needs. Through the regulation of various 

aspects of the protocol, it is possible to influence characteristics such as size, porosity, 

antigen loading, zeta- -potential (net surface charge) and degradation as well as antigen 

release. Although a protocol may be modified with the intention of altering just one of 

these characteristics, any change may influence other characteristics as well.

Size

Particle size is especially important with regards to tissue distribution and the 

potential and extent of cellular internalization. The parameter that exerts the most 

influence on particle size is the force applied during emulsification, and mainly during 

the second step of emulsification where the use of sonication has been shown to generate 

nanoparticles even when vortex had been applied for preparation of the first (w1/o) 

emulsion151. Greater forces are required for the preparation of nanoparticles compared to 

microparticles, and sonication is often the method of choice for generating particles of 

small sizes152. Reports on the influence of molecular weight (Mw) on the resulting particle 

size are very variable. Most studies report low Mw PLGA as superior for the generation 

of small particles152,153, although there have been studies conducted that suggest the 

opposite154. The use of stabilizers also affects particle size, and increased concentrations 

of PVA appear to result in smaller particles147.

Porosity

Preparation of particles by the w1/o/w2 method has been reported to consistently 

create highly porous structures, irrespective of the final particle sizes155,156. However, it 

seems that minor modifications of the protocol may result in capsule structures with thin 

polymer walls157. The choice of temperature during the solvent evaporation process has 

also been shown to influence the uniformity of pore distribution. Evaporation at room 

temperatures resulted in particles with a thin, dense skin layer and a very uniform internal 

porosity, whereas low evaporation temperatures yielded slightly smaller particles with a 

thicker skin, where the pores at the center of the spheres were larger156.
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Encapsulation efficiencies and antigen loading

For most purposes of application a high encapsulation efficiency and drug loading 

is desirable. Whereas the second step of emulsification is the main factor influencing 

particle size, the first step affects the encapsulation efficiency and antigen integrity151,158.

A study comparing homogenization and sonication for the preparation of microspheres 

found homogenization to favor higher encapsulation efficiencies as well as a linear 

release profile159. High Mw PLGA increases encapsulation efficiencies and therefore also 

loading, likely due to an increased viscosity of the oil-phase that results in a lower 

diffusion-rate of antigen/drug from the inner water-phase154,160,161.

A wide variety of solvents have been applied for the preparation of PLGA nano-

and microparticles. The rate of evaporation as well as the miscibility of the applied 

solvent with water is crucial for the resulting product, as a fast surface precipitation after 

emulsification is necessary to ensure a high encapsulation efficiency162. There are 

discrepancies in the literature with regards to the effect of different PVA concentrations 

on the efficiency of antigen/drug encapsulation, although there are indications that an 

increase in the concentration of PVA in the second emulsion enhances encapsulation158,

possibly by reducing the diffusion of antigen from the solidifying particles.

Zeta- -potential

The zeta-potential of particles is of great importance as a positive (cationic) 

charge is known to enhance cellular internalization154,163,164. Residual surface PVA tends 

to create particles with a negative zeta-potential147, but the amount of residual PVA will 

vary depending on other aspects of preparation. Sahoo et al. observed the least residual 

surface PVA when chloroform was applied as solvent compared to acetone and 

dichloromethane (DCM)165, and also noted that PVA Mw as well as the concentration of 

PVA in the second water phase would influence the final residual amount. Surface PVA 

appears to be higher with smaller particles, raising the question of whether it is PVA that 

influences particle size or the other way around166. A decrease in polymer Mw also 

corresponds with a decrease in the polymer’s Tg, while there has been observed an 

increase in zeta-potential152,167.
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Degradation and release characteristics of PLGA particles

By definition the degradation of polymers classified as biodegradable is at least 

mediated by a biological system168. The process of polymer erosion is, however, much 

more complex than mere degradation and will in addition to degradation depend on 

factors such as swelling, morphological changes and the dissolution and diffusion of 

oligomers and monomers168. PLGA degradation is hence the collective process of bulk 

diffusion, surface diffusion, bulk erosion and surface erosion. The addition of polymer 

constructs to a biological system will further increase the complexity of the process.

The degradation of PLGA is thought to take place by a bulk erosion 

mechanism169,170 where the ester bond linkages in the polymer backbone are cleaved by 

spontaneous hydrolysis171. The first phase of degradation involves a decrease in the 

molecular weight of the polymer due to random and continuous hydrolytic ester 

cleavages, but demonstrates no actual loss of polymer mass172. During the second phase 

the acidic microenvironment generated by the process of hydrolysis acts to further 

degradation, and the polymer construct experiences a rapid loss of mass172. In large 

particles (>300 μm), the enhanced autocatalytic effect inside constructs influences the 

surrounding matrix, causing degradation rates to be higher inside particles than on the 

surface173,174. In the final stage of PLGA degradation the soluble oligomers created 

during the second phase are further fragmented to soluble monomers, resulting in a 

complete solubilization of the polymer (Fig. 2)175. A complete breakdown of lactic and 

glycolic acid takes place in the Kreb’s cycle, after which a total removal occurs either 

through the respiratory route or via excretion by the kidneys or the liver141,170,176.

The kinetics of degradation depends largely on PLGA Mw and composition171,

with an increase in molecular weight contributing to extend the period of degradation175.

PLA (100:0) has the highest Tg and is the most hydrophobic composition, and polymers 

rich in lactide therefore demonstrate the slowest rates of degradation141,167,171,177. The 

amorphous nature of 50:50 co-polymers exempts them from this rule, and they show the 

fastest degradation rate141,178. The preparation of nanoparticles may cause a slight 

increase in the Tg of the PLGA179, as will the molecular weight decrease in the polymer 

backbone during degradation167. Freeze drying the particles in presence of saccharides 
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such as trehalose yields high stability for storage, and refrigerator temperatures have also 

been shown to reduce the degradation to nearly undetectable levels149,180.

Antigen release from PLGA particles

Irrespective of their size, PLGA particles prepared by the w1/o/w2 method 

demonstrate a bi-phased release profile where an initial burst release is followed by slow, 

continuous release181. The initial burst release observed shortly after particles have been 

dissolved in an aqueous solution is largely related to the type of encapsulated antigen, 

antigen concentration and polymer hydrophobicity170. The rapid release of antigen that is 

bound on or close to the surface is a result of antigen solubility as well as the penetration 

of water into the polymer matrix166,170,182. The second stage is a progressive release 

through a thicker, drug-depleted layer of polymer as well as through passages created by 

the continuous release of soluble oligo- and monomers from the degrading polymer170.

Particle dimensions have been shown to influence the release of antigen during the first 

phase of degradation180, whereas the continuous release phase has demonstrated almost 

identical rates of release for nano- and microparticles166. Release generally decreases with 

increased particle dimensions, possibly due to increased diffusion lengths coupled with a 

decreased surface-to-volume ratio155. Smaller particles have been shown to retain higher

surface concentrations of PVA, which seems to contribute to a higher antigen release 

rate158. As the Mw of PLGA decreases there is an increase in degradation and hence also 

antigen release146. High shear forces may also generate more porous structures with 

higher burst releases183.

Cellular uptake of PLGA particles

The cellular internalization of PLGA particles has been demonstrated with a 

variety of cell types both in vivo and in vitro. Depending on the size of the particles they 

can be internalized by macrophages/monocytes and DCs184-186 by either by phagocytosis 

(0.5-10 μm), macropinocytosis (0.5-5 μm) or CME (<200 nm). Some studies also report 

on internalization by CvME, but although such studies will be described the uptake by 

caveolae of particles any larger than 100 nm remains a topic of debate83. The B-cells of 
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fish have been shown to be phagocytic in a number of fish species, including Atlantic 

salmon187,188, and phagocytic activity was recently demonstrated also in B-cells from 

mice189,190. Although 0.5 μm appears to be a general size limit for phagocytosis by B-

cells, the uptake of polystyrene beads as large as 1 μm is observed both in vitro and in 

vivo187. Most nucleated cells can carry out uptake by CME, and myocytes have 

demonstrated an ability to internalize particles as large as 0.5 μm122,191.

As the particle dimensions increase there is generally a reduction in uptake with 

regard to both rate and concentration192,193. However, studies conducted in vitro with rat 

macrophages report particle sizes of 2-3 μm as optimal for phagocytosis, demonstrating 

that the difference relates to the speed of attachment rather than internalization186,194. This 

could be attributed to the fact that pathogens commonly phagocytized by APCs are in the 

same size-range194. Human peripheral blood lymphocytes (PBLs) have demonstrated 

significantly higher uptake of 4.5 μm polystyrene particles compared to 1 μm particles, 

with noticeable differences also observed with regard to zeta potential especially for the 

smaller particles164. Cationic particles have been shown to internalize more readily than 

particles bearing a negative charge (anionic), offering an explanation as to the increased 

uptake often seen with high Mw PLGA compared to more anionic, low Mw PLGA 

particles152,167,195. Cationic particles also accumulate to a much higher concentration, 

whereas particles with no surface charge are the slowest to internalize143,163,196. CME and 

possibly also caveolae mediated endocytosis have been suggested as the dominant 

mechanisms for uptake of cationic particles in human PBLs, whereas a blocking of these 

routes lead to enhanced uptake by macropinocytosis143. Anionic particles appeared to 

internalize by mechanisms other than CME and caveolae143. Nanoparticles smaller than 

200 nm seem to favor uptake by CME, although differences have been observed between 

cell lines197. Rejman et al. also reported a slow CvME as the main mechanism for uptake 

of 500 nm polystyrene particles191. In addition to zeta potential, a hydrophobic nature 

also works to enhance cellular uptake and may be a more critical characteristic than the 

surface charge163. Hydrophobic particles internalized more quickly than more hydrophilic 

particles in a study with mouse peritoneal macrophages, where particle diameters of 1-2

μm induced the largest uptake196.



33

Studies comparing different incubation temperatures have found high 

to be favorable to particle uptake, while low or no uptake at all was
195,198. Temperature dependent endocytosis has also been 

demonstrated in salmon HK macrophage-like cells (SHK-1 cell line) for uptake of a 

fluid-phase marker, and although the endocytic process still continued 

almost one third of the rate observed at 199. The time of incubation along with 

particle concentration also influence the efficiency of particle uptake, with a steady state 

of uptake generally achieved within 1-2 hours185,193. The efficiency of uptake has been 

shown to be higher at low particle concentrations, which is indicative of a saturable 

mechanism of internalization193,200.

While the internalization of PLGA particles is relatively efficient, there is a 

continually ongoing exocytosis that takes place along with endocytosis, keeping up 

equilibrium between particle concentrations inside and outside the cell192,201. This process 

has been found to be energy-dependent, with internalization of small nanoparticles (<100 

nm) observed after just one minute. When the extracellular nanoparticles were removed, 

65% of the internalized particles were exocytosed within 30 minutes. The uptake was 

found to be concentration dependent at low concentrations, suggesting uptake by

macropinocytosis192.

Endosomal sorting and escape

Larger particles have been shown to require longer time to reach the late 

endosomes and lysosomes191,202, and while both nano- and microparticles are capable of 

escaping into the cytosol, microparticles have sometimes been shown to remain in 

endosomes while some of their content is released to the cytosol202. The observation of 

PLGA nanoparticles in the center of early endosomes after internalization has been 

suggested as an indication of uptake by a non-specific mechanism such as 

macropinocytosis201. The localization may also relate to the physiological pH of early 

endosomes, in which the anionic particles are repelled by the negatively charged 

endosomal membrane. In late endosomes the acidic environment will interact with the 

PLGA and revert the surface charge to cationic201. This is an essential feature of PLGA 

particles, as it allows them to interact with the endosomal membrane, causing temporary 
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and localized disruptions that release the particles into the cytosol201,203. Whereas the 

amount of particles that manage to escape into the cytosol may be as low as 15%, those 

that do so appear to remain inside the cells.

Biodistribution and depot effects of PLGA particle vaccines

Various particle qualities will determine the distribution following injection. 

Microparticles measuring more than 5-10 μm are generally unable to escape from the 

injection site as they are too large for efficient uptake by resident cells186,204. These 

particles will instead create a depot at the injection site, slowly releasing their content to 

the surroundings. Nanoparticles are small enough that they may move across biological 

barriers, or they can be transported as cargo inside cells (reviewed205). Nanoparticles that 

escape into the bloodstream will quickly be subjected to endocytic systems, with the final 

accumulation depending on the route of administration and the endocytic capacity of the 

given tissue or organ. Following intravenous delivery the clearance of particles is 

performed mainly by phagocytes in the liver or spleen205. Oral delivery has demonstrated 

a distribution of particles to liver, kidney, heart, brain, lungs and spleen in mice142,

whereas intramuscular injection has shown retention of microparticles in APCs in the 

lymph node202.

The modification of surface charges as well as coating with various substances 

has been shown to alter the distribution profile as well as the specificity of cellular uptake

of particles205,206. As hydrophobic particles are readily internalized by phagocytes, 

surface modifications that make the particles more hydrophilic may significantly reduce 

uptake and increase the time particles spend in circulation. Poly-(ethylene glycol) (PEG) 

is most commonly applied for this purpose, although PVA also contributes to a higher 

hydrophilicity165,205.
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Adjuvant properties of PLGA particles

The adjuvant properties of PLGA can be attributed to a broad range of functions.

Particles can act as efficient delivery systems in order to enhance uptake by APCs130,

serve as depots for controlled release176,207,208 and may protect the encapsulated antigen 

against degradation130. The suitability of inert polymer particles for sustained antigen 

release in vivo was first described by Preis and Langer more than three decades ago209.

One of the advantages of PLGA is that it can be used for the encapsulation and/or 

absorption of a wide range of immunologic compounds, including immunostimulants 

-glucan210,211, TLR agonists like CpG DNA212 and lipopolysaccharide (LPS)213,

recombinant proteins139,195 and even whole viral particles214, bacterial vaccines215 and 

plasmid DNA (pDNA)113.

An addition of empty PLGA microspheres to monocytes/macrophage cultures 

may be enough to achieve a certain level of activation163. Empty nano- and microparticles 

of PLGA have also been shown to induce TNF- - after uptake in 

APCs139,216,217, with the necessary second stimulus perhaps derived from endogenous 

sources such as damage associated molecular pattern molecules (DAMPs) that induce a 

secretion of cytokines by macrophages. The addition of antigens or TLR agonists will 

generally enhance responses by stimulating the production of other cytokines such as IL-

6 and IL-12139, as well as prolong and enhance the presentation of antigen203,208.

Despite a vast number of reported studies, the data on the influence of particle 

size on the induced immune responses is still highly debated130. The large variation in the 

sizes of particles reported for immunological studies is only one of the factors that make 

it difficult to pinpoint immune responses relating to size. In a study conducted with 

polystyrene beads (all measuring less than 150 nm) conjugated with ovalbumin, a

decrease in size was found to correspond with a noticeable increase in TH1-biased 

responses218. The general consensus still appears to be that nanoparticles favor the 

induction of cellular responses (TH1 and CTL), while microparticles mainly promote TH2

responses and the production of antibodies122,207. In a study by Kanchan et al.,

nanoparticles measuring 200-600 nm were efficiently taken up by macrophages to induce 

IFN- H1 responses207. On the 

other hand, microparticles (2-8 μm) were found to attach to the surface of APCs, 



36

releasing their content there to induce a strong antibody response as well as an up-

regulation of MHC class II and IL-4. Larger particles (20-50 μm) also attached to the 

surface of macrophages, but induced lower levels of antibodies than the smaller 

microparticles207. The attachment of relatively large PLGA particles (6.5±3.9 μm) to the 

surface of macrophages was also reported by Nicolete et al., and they also found the 

particles to internalize with time219. Whereas nanoparticles demonstrated a less negative 

zeta potential and internalized more readily, the microparticles eventually induced a 

much more potent up-regulation of TNF- -

The co-encapsulation of a model antigen with an immunostimulating adjuvant 

into PLGA microspheres has been shown to enhance the immune response of a particle 

vaccine220, and a co-encapsulation rather than just co-inoculation of antigen together with 

a TLR agonist (e.g. CpG) seems necessary for the induction of potent CTL 

responses221,222. Although up-regulations of MHC class I and CTL responses are 

generally attributed to nanoparticles, the encapsulation of antigen into microspheres has 

been shown to up-regulate the expression of MHC class I as well as class II208,223.

Particles measuring more than 500 nm mainly internalize by phagocytosis or 

macropinocytosis218 and have in fact been shown as most efficient for the shuttling of

exogenous antigen to the cross-presentation pathway224. The use of PLGA particles for 

antigen delivery increases the escape of antigen from endosomes to the cytosol201,203,222,

as well as the efficiency of presentation by MHC class I212. This has even been observed 

in B-cells where cross-presentation was otherwise not observed203, and might be due to

the increased retention time in early endosomes that has been observed with 

microparticles compared to nanoparticles191,202. As PLGA particles are only able to 

escape from endosomes and not lysosomes, a longer retention time in endosomes might 

provide increased opportunity for particles or their released antigens to translocate to the 

cytosol. Human macrophages derived from PBLs have been shown to present 

encapsulated exogenous antigen to T-cells in vitro, and the efficiency of presentations 

correlated well with the level of phagocytosis223. Following on, it is suggested that the 

use of PLGA nanoparticles for antigen delivery reduces the amount of antigen necessary 

to achieve the desired response139.
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PLGA studies in fish

Particles of PLGA have been extensively studied for their potential as carriers for 

vaccine and antigen delivery, with an increasing number of studies done also in fish. Oral 

immunizations have been performed with rainbow trout225,226, Atlantic salmon116 and 

Japanese flounder113,227, whereas intraperitoneal delivery studies have been conducted in 

Atlantic salmon210,211,214, Indian major carp (Labeo rohita)112 and kelp grouper 

(Epinephelus bruneus)228,229.

Transfection and reporter gene studies

Transfection is the deliberate introduction of nucleic acids to cells, and a plasmid

DNA is commonly applied for this purpose. Plasmids are circular, double stranded (ds) 

DNAs with the ability to replicate autonomously in prokaryotes. Along with the gene of 

interest (GOI), plasmids that are used in gene delivery studies commonly contain 

promoter and enhancer sequences, a polyadenylation sequence, transcriptional 

termination sequence, an antibiotic resistance gene and an origin of replication

(reviewed230). Transcription of the plasmid and translation of its messenger-ribonucleic

acid (mRNA) to protein are both conducted by the cell’s own apparatus in order to 

express the GOI.

Reporter genes are easily detectable and not normally expressed by the organism 

of study and are valuable tools for investigating factors that may influence gene delivery, 

such as; route of administration103, administrated volume (reviewed231), pDNA dose232,

size of the animal104, age of the animal232 and experimental temperatures78, as well as for 

assessing the potential of a species as candidate for gene therapy and/or DNA 

vaccination. Among the most frequently used reporter genes are luciferase (Luc),

-

-gal)230. The potential of luciferase as a reporter gene was first reported 

more than two decades ago, and it has since become one of the most widely applied 

reporter genes in transfection studies233. The first reporter gene study in fish was reported 

Hansen et al. in 1991232, just one year after Wolff et al. published their paper on the 

expression of a foreign protein following direct injection of a naked pDNA into mouse 
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muscle234. The expression of foreign genes so far appears to be higher in fish than in 

mammalian species for a given dose of pDNA, but levels of expression appear to vary 

greatly between individuals just as reported from studies on mice235-237.

DNA vaccines and vaccination

The definition of DNA vaccination as provided by The Norwegian Biotechnology 

Advisory Board238 is “the intentional transfer of genetic material (DNA or RNA) to 

somatic cells for the purpose of influencing the immune system”. This sets it slightly 

apart from gene therapy, which in the same report is referred to as an introduction of 

foreign gene for purposes other than influencing the immune system. The mechanism of a 

DNA vaccine can in many ways be likened to that of a virus, as it requires the same 

cellular machinery in order to replicate and also triggers immune responses normally seen 

with viral infections239. Unlike conventional viral vaccines based on subunits or killed 

virus, a DNA vaccine may conserve the structure and hence also antigenicity of a 

transgenic antigen/protein230,240.

Immune responses to DNA vaccination

A vital attribute of DNA vaccines is the ability to induce all three arms of 

adaptive immunity, namely; helper T-cells, CTLs and antibodies, although they were 

initially investigated in the attempt to find ways of delivering antigen to MHC class I and 

induce TH1 responses106,241. Professional APCs are the cells that primarily contribute to 

the immune responses to DNA vaccination. Direct transfection of DCs provides the most 

efficient priming of naïve CTLs, and is perhaps the major mechanism for priming of 

these cells242. APCs are also able to take up exogenous antigens and process them for 

presentation by either MHC class II, or MHC class I following transfer of the antigen to 

the cytosol (cross-priming)44,45. These responses are vital in the cellular immune response 

following DNA vaccination. 

The immunogenicity of DNA vaccines stems not only from the expression of the 

GOI, but also from properties of the plasmid vectors themselves. The ability of foreign 

nucleic acids to induce IFNs in chicken and mouse fibroblasts was discovered by two 
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independent research groups as early as in 1963243,244. The most studied pDNA property 

in terms of possible adjuvant effects is CpG motifs, regions in the DNA where a cytosine 

nucleotide occurs next to a guanine nucleotide and the two are linked by a phosphodiester 

bond. In vertebrates these sequences are highly methylated, whereas they show a much 

lower methylation frequency in viral and bacterial DNA (such as pDNA)94,245. These 

CpG motifs can act as PAMPs and are recognized as danger signals by the vertebrate 

immune system, resulting in a release of cytokines, macrophage activation, a 

differentiation of TH1 effector cells as well as B-cell proliferation and secretion of 

antibodies87,94,246,247. The covalent linking of CpG-DNA to ovalbumin (OVA) has also 

been shown to enhance both uptake and cross-presentation of the antigen in B-cells248.

The non-specific uptake of CpG followed by endosomal maturation are essential 

processes for signaling in APCs88,249, and the induced cytokine profile appears to depend 

on whether CpG is recognized within early or late endosomes. Whereas detection of 

DNA-structures in early endosomes favors the induction of IFN-

DNA structures in late endosomes or lysosomes primarily leads to a production of IL-6

and TNF- 250. The immune responses triggered by CpG motifs 

demonstrate how the interaction of TLR9 with foreign DNA may bridge innate and 

adaptive immunity251,252.

CpG motifs were long thought to be the sole contributors to the inherent adjuvant 

effects of DNA vaccines, but it now appears as if the basal adjuvant effects may in fact be 

independent of TLR signaling253,254. The escape of dsDNA into the cytosol enables the 

induction of cellular responses by different pathways and through different regulatory 

mechanisms255,256, and it has been shown that TLR9-deficient mice are still able to mount 

significant TH1 and B-cell responses in vivo253,256,257. The DNA-dependent activator of 

IFN-regulatory factors (DAI) was the first possible cytoplasmic DNA receptor reported 

and binds B-form (right-handed helical structure) dsDNA to enhance association with the 

signaling molecule TBK1, inducing IL-

fibroblasts, macrophages and DCs254,258,259. Signaling by type I IFNs is indispensable for 

solid DNA vaccine-induced immunogenicity, but although it would seem that TBK1 

rather than TLR9 signaling is essential for DNA vaccine-induced T-cell responses257, a 
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co-injection of TBK-1 encoding plasmids to act as adjuvants with a DNA vaccine 

improved only humoral responses, not cellular254.

DNA vaccination of fish

The first DNA vaccination of fish took place in 1996, when Anderson et al.

immunized rainbow trout against infectious hematopoietic necrosis virus (IHNV)117.

Since then several trials have been performed for a wide variety of fish species and 

pathogens and in 2005 a vaccine against IHNV infection in salmonids (Apex-IHN®,  

Novartis Animal Health) was also one of the first DNA vaccine ever to be cleared for 

marketing (by the Canadian Food Inspection Agency). In 1999 the injection of Atlantic 

salmon with pCMV4-G (plasmid-encoded glycoprotein) from a rainbow trout IHNV 

isolate induced significant protection against challenges with IHNV, even though the 

salmon were much larger than the rainbow trout in previous challenge studies260. DNA 

vaccination of fish has been shown to induce both innate and adaptive immune responses 

similar to what is seen in mammalian species, and seems especially efficient against 

rhabdoviruses (like viral haemorrhagic septicaemia virus (VHSV) and IHNV)230,261.

These are simple RNA viruses with either five or six genes and a single viral surface 

protein (glycoprotein, or G protein) that acts as the protective antigen230,262. Other RNA 

viruses, or the larger DNA viruses, often offer more difficulty in identifying a protective 

antigen, although viral surface protein genes are almost always chosen for DNA 

vaccines230. Some pathogens, such as infectious pancreatic necrosis virus (IPNV),

primarily cause disease in fry. Whereas vaccination by injection is highly impractical at 

this stage77, the vaccination of post-smolts has been shown to induce protection upon 

challenge263. Good protection did, however, require the use of plasmids encoding all the 

large poly-proteins of the IPNV.

Early responses following DNA vaccination against rhabdoviruses largely 

indicate a systemic activation of the innate type I IFN antiviral pathway. Significant up-

regulations of Mx and other virus-induced genes (VIGs) have been observed especially at 

the site of injection, although expression in spleen, liver and kidney is also commonly 

found264-266. In rainbow trout an immunization against VHSV enables the induction of 

cell-mediated immune responses encompassing both CTLs and NK cells and has also 
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been shown to significantly reduce the replication of virus during challenge261,267.

Interestingly, when Cuesta et al. looked at the innate and adaptive responses in 

vaccinated and control fish after challenge, they found the highest increase in vaccinated 

fish to be that of innate immune responses261. The importance of innate responses in early 

antiviral defense was demonstrated by Lorenzen et al., who subjected rainbow trout to 

VHSV challenge following vaccination with pIHN-G (plasmid-encoded IHNV 

glycoprotein). Whereas protection at late stages of the challenge could only be conferred 

by previous immunization with pVHS-G, the two vaccines induced similar levels of 

immune responses and protection during the first week following challenge268.

The first dual DNA vaccination of rainbow trout against VHSV and IHNV was 

carried out by Boudinot et al. in 1995 by combining two plasmid vaccines in one 

injection269. The immunization efficiently induced Mx at the injection site as well as a 

production of antibodies equal to that obtained with individual vaccinations, thereby 

demonstrating the ability of the teleost immune system to accommodate multiple 

antigens. A more recent study applied the same procedure and reported that transfected 

cells expressed the G-protein of both vaccines270. When subjected to viral challenge the 

rainbow trout demonstrated a relative percent survival (RPS) at d80 post vaccination 

statistically equal to that obtained for individual vaccines and challenges (85-90%).

It is known that temperature is a critical parameter when it comes to immune 

responses in fish. However, a vaccination study with the VHSV G-protein in rainbow 

trout demonstrated that even though the involvement of innate and adaptive responses 

differed depending on temperature, DNA vaccination still conferred protection at 

temperatures ranging from 5- 78. The delayed onset of adaptive responses at the low 

temperature range was effectively compensated for by a prolonged protection by innate 

antiviral mechanisms, supporting the consensus that fish rely more heavily on their innate 

defense repertoire than mammals26.

It is not yet known whether teleost TLR9 binds pDNA the same way it does in 

mammals92. The administration of CpG-containing DNA to fish does, however, induce 

similar immune responses to those observed in mammals, including macrophage 

activation, leukocyte proliferation and expression of cytokines such as IL- -
95,98,271-273. The administration of CpG oligodeoxynucleotides (ODNs) as stand-alone 
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prophylactic agents has also been shown to enhance the survival of rainbow trout 

following bacterial challenge91, as well as induce protective antiviral immune responses 

such as Mx to reduce viral titers and mortality upon challenge of Atlantic salmon with 

IPNV273. The expression of reporter genes is not only higher in fish, but also seems to 

have a longer duration. Transgene expression has been detected at the injection site as 

long as two years after injection of glass catfish (Kryptopterus bicirrhus)274, and Tonheim 

et al. detected both supercoiled (sc) DNA and luciferase expression at the injection site 

535 days after intramuscular injection of Atlantic salmon with pDNA275.

Administration and distribution of DNA vaccines

Intramuscular injection

Intramuscular injection is widely applied for pDNA delivery in fish and generally 

results in strong expressions of transgene at the injection site103,117,232. Studies in mice 

have found the dispersion of pDNA immediately following intramuscular injection to 

take place primarily between the muscle body and epimysium (connective tissue that 

ensheaths the entire muscle)276. Myocytes and mononuclear cells take up pDNA after 

administration277, but despite a rapid initiation of uptake the subsequent uptake is slow 

and cells along the muscle fibers have been shown to be transfected over a period of 

hours following injection276,278. A patch-like distribution in muscle tissue has been 

reported following injection of ink, suggesting the hydrostatic pressure caused by rapid 

injection of high volumes causes the fibers to ‘spread’, thus allowing for unequal 

distribution237,277. With very small fish this initial dispersion of a vaccine might be 

enough to ensure the perfusion of intact pDNA to more distant tissues, while in large fish 

the injected volume will mainly rest along the needle trajectory269,279,280. The 

transportation of pDNA to and from blood to other tissues has been reported for various 

fish species117,280-282. Plasmids have been recovered from sites such as liver, spleen, head-

kidney, heart and intestine for some time after injection235,282, but mainly persist at the

site of injection275,280. Degradation of the pDNA starts within five minutes following 

injection of mice, with as much as 95-99% of the initial pDNA amount degraded within 
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90 minutes236,283. The rate of degradation in the tissue of cold-water fish remains to be 

determined.

The extent of histopathological changes at the injection site following 

intramuscular DNA delivery in fish appear to increase with an increase in vaccination 

dose267,280, but vaccination will generally induce only moderate local tissue damage in 

form of degeneration of myocytes, haemorrhages and a transient influx of inflammatory 

cells279.

Other routes of delivery

Other routes of pDNA administration that have been investigated in fish are 

intravenous (i.v)282,284,285, intraperitoneal (i.p)235, particle bombardment103 and oral

delivery286. Accumulation of naked pDNA took place primarily in the heart, kidney and 

liver following i.v administration, whereas oral delivery resulted in a recovery of DNA 

fragments from the pyloric region, mid and distal intestine and blood, as well as kidney 

and liver.

Uptake of plasmid DNA

A wide variety of mammalian cell types has been shown to take up pDNA

(reviewed287), but so far uptake in fish has only been reported for myocytes269, head 

kidney macrophages285 and endocardial endothelial cells (EECs)282. The exact 

mechanisms by which myocytes take up pDNA remain to be determined, but several 

suggestions have been made287. It was previously theorized that direct injections caused 

temporary membrane disruptions and/or pores that allowed for the entry of pDNA232, but 

studies have shown that such disruptions in fact work to abolish transfection237. Another 

mechanisms that has been proposed is entry through the T-tubular system of 

myofibers288. Danko and Wolff also suggested that the multiple nuclei found in skeletal 

muscle fibers might enable foreign DNA to persist, with the T-tubules and caveolae being 

other, unique muscle structures that likely enable DNA uptake289. In 1989, two 

independent studies reported on the involvement of specific receptors in the cellular 

uptake of ODNs and DNA, finding the process to be saturable as well as size 

dependent290,291. The hypothesis uptake of DNA by receptor-mediated endocytosis has 
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been strengthened by a number of other studies and is generally considered to be the 

main mechanism of uptake278,287,292.

Of the number of cell-surface receptors investigated in terms of DNA binding and 

uptake, scavenger receptors (SRs) in particular have been a subject of interest. These 

receptors comprise a broad family of membrane proteins capable of binding a wide range 

of anionic ligands and are present on several different cell types (reviewed293,294). The 

uptake of pDNA by SRs has been demonstrated in Atlantic cod atrial EECs282, but 

although the SRs may bind DNA they appear not to be essential for the 

immunostimulatory activity of CpG DNA295.

Inside the cell

The uptake of pDNA can take place via different endocytic pathways, including 

macropinocytosis296. Following uptake by phagocytosis or receptor-mediated endocytosis 

the vesicles carrying pDNA will fuse with and release their content into endosomes79. At 

this point any receptors will dissociate due to the slightly acidic pH, while the bulk 

volume is destined for degradation in late endosomes or lysosomes80. Whereas the 

mechanism of transport from early to late endosomes is not known, the subsequent 

delivery to lysosomes is thought to occur by fusion and has also been observed with 

macropinosomes297. For pDNA to be able to transfect the cell it needs to escape full 

degradation, but the exact mechanism by which it escapes macropinosomes, endosomes 

and/or lysosomes is not yet known (reviewed298).

Once in the cytoplasm the movement of pDNA to the nucleus is restricted by the 

mesh-like structure of the actin cytoskeleton299, which increases the exposure to 

degradation by cytosolic nucleases300. It has, however, been suggested that pDNA is 

transported through the cytoplasm by means of the microtubule network301. The final 

obstacle before entry into the nucleus is the nuclear envelope (reviewed302). Molecules 

smaller than ~40 kDa may diffuse passively through the nuclear pore complex (NPC), 

which forms channels across the nuclear envelope. Larger molecules are transported to 

the nucleus by an energy dependent process that requires the presence of a nuclear 

localization signal (NLS) (reviewed303,304). Nuclear uptake of pDNA has also been 

suggested to take place during cell division as the nuclear envelope disassembles305.
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Factors influencing transfection and transgene expression

Nucleic acids have a poor intrinsic transfection efficiency due to their large size 

and negative charge (reviewed306). The processes of gene transcription and translation are 

carried out by the cell’s own machinery, and may be influenced by a variety of factors 

such as pDNA vector design, pDNA concentrations, administration volumes, age and size 

of the fish, water temperatures and method as well as route of administration.

It has been well documented that the DNA topoform has a strong influence on the 

efficiency of transfection307,308. Supercoiled DNA is frequently reported as the most 

potent topoform113,308 followed by open circular (oc) forms, whereas linearization of the 

DNA has been shown to nearly abolish the expression of transgene and linearized 

pDNA236,307. The choice of promoter also has a profound influence on the level of 

transgene expression237,309 and the cytomegalovirus (CMV) promoter has often been 

reported as the most effective236,310. Because of this, the CMV promoter is the most 

commonly applied in gene transfection studies and its potency has been demonstrated 

also in fish117,240. The use of an intron and polyadenylation (termination) signals further 

improves expression309.

Despite the inherent adjuvant effects of DNA vaccines, it has been shown that 

immune responses triggered by DNA vaccination may in fact limit the duration of 

transgene expression309. The lack of anti-Luc antibodies means that both levels and 

duration of expression are commonly higher in studies applying luciferase compared to 

more immunogenic antigens, and immune responses have only been observed with the 

application of large pDNA doses and potent adjuvants such as FCA311. A co-

administration of vectors encoding L -gal, G protein) 

decreases both the strength and duration of luciferase expression, as the initiated antigen 

specific cytotoxic responses work to eliminate transfected cells expressing the transgenic

protein240,311. The stimulation of PRRs may also induce responses that can be detrimental 

to transgene expression. The hallmark cytokines of the inflammatory response, TNF-

and IL- in vitro and in 

vivo312,313, as have the TH1 associated cytokines IFN- - 313,314. Levels of 

inhibition have been shown to correlate with the levels of CpG-induced cytokines, and 

synergistic effects have also been observed312,313. The inhibitory effect takes place at the 
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mRNA (post-transcriptional) level, hence not causing vector degradation, inhibition of 

total cellular protein synthesis or elimination of infected/transfected cells313,314. The 

contribution of CpG motifs has been asserted by showing that methylation of plasmid 

vectors before administration, or pre-administration of anti-cytokine antibodies, increased 

transgene expression313,315.

Whereas intramuscular injection is widely acknowledged as the superior method 

of administration to achieve high levels of transgene expression103,104,235, the result still 

depends on factors such as dose, volume and fish size and age104. Transgene expression 

has been found to be higher in young and growing fish232, and small fish sizes appear to 

favor not only the distribution of pDNA throughout tissue but the distribution of 

transgene expression as well. Expression of luciferase in thymus, gills, spleen and kidney 

has been reported for small fish (<5 g)240,280, although the highest expression is 

consistently detected at the site of injection in myocytes, infiltrating cells and epithelial 

cells lining small capillaries240,269,279. This highly restricted location of expression has 

also been observed after intramuscular injection of a LucZ gene in mice, where as little as 

6% of the myofiber cells were found to be transfected and 70% of these were located in 

the same area277. Massaging the tissue around the injection site immediately following 

injection reduces transgene expression, likely as a result of the vaccine being forced out 

of the tissue237. The first reporter gene study in fish indicated the existence of a maximum 

above which there would be no further increase in expression232. This observation is 

supported by later findings in zebrafish and rainbow trout240, and there are indications 

that excessive DNA concentrations may actually reduce transgene expression103. The 

injection of large volumes might contribute to a spatial distribution by creating temporary 

gaps between fibers277, which appears to induce higher expression as well as reduce the 

variations commonly observed in in vivo transfection studies231,237. A pre-injection of an 

isotonic solution created the same effect, and lead to both higher and more equal 

transgene expression among individuals after DNA injection277. The observation that 

DNA slowly accumulates in cells over time refuted the theory that hydrostatic pressure 

during injection facilitates uptake278, but goes well with the observation of reduced 

variations as a result of an increased spatial distribution.
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Advantages , disadvantages and challenges of DNA vaccines

The potency of DNA vaccines for inducing the different branches of both innate 

and adaptive immunity has already been described. DNA vaccines also show high 

efficiency when given at early life stages316,317 and provide the benefit of inducing 

protective immunity over a wide span of temperatures78. Vaccination can be successfully 

carried out without the need of conventional adjuvants and generally cause low degrees 

of tissue damage compared to what is often observed with intraperitoneally injected, oil 

adjuvanted vaccines126,318. The advantages of DNA vaccination still stretch beyond 

merely the immunological capacities. Looking at the concept from a manufacturer’s or 

investor’s standpoint, DNA vaccines are relatively inexpensive and easy to produce. The 

processes required for production are identical for all DNA vaccines, and the ease of 

cloning also enables rapid modifications in a way that is generally not obtainable with 

conventional vaccine preparations231. The ease of cloning also provides the potential for 

multivalent vaccines through the cloning of multiple gene segments into one plasmid 

vector, although multivalent vaccinations by a simple mixing of DNA vaccines have 

already proven efficient268,269.

The histopathological side effects induced by DNA vaccines may be less than 

what is seen with today’s commercial vaccines, but there is still a range of potential side 

effects to the fish. Antibody responses to host DNA could potentially be induced as a 

result of the adjuvant effects posed by the foreign DNA and cause autoimmunity, or the 

immature immune system of neonatal individuals might recognize the encoded transgene 

product as a self-protein to induce a state of tolerance (reviewed319). Moreover, the 

uptake of pDNA by myocytes following intramuscular administration means these cells 

may be targeted by CTLs, which could result in autoimmune myositis (reviewed320).

Although very rarely observed, there is always a risk that the pDNA will integrate into 

the chromosomal DNA, although neither autoimmunity nor integration has been observed 

during initial studies in goldfish320,321. With the processes of DNA uptake and expression 

still not fully understood and given the high rates of degradation, relatively large doses of 

DNA are required in order to achieve sufficient levels of expression. An increase in dose 

will often bring about an increase in histopathological changes at the injection site, as 

well as an increase in inflammatory responses that may not always be desirable280. To 
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overcome these issues more effort needs to be put into gaining understanding of the 

mechanisms of pDNA-uptake, from the moment of administration until the stage of 

transcription and translation in the nucleus. There is considerable research being done on 

the application of carrier systems and/or DNA-complexes to facilitate entry and reduce 

degradation192,201 but without a deeper understanding of the underlying processes the 

optimization of such systems remains difficult. Although transfection levels are often 

low, several studies have demonstrated a persistence of transgene expression at the 

injection site that might coincide with a time when the fish would normally be ready for 

slaughter275. There have been experiments with suicidal DNA vaccines for fish, where the 

plasmid vector includes a protein to induce apoptosis after an immune response has been 

triggered322.

The use of DNA vaccines for species like Atlantic salmon introduces the risk of 

environmental release. Plasmids may leak from the administration site or be secreted 

through faeces after uptake by intestinal bacteria, and with the persistence of pDNA 

residues already demonstrated in Atlantic salmon275,323 it could be transferred by 

consumption of vaccinated animals. For further reading, there are numerous review-

papers published that address the advantages and disadvantages of DNA 

vaccines230,231,324,325.

PLGA particles as carrier systems for DNA vaccines – focus on fish

The potential of PLGA particles as adjuvants and carriers for DNA vaccine 

delivery has received considerable attention in mammalian studies157,201,326. In spite of 

this, reports on the use of PLGA particles for DNA delivery to fish are nearly non-

existent. In 2008 Tian et al. were the first to report on the use of PLGA microcapsules 

containing a plasmid vaccine for the oral immunization of Japanese flounder against 

lymphocystis disease virus (LCDV)113. Following immunization they detected transgene 

expression in gills, intestine, spleen and kidney from fish vaccinated with encapsulated 

pDNA. The encapsulated pDNA also induced higher levels of antibodies compared to 

control fish injected with naked pDNA. Tian and Yu later demonstrated a significant 

increase in resistance to LCDV infection after oral administration of a pDNA vaccine 
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encapsulated into PLGA nanoparticles227. Finally, the last study so far reported was by 

Adomako et al., who used PLGA nanoparticles incorporated into feed for oral delivery of 

a DNA vaccine against IHNV to rainbow trout226. They found that particles were mostly 

taken up in the hind gut, but that a significant proportion of fish that showed uptake in 

gastrointestinal epithelial cells did not demonstrate detectable levels of transgene 

expression. Although antibody responses could be detected in fish given high doses of 

pDNA, the RPS at a six weeks post-vaccination challenge was still only 22%.

Harikrishnan et al. performed an intraperitoneal injection of kelp grouper against 

Vibrio alginolyticus, using PLGA-liposome encapsulated ODNs containing unmethylated 

CpG-sequences229. The administration of encapsulated ODNs induced significant 

antibody responses compared to naked ODNs and also provided a somewhat higher

protection against challenge. Prior to the work presented in this thesis, no reports have, 

however, been made on the injection of PLGA encapsulated DNA vaccines in fish.

DNA-loaded PLGA particles

The w1/o/w2 method described previously is frequently used for the encapsulation 

of pDNA into PLGA particles, but results are highly variable with regard to 

encapsulation efficiency and loading as well as DNA degradation and release. The 

hydrophilic nature of DNA complicates the process of encapsulation as it increases the 

risk of plasmid diffusion into the w2 phase during solvent evaporation327, and the 

encapsulation process also offers multiple challenges in terms of preservation of 

bioactivity. While purified pDNA in solution is very stable compared to other vaccine

compounds, the process of particle preparation involves several steps that can be 

detrimental to DNA integrity. Reports on the integrity of pDNA following encapsulation 

range from drastic reductions in the content of SC DNA, to nearly total conservation of 

the SC topoform113,201. Among the factors known to affect the integrity of the 

encapsulated pDNA are the polymer composition and Mw, shear force, preparation 

temperatures, solvents and the concentration and Mw of the applied stabilizer (commonly 

PVA)160,328,329. The primary cause of DNA degradation during preparation of particles is 

the shear forces applied during the emulsification processes. For pDNA in solution 

sonication for as little as five seconds can be enough to reduce the SC content by nearly 
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50%330, whereas a decrease in SC DNA content from 89% to 65% as reported by Tian et 

al. seems common following particle preparation227. Lowering shear forces generally 

increases particle size, but may reduce the degeneration of pDNA113. The Mw of the 

PLGA is one of the main factors influencing the preservation of pDNA integrity during 

sonication, and despite some inconsistencies in the literature it seems that polymers with 

a high Mw offer the most protection328. The results have often been attributed to the 

increased viscosity of the oil-phase that is obtained when applying high Mw PLGA.

Polymers with a high Mw also result in the highest encapsulation efficiencies and 

lower the burst release of pDNA154,160,161,181,331, which is consistent with the PLGA 

qualities previously described. Also consistent with previous descriptions is the 

observation that small particles promote a faster release of pDNA227. DNA and PVA both 

act as mild anti-plasticizing agents, particularly when PLGA of high Mw is applied332.

After a short time of incubation and degradation an increase in the Tg of polymer at the 

particle surface creates a form of surface film, which works to slow the release of pDNA. 

No significant increase in Tg has, however, been observed when pDNA is encapsulated 

into a low Mw PLGA. Although the process of lyophilization may nearly abolish the 

transfectivity of DNA, this can be restored after an addition of mono- and 

disaccharides333. The addition of carbohydrates to the DNA-containing water-phase 

during preparation has also been shown to increase encapsulation as well as reduce DNA 

nicking during lyophilization329.

Transgene expression by PLGA-encapsulated pDNA

Encapsulated DNA has been shown to be more potent than naked DNA at 

mediating transgene expression in vitro in a variety of cells types160,334,335. However, in 

vivo studies report on a superiority of naked DNA in eliciting transgene expression not 

only compared to PLGA particles but other formulated DNA vaccines as well235,334.

There can be many explanations for the reduced transfection efficiency observed in vivo

when applying encapsulated DNA vaccines. A large reduction in the content of scDNA 

will lead to a reduced transfectivity236, and the gradual release that is provided by PLGA 

particles could also result in an availability of pDNA that is too low to elicit an effective 

response334. Continuous exocytosis of particles may be another limiting factor to 
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transgene expression following administration of encapsulated DNA201. It is, however, 

possible that this ongoing exocytosis is actually beneficial to the resulting transgene 

expression as it might release particles to more distant cells192.

Small particles (<100 nm) are often shown to internalize more rapidly, and also 

show the highest transfection efficiencies336. PLGA particles of low Mw generally induce 

higher transgene expression levels, possibly due to a higher zeta-potential that facilitates 

uptake152. However, even though nanoparticles can escape endosomes to release pDNA 

in the cytosol, an in vitro experiment using non-PLGA cationic polymers and liposomes 

reports that neither total nor released amount of intracellular DNA correlates with 

transgene expression337. It is suggested that the positive charges lead to an interaction 

with negatively charged nuclear molecules such as ribosomal RNA (rRNA), thus 

inhibiting transcription and translation337,338. The adsorption of pDNA onto the surface of 

PLGA particles, rather than encapsulation, has been shown to result in a higher transgene 

expression, but the expression also declined more rapidly335.

Immune responses following administration of PLGA-encapsulated pDNA

In addition to the proinflammatory cytokines induced by empty PLGA nano- and 

microparticles (IL- - 216,217, the use of different particle sizes might influence 

the resulting cytokine profile after administration of encapsulated or particle-bound CpG 

DNA339. In addition to proinflammatory cytokines, nanoparticles have been shown to 

also enable an induction of antiviral cytokines such as type I IFNs in addition339. The 

encapsulation of pDNA encoding antigens has also been shown to elicit CTL-responses, 

even with pDNA-amounts that elicited no such responses after naked 

administration340,341, Moreover, encapsulated pDNA also enhanced the total antibody 

response at high doses, while inducing a more rapid and complete seroconversion when 

lower doses were applied341.

The injection of PLG microspheres into muscle has been shown to result in a 

foreign body response, with a large influx of different inflammatory cells that appear 

largely related to microspheres especially at later time-points331. These infiltrating cells 

were also the ones that were primarily transfected, an observation similar to that made in 

other studies269,326.
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Other particles in vaccine delivery to fish

The extensive use of PLGA as vaccine delivery vehicles can largely be attributed 

to their high biocompatibility as well as the ease with which the particles can be prepared. 

Other compounds have, however, also been investigated as carrier systems for 

vaccination of fish (Table 4), either on their own or in combination.

Table 4 - Compounds tested as vaccine delivery systems in fish species.

Compound Which is? Mode of carriage Species

Alginate
Polysaccharide from brown 

algae
Encapsulation

Carp115

Rainbow trout115,342

Japanese flounder343

Chitosan

N-acetyl-D-glucosamine

copolymer, derived from 

crustacean shells

Encapsulation

Nile tilapia 

(Oreochromis 

niloticus)344,345

Japanese flounder346

Asian sea bass (Lates 

calcifer)347

Liposomes
Artificial lipid bilayer 

vesicles
Encapsulation

Carp348,349

Kelp grouper350

-

caprolactone)

PCL

Biodegradable, synthetic 

polymer
Coating Indian major carp351

Calcium phosphate
Inorganic, biodegradable 

and biocompatible material
Coating Indian major carp352
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Current challenges in the use of PLGA particles as carriers/adjuvants

Despite a growing number of optimistic reports on the adjuvant/carrier properties 

of PLGA particles, there are still many hindrances to be overcome. One of these is the 

preparation protocols, where different drugs/vaccines require different conditions. While 

some compounds are easily encapsulated, others – like DNA vaccines – are more difficult

to encapsulate in an efficient manner. Low encapsulation efficiencies not only result in 

low antigen loading, but also mean that a large amount of drug/vaccine goes to waste 

during particle preparation. The detrimental effects that encapsulation may have on 

certain antigens such as pDNA are also major limiting factors at the moment, and need to 

be resolved. Particle preparation is also low-scale work as of yet, with considerable effort 

to be made before the process is optimized on a large scale suitable for mass-production.

Concerns and precautions regarding PLGA nano- and microparticles

Any construct/compound, when brought down to sub-micron sizes, will exhibit 

new and potentially harmful characteristics353. The small size means they can interact 

with biological membranes in an entirely new way, thus inducing responses not seen with 

larger constructs. As with all new applications it takes time to fully survey the potential 

side-effects. In vitro studies using PLGA nano- and microparticles have so far not 

revealed any toxic effects, not even at large doses160,200. The various concerns regarding 

the use of PLGA particles in aquaculture vaccines were recently reviewed by Nielsen et 

al.354.
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AIMS OF STUDY

For the last 20 years there has been considerable effort devoted to the application of DNA 

vaccines as well as the use of PLGA particle constructs as vaccine carriers. Whereas the 

aquaculture industry has largely managed to control the outbreak of bacterial diseases 

through conventional vaccination methods, the battle against viral diseases still rages. As 

conventional DNA vaccination has offered promising results against viral pathogens, any 

method for enhancing the efficiency of such vaccines is of great value. This study looked 

to evaluate the potential of PLGA particle delivery constructs as a means of improving 

the responses to DNA vaccination in fish.

The specific objectives were to:

Establish a protocol for the preparation and characterization of PLGA nano- and 

microparticles for purposes of research.

Investigate the effect that encapsulation of pDNA into PLGA nano- or 

microparticles would have on tissue distribution and persistence following 

intramuscular injection of Atlantic salmon.

Investigate the effect that encapsulation of pDNA into PLGA nano- or 

microparticles would have on tissue distribution and expression of a luciferase 

reporter gene following intramuscular injection of Atlantic salmon.

Evaluate innate immune responses and the expression of cytotoxic T-cell markers 

after intramuscular injection of PLGA nano- and microparticles carrying pDNA.
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ABSTRACTS

Paper I

Optimization of formulation variables to increase antigen entrapment in PLGA 

particles.

Efficient antigen entrapment is a key factor in preparation of poly (lactide-co-glycolide)

acid (PLGA) vaccine formulations when the antigen is of short supply. This study 

presents a systematic approach in the testing of formulation variables with the objective 

to increase antigen entrapment in particles when the antigen stock concentration was low. 

Some of the experimental variables tested were poly (vinyl) alcohol (PVA) concentration 

in the inner (W1) and outer (W2) aqueous phase, W1/oil (O) phase ratio and choice of 

organic solvent. The double emulsion solvent evaporation technique was applied to 

prepare PLGA particles with sonication as the emulsifying force. To measure antigen 

entrapment efficiency, the antigen (bovine serum albumin, BSA) was isotope labeled 

with 125iodine (125I). Our results demonstrated that a low PVA concentration in the inner 

aqueous (W1) phase was beneficial to achieve a high encapsulation efficiency of antigen. 

On the contrary, in the outer aqueous (W2) phase, a high PVA concentration favored 

antigen entrapment. We also demonstrated that decreasing the W1 to O/polymer ratio 

contributed to increased entrapment efficiency. Testing different organic solvents (ethyl 

acetate, dichloromethane and chloroform), either alone or in combination, revealed that 

using chloroform as solvent resulted in the highest encapsulation of antigen and the 

highest production yield. Some of the results presented in this work are in disagreement 

with well-established formulation variables from previous studies.
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Paper II

Transgene and immune gene expression following intramuscular injection of 

Atlantic salmon (Salmo salar L.) with DNA-releasing PLGA nano- and 

microparticles.

The use of poly-(D,L-lactic-co-glycolic) acid (PLGA) particles as carriers for DNA 

delivery has received considerable attention in mammalian studies. DNA vaccination of 

fish has been shown to elicit durable transgene expression, but no reports exist on 

intramuscular administration of PLGA-encapsulated plasmid DNA (pDNA). We injected 

Atlantic salmon (Salmo salar L.) intramuscularly with a plasmid vector containing a 

luciferase (Photinus pyralis) reporter gene as a) naked pDNA, b) encapsulated into 

PLGA nano- (~320nm) or microparticles (~4μm), c) in an oil-based formulation, or with 

empty particles of both sizes. The ability of the different pDNA-treatments to induce 

transgene expression was analyzed through a 70-day experimental period. Anatomical 

distribution patterns and depot effects were determined by tracking isotope labeled 

pDNA. Muscle, head kidney and spleen from all treatment groups were analyzed for 

proinflammatory cytokines (TNF IL-1 - -

cell markers (CD8, Eomes) at mRNA transcription levels at days 1, 2, 4 and 7. 

Histopathological examinations were performed on injection-site samples from days 2, 7 

and 30. Injection of either naked pDNA or the oil-formulation was superior to particle 

treatments for inducing transgene expression at early time-points. Empty particles of both 

sizes were able to induce proinflammatory immune responses as well as degenerative and 

inflammatory pathology at the injection site. Microparticles demonstrated injection-site 

depots and an inflammatory pathology comparable to the oil-based formulation. In 

comparison, the distribution of NP-encapsulated pDNA resembled that of naked pDNA, 

although encapsulation into NPs significantly elevated the expression of antiviral genes 

in all tissues. Together the results indicate that while naked pDNA is most efficient for 

inducing transgene expression, the encapsulation of pDNA into NPs strongly up-

regulates antiviral responses that could be of benefit to DNA vaccination.
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GENERAL RESULTS AND DISCUSSION

The need for new and more efficient vaccines against present and emerging viral diseases 

in aquaculture is indisputable, and much effort is being put into the development of 

strategies to enhance vaccine efficacy. One method that has proved more promising in 

fish than in mammals is DNA vaccination, although satisfactory results have so far 

mostly been obtained for rather simple structured viruses such as rhabdoviruses. 

Polymeric particles as delivery systems for DNA vaccines and/or antigens have long been 

a focus of extensive research in mammalian systems, with PLGA being one of the most 

investigated polymer constructs. However, despite the need for more sophisticated DNA 

delivery-methods there have so far only been three studies on PLGA-encapsulated DNA 

vaccines in fish, and a mere nine studies in total that look at PLGA particles for antigen 

delivery. Beyond establishing a protocol for the preparation of PLGA nano- and 

microparticles a central point of this work was therefore to evaluate the effect that the 

encapsulation of pDNA would have not only on transgene expression, but also the tissue 

distribution and retention of pDNA, proinflammatory and antiviral responses and 

injection site histopathology.

Establishing a protocol for particle preparation

Of the three most established protocols for preparation of PLGA particles, the 

double emulsion solvent-evaporation method (w1/o/w2) is the most widely applied for 

encapsulation of a wide variety of drugs and antigens139,212-214. This was therefore the 

protocol of choice for the studies presented in this thesis. However, it soon became clear 

that previously reported studies on the preparation of PLGA particles often lacked details 

and could at several occasions not be replicated in our lab. In order to achieve particles 

with both the intended sizes and encapsulation efficiencies when working with low 

antigen concentrations it therefore became necessary to investigate some of the most 

central process variables, including, 1) choice of organic solvent, 2) PVA concentrations 

in the internal and external water phases and 3) volume ratios. This work is presented and 

discussed in paper I, whereas a general description of the w1/o/w2 method is given in 

table 3 (p. 26).
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Using sonication as the emulsifying force and bovine serum albumin (BSA) as a 

model antigen it was found that chloroform as solvent resulted in both the highest 

production yield and a higher encapsulation efficiency compared to ethyl acetate, 

dichloromethane or solvent-combinations. It was also shown that alterations of PVA 

concentrations exerted great influence on the entrapment of antigen. Low concentrations 

of PVA in the internal water phase lead to an increase in encapsulation efficiencies, as 

did an increase of PVA concentrations in the external water phase. The results were used 

to establish a general preparation and encapsulation protocol that later proved successful 

for the entrapment of different model antigens, whole virus particles (IPNV) and to a 

-glucan210,211,214. It was, however, much less efficient for the 

encapsulation of pDNA (Paper II), where encapsulation efficiencies and loading were 

low for both nanoparticles (~320 nm) and microparticles (~4 μm).

Despite the overall simplicity of the w1/o/w2 preparation protocol, Papers I and II 

together clearly demonstrate the importance of optimizing the preparation conditions to 

suit the antigen to be encapsulated. The application of PLGA with a higher molecular 

weight for pDNA encapsulation might provide increased protection against shear during 

particle preparation as well as increase encapsulation efficiencies160,331. Given the high 

influx of inflammatory cells observed at the injection site after administration of 

encapsulated pDNA it could be speculated that nanoparticles may not necessarily be 

optimal for internalization and subsequent transgene expression. APCs have been shown 

to readily internalize microparticles in a size-range comparable to those applied in Paper 

II (~4 μm)194, and if the intention is merely to increase transgene expression the use of 

nanoparticles may hence not be required. As the integrity of encapsulated antigens 

depends largely on the first step of emulsification, while size is mainly determined by the 

force applied in the second step, preparation conditions could be altered to ensure 

maximum preservation of intact pDNA while still generating particles in a desirable size-

range151.

A problem with the determination of DNA integrity following encapsulation is 

that the methods for extracting pDNA may in themselves be detrimental, and a large 

amount of particles may be required to achieve suitable pDNA concentrations. Similarly, 

the determination of encapsulation efficiencies has largely been based on either the 
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extraction of pDNA from dissolved particles and/or indirectly through quantifying the 

amount of pDNA present in supernatant following encapsulation160. Both methods suffer 

from the influence of solvents and stabilizers which distort spectrophotometric readings 

even at low concentrations (unpublished results). Extraction of pDNA from particles may 

be incomplete, hence giving the impression of an encapsulation efficiency that is higher 

than in reality. The preparation protocol established in Paper I was hence based on the 

use of trace amounts of isotope-labeled antigen, which allowed for direct gamma 

readings from a known amount of particles.

An in vitro release study was conducted for Paper II in order to determine particle 

stability as well as the release of pDNA from the different particle constructs. It was 

found that both particle sizes demonstrated high burst releases followed by an extended 

lag phase where the particles still retained some pDNA after 70 days at the chosen 

likely resulted from a high portion of surface associated pDNA166. Inherent qualities of 

pDNA such as a relatively large size and negative charge probably contributed to the 

results, as the charge in particular increases the risk of diffusion from the internal to the

external water phase during solvent evaporation327. The comparatively large size of 

microparticles means a much longer diffusion path for centrally located pDNA than is the 

case with nanoparticles. A greater portion of the encapsulated pDNA might therefore be 

located within the central particle matrix rather than the surface or surface associated

matrix, explaining the lower burst release observed with microparticles. The applied 

polymer was a low molecular weight PLGA with a fifty-fifty ratio of lactic to glycolic 

acid, qualities that have been reported to often result in poor encapsulation efficiencies as

well as a high burst release153,331. The high burst release would have to be taken into 

consideration for later in vivo applications.
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Tissue distribution profiles

Fish are known to take longer in initiating adaptive immune responses and 

especially at lowered temperatures77,78. Much of the success of the vaccines applied in 

aquaculture today has been attributed to their ability to create injection site depots124, and 

it was therefore necessary to investigate the depot and distribution profile of PLGA 

particles following intramuscular injection (Paper II). In order to do this a fraction of the 

encapsulated pDNA was labeled with an iodine isotope [125I], so that the gamma count 

could later be determined for collected tissues. The distribution of nano- and 

microparticles was compared to that of naked pDNA and pDNA emulsified with an oil-

adjuvant (FIA). The distribution profiles for naked pDNA and nanoparticle-encapsulated 

pDNA were highly similar, which was expected given the high burst release observed 

from these particles during the in vitro study. The slightly higher retention at the injection 

site at day 70 still confirmed the previous observation that some pDNA remains 

associated with particles even at this time-point. Microparticles proved as efficient as the 

oil adjuvant at creating a depot at the injection site, in addition to reducing the differences 

in retention that were observed in the other group of fish. Some characteristics were 

observed in all groups, such as a rapid elimination of pDNA from the blood and 

accumulation in the kidney. Previous studies have also reported on the distribution of 

naked pDNA by blood following intramuscular delivery, as well as retention in 

kidney235,281,285.

Injection site histopathology 

The determination of histopathological changes at the injection site is an 

important preclinical assessment step in the evaluation of new vaccine strategies. 

Previous studies with DNA vaccines in fish have demonstrated that the histopathological

changes at the injection site are usually minor and transient279,280, but little information 

exists on tissue reactions to PLGA particles. 

In Paper II samples of injection site tissue were examined for signs of 

haemorrhages, muscle degeneration and inflammation. Samples were chosen from time-

points that would give some insight into both immediate and chronic histopathology. 
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Microparticles, with and without pDNA, were shown to induce strong inflammatory 

reactions that spread beyond the needle trajectory and that appeared to create a chronic 

inflammation at the injection site. The changes appeared more extensive in terms of both 

cell diversity and tissue distribution than what was seen in fish injected with the oil-

formulation, and were reminiscent of a foreign body response to DNA-loaded PLG 

microspheres previously reported in mice331. Nanoparticles also induced considerable 

inflammatory reactions compared to administration of naked pDNA, although not as 

extensive as the microparticles. Although no effort was made to determine the nature of 

the inflammatory cells, it would seem that the use of PLGA particles might enhance the 

influx of APCs to the injection site. As APCs are important orchestrators of both innate 

and adaptive immune responses such a response could prove highly beneficial to DNA 

vaccine efficiency. However, the small number of samples means further research is 

necessary before any conclusions can be drawn.

Proinflammatory cytokines

The ability to induce innate immune responses is a central property of adjuvants. 

Despite being highly biocompatible, the ability of empty PLGA particles to induce the 

pro-inflammatory cytokines IL- - een previously described216,217. In

Paper II the expression of these cytokines was quantified at the mRNA transcript level 

following administration of empty nano- and microparticles, naked pDNA, oil-

adjuvanted pDNA and pDNA encapsulated into nano- and microparticles. Whereas the 

expression of TNF-

seem more potent at up-regulating the expression in muscle, head kidney and spleen. It 

was found that particles of both sizes induced levels of IL-

exceeding that observed with oil-adjuvanted pDNA, and that expression seemed to relate 

exclusively to particle size for the days that were investigated. Microparticles retained the 

highest level of expression at day 7 and the levels were by then significant even to those 

seen with nanoparticles.
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Antiviral responses

The rationale for the very first research on DNA vaccination was to find a strategy 

that would enhance cellular immune responses in form of TH1 and CTL106, as

conventional vaccines are generally potent inducers of primarily humoral responses. The 

reporter gene applied in Paper II is considered to be poorly immunogenic311, but pDNA

itself is able to induce immune responses through recognition by cytosolic 

receptors254,258, or by recognition of CpG motifs by TLR987,247. The antiviral responses 

were evaluated by quantifying the expression of IFN- -induced 

protein Mx. Whereas encapsulated pDNA significantly up-regulated the expression of 

IFN- -points demonstrated low expression and little variation 

between the different treatment groups. Mx is often used as a means of determining IFN-

activity, as it expresses at much higher levels54.

Transgene expression in Atlantic salmon

One of the primary motivations for encapsulating pDNA into PLGA particles 

prior to injection is to protect the plasmids from degradation by extracellular nucleases. 

DNA vaccination is a promising method for eliciting antiviral protection in aquacultured 

fish, but still suffers from drawbacks in form of low expression of transgene products that 

could be attributed to factors such as 1) rapid degradation of pDNA following 

administration, 2) rapid escape of pDNA from the injection site, 3) limited uptake of 

pDNA by myocytes and/or APCs, 4) low rates of endosomal escape236,278,283,298. PLGA 

particles have been shown protect antigens from degradation130, create injection site 

depots176, enhance uptake by different cell types130 and increase antigen delivery to the 

cytosol201. Despite the superiority of direct intramuscular injection for pDNA delivery103

there was, however, no reports on the intramuscular delivery of PLGA particles carrying 

pDNA into fish prior to the work presented in Paper II.

Comparing the intramuscular delivery of naked pDNA to pDNA in an oil-

emulsion or encapsulated into either nano- or microparticles is was found that although 

encapsulated plasmids were able to induce transgene expression at the injection site at the 

mRNA level, the highest levels were observed with naked and oil-adjuvanted pDNA. 
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Consistent with the observations of tissue distribution the microparticles consistently 

induced slightly higher levels of transgene expression than nanoparticles. With an 

average size of ~4 μm, the microparticles may also have been in the optimal size range 

for internalization by APCs attracted to the injection site194. It was also observed that 

administration of naked pDNA and nano-encapsulated pDNA induced low levels of 

reporter gene transcripts in the head kidney, although the expression was negligible 

compared to what was found at the injection site.

It has been speculated that the slow release during the lag phase of PLGA 

particles may reduce transgene expression at it leaves very little pDNA available to 

transfect the cells334. However, this offers no explanation as to how naked pDNA and 

nanoparticle-encapsulated pDNA, with almost identical distribution profiles, can show 

such different potencies for inducing transgene expression. The same applies to the 

similarities in tissue retention seen with microparticles and oil-adjuvanted pDNA.

Although not addressed in Paper II, it is known that the process of particle 

preparation can exert some detrimental influence on pDNA integrity113,201. As the forces 

applied during emulsification are generally considered the primary source of shear, it

would appear that the application of homogenization rather than sonication for the second 

step of microparticle formulation might have preserved a larger amount of intact pDNA, 

contributing to the induction of higher transgene expression levels. This could also have 

explained the levels of transgene expression observed with the oil-formulation, where 

only brief homogenization was applied to prepare the emulsion. However, even though 

the inferiority of encapsulated pDNA for eliciting transgene expression in vivo has been 

reported in mammalian studies334, particle-delivery is commonly superior to naked 

pDNA for in vitro transfection160,334. This suggests the reduced transgene expression 

results from more than just a reduced amount of intact pDNA. Several studies have 

reported on the inhibitory effect of inflammatory responses on transgene expression, with 

the effect lasting for as long as the inhibitory cytokine is present and even reports of 

synergistic inhibitory effects of various cytokines313,314. As the administration of 

encapsulated pDNA did results in a very high expression of IL-

effect might likely have influenced the expression of the reporter gene.
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Further studies

The study presented in Paper II provides some insight into the influence of 

encapsulation on transgene expression, inflammatory and antiviral responses as well as 

injection site histopathology following intramuscular administration. It does not, 

however, offer any direct clarification as to whether or not encapsulated pDNA might 

enhance protection during a challenge study. It was shown that transgene expression 

levels are higher with naked pDNA and oil-formulations, but the use of a poorly 

immunogenic reporter gene means the study offers no insight into the potential benefits 

that enhanced proinflammatory and antiviral responses might exert on an adaptive 

immune response. IFN-

responses to DNA vaccines, and amongst a range of other functions up-regulates the 

expression of MHC class I to enhance CTL responses49,59. As the encapsulation of pDNA 

into nanoparticles likely enhanced the expression of IFN-

primarily through the quantitation of Mx expression, it seems reasonable to hypothesize 

that the use of an immunogenic antigen might have resulted in an increased expression of 

CD8+ T-cells. Moreover, the inflammatory histopathology observed particularly with 

microparticles indicated an influx of APCs at the injection site. This could enhance the 

uptake of larger particles and possibly contribute to an increased CTL response, either by 

direct transfection of the cells, or through cross-presentation following uptake of protein 

secreted by nearby transfected cells.

What lies ahead?

The ‘trial and error’ approach has been frequently applied since the early days of 

vaccinology, and has undoubtedly brought about many good results with respect to 

disease prophylaxis. However, there are many pathogens towards which satisfactory 

results are not achieved with conventional strategies. DNA vaccination has long been a 

subject of research in fish, whereas the use of PLGA nano- and microparticles as delivery 

systems is still a very new concept for aquatic species. Both are still areas that require 

substantial amounts of research if the mechanisms underlying processes such as uptake 

and intracellular transport, and the factors influencing these, are to be understood in a 
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way that will allow for maximum optimization of vaccine constructs. While PLGA 

particles in theory do offer potential for the improvement of vaccine delivery, one should 

always be open to the observable facts in order to maintain a focus within the areas that 

actually yield satisfying in vivo results. 

The development of a standardized protocol for the conduction of in vitro and in 

vivo experiments would ease the communication between researchers, as well as facilitate 

and perhaps speed up the research processes being carried out at different facilities. The 

study presented in Paper I was a direct result of the either lacking or contradictory 

information reported in previous studies, and laid the ground for all subsequent work in 

our laboratory. Following on, a detailed description of the particle preparation process 

was therefore provided in Paper II to allow for easy comparisons and (potentially) well-

grounded criticism.

Apart from complicating the exchange of scientific results the lack of established 

and reproducible protocols makes it difficult to evaluate the potential of a large scale 

production of PLGA particle vaccines. Also, the topic of PLGA particle-application in

aquatic animals has barely been touched upon, with the study presented in Paper II 

bringing the total of PLGA studies in fish (as of December 2012) up to no more than 

twelve. For the moment the focus should be on evaluating the use of PLGA particles not 

only in terms of vaccine efficacy, but perhaps more with respect to potential adverse 

effects both to the fish and the environment.
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MAIN CONCLUSIONS

- PLGA nano- and microparticles both demonstrate low encapsulation efficiencies 

and a high burst release of pDNA

- PLGA nano- and microparticles with and without pDNA both induce strong 

proinflammatory responses at the injection site in Atlantic salmon

- PLGA nanoparticles carrying pDNA induce innate, antiviral responses in muscle, 

head kidney and spleen

- PLGA particles carrying pDNA are able to elicit transgene expression at the 

injection site as well as low levels in kidney, but are inferior to naked pDNA.

- PLGA nanoparticles demonstrate rapid escape from the injection site and a tissue 

distribution profile similar to that of naked pDNA

- PLGA microparticles provide injection site depots and a tissue distribution profile 

comparable to oil adjuvanted delivery
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