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Preface 

Fungi are our relatively close relatives in the Opisthokonta supergroup and in many ways 

meaningful, even indispensable in the human life. Despite their importance, fungi are not 

well known. This is my greatest motivation to study them. Marine fungi are even more 

poorly known than their land living relatives, diverse and beautiful to look at. This is what 

made my heart burn for them, this is the foundation of the thesis, and this is what the thesis 

is about. 

To start studying marine fungi was in many ways a dive into the unknown for me. New 

fungi, new study environment and new molecular methods. However, I haven't regretted a 

day that I jumped for this salty dive, which I hope to last for the rest of my life. There are 

many to thank, and I hope to remember most of them here. First of all, Ove Eriksson, the 

father of this thesis, thank you for giving me the inspiration and guiding me to the fascinat-

ing world of marine fungi. The Kohlmeyers' offprints meant a lot to me, and I have read 

them all. 

 

A driftwood log at 79° N, Nordenskiöldøya, Svalbard, 8.10.2011.  
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Geir, I am deeply thankful for having had you as the main supervisor. You always had time 

for me and thought for my best, made my working days as smooth as possible and arranged 

the best co-supervisors I could ever hope for. Håvard, thank you for introducing me to the 

world of molecular mycology and answering my big and many small questions swiftly and 

with patience. You had a major role in this thesis, and I do not know what this thesis would 

have been without you. You never stop amazing me with your ability to get everything ar-

ranged with ease in between everything else. Joey, you showed me how to think big and 

together with your lab took me the furthest away from my professional roots (I even assem-

bled a fungal genome). I cannot thank you enough for showing me this dimension of mycol-

ogy, which I definitely will revisit. Jenni, you always took a second look and I really appreci-

ate that. I don't know any other researcher working as precisely as you do. Thank you espe-

cially for help with ordination analyses and for sharing the joyful and unpleasant parenthood 

experiences with me. Inger, you tried to keep me on track and showed a good example with 

the balance between home and work. Thank you also for paying for the pyrosequencing. 

Lennart, you could not have been a better official supervisor at the faculty. Marie Davey, you 

taught me a lot about many things, corrected my English writing and gave me hope when 

there was none – making bioinformatics seem as easy as tea drinking. Thank you all for your 

help, support and ideas. 

I have been quite isolated from the active Finnish mycology “youth” during this thesis 

work, but the moments I have shared with it, discussing science and hobby in my own 

mother tongue have meant a lot. Thank you also for the mycological decade prior to the 

thesis, filled with courses, workshops, excursions and saunas. We really have sweat to-

gether. I am deeply grateful for Seppo Huhtinen, who has brought up this gang, organized 

most of the saunas and all the karaoke parties. Thank you for teaching me how to examine 

fungi under a microscope. I also want to express my gratitude to my other mentor, Lasse 

Kosonen, whom I leaned to through my first period of mycoenthusiasm. The second phase I 

spent mostly microscoping in the herbarium of the University of Oulu, learning skills still 

useful today. Esteri Ohenoja and all others at OULU are acknowledged for supporting me as 

budding mycologist. Thank you also Panu Halme, Hanna Tuovila, Timo Kosonen, Emilia Pip-

pola, Juhani Ruotsalainen, Ilkka Kytövuori, Jukka Vauras, Tea von Bonsdorf, Olli Manninen 

and all other mycology students and teachers I have had pleasure to learn from and learn 

with. 
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During the thesis I have tried to keep my other foot dry, and work with terrestrial fungi. I 

appreciate being involved in the writing of the Finnish indicator fungus flora; it has been a 

good and pleasant experience. Thank you, Geir and Alfred Granmo, for letting me have a 

glimpse at your research and for inviting me to join your projects. Alfred, I am grateful for 

your help, Latin lessons and thoughtful discussions that always offered new aspects on life 

and mycology. All people at the "botanical station", research fellows and post docs (Inger 

Kristin, Per, Dilli and Sergei), are acknowledged for the good atmosphere, coffee talks and 

for all help you gave me. I am grateful to Nicolle Mode for checking the English of this thesis 

and Matti Blencke for comments on the synopsis. The Norwegian marine biobank (Marbank) 

is acknowledged for wonderful research cruises and resources for doing research, Kellfrid og 

Helge Jacobsens fond, Nordenskiöld samfundet, Tromsø University Museum and BFE faculty 

for financial support. 

I express my greatest gratitude to my mother and grandparents for taking me to the for-

est from early on. There I found nature and mushrooms for the first time. I would have gone 

insane without my family who gave me a necessary break from research and always re-

minded me what really matters in life. I love you all and will always be there for you. Aarni 

and Unni, keep on spreading the joy of looking and finding, trying and succeeding. It means 

the world to me. Heini, thank you for giving me space, when I needed it – although you did 

not have it yourself. 

 

 

 

Tromsø, March 2014 

Teppo Rämä 
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Abstract  

Marine fungi in arctic waters have rarely been studied. The main aim of this thesis was to ex-

plore the diversity of driftwood inhabiting fungal communities in the cold waters of North 

Norway.  

As a prelude for the thesis, chapter I was aimed at evaluating the current tradition of fun-

gal diversity data collection and storage, and sharing methodological ideas how this could be 

done in the future. An integrated approach was suggested when conducting fungal diversity 

surveys. Accordingly, two main methods were used for investigating the fungal diversity; 

culturing paired with Sanger sequencing, and high throughput sequencing of DNA extracted 

directly from wood. The latter was used for the first time to study wood-inhabiting marine 

fungi. 

In chapters II and III, the diversity and community ecology of driftwood fungi was ana-

lysed using culturing and 454 amplicon pyrosequencing, respectively. With culturing, 143 

operational taxonomic units (OTUs), based on clustering at 97% sequence similarity of the 

internal transcribed spacer region (ITS), were detected from 50 driftwood logs. Amplicon 

sequencing revealed 807 OTUs from the same logs and estimated the total diversity in the 

area to be 1,400 OTUs (97% ITS2 clustering). Approximately 75% of the OTUs had affinity to 

the phylum Ascomycota, and previously overlooked taxa were detected from the marine 

environment with both methods. Likewise, both methods indicated that one half of the 

OTUs were tentatively non-marine. The fungal communities were shown to be structured by 

many geographical and environmental variables, which were partly different between the 

methods.     

Chapter IV had the specific aim of resolving how well the two main methods can be used 

to study the diversity of fungal communities, when applied separately. The taxonomic pro-

files were comparable at higher taxonomic levels, although less than 7% of the OTUs were 

shared between the study methods. This shows that the methods target different parts of 

the fungal community.  

Finally, in chapter V, the results of the morphological and DNA barcoding work made for 

this thesis are summarized and the marine mycological efforts made in Norway reviewed. 

One undescribed and 16 new species to Norway were found on driftwood during the thesis 

work. Altogether, 61 species of marine fungi are registered in Norway since 1895, most of 
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them from wooden substrates. This chapter will form the backbone for future research on 

marine fungi in Norway, including work on DNA barcoding.  

The rich and diverse mycota found in this thesis contributes to the global knowledge of 

wood-inhabiting marine fungi, and suggests that many overlooked and undescribed species 

exist in this habitat. The diversity was well characterized at higher taxonomic levels, but res-

olution should be increased towards the terminal branches of the fungal tree of life by 

means of more collecting, culturing and DNA barcoding of marine fungi. The role of many 

tentatively non-marine species found in driftwood will be scrutinized in the future using 

RNA-sequencing of environmental samples. The two main methods used in this thesis can be 

applied separately to study marine fungal diversity and community structure. However, the 

methods were complementary and hence the integrated approach will be continued in the 

future. Integration is also needed in the training of next-generation marine mycologists, 

since the main challenge in marine mycology is the need for researchers having both good 

knowledge on the biology of marine fungi and necessary skills for studying them using tradi-

tional and modern methods. 
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Introduction 

Without Fungi, the world as we know it would not exist. They are and have been for a long 

time the primary decayers of lignocellulolytic substrates (Floudas et al. 2012), and the main 

keepers of great carbon storages in soil and dead organic material (Averill et al. 2014). Endo-

phytic fungi help their hosts to persist in front of grazers, whereas others are parasites and 

pathogens of all kinds of organisms. From the human perspective, many fungi seem to have 

a negative influence: pests cause economic losses in forests and on cultivations, and patho-

gens cause troublesome diseases or even major famines (Padmanabhan 1973). On the other 

hand, fungi provide food and medicines, and can be harnessed for many kinds of useful pur-

poses. Most of the existing fungi have not yet been found, let alone described for science 

(O'Brien et al. 2005). In addition, the ecology of many of the ca. 100,000 described fungi is 

poorly known. In other words, we know relatively little about how fungi really impact the 

biosphere and the biodiversity it hosts. 

After more than 200 years of mycological research (Persoon 1801, Fries 1821), people 

have started to realize the importance of terrestrial fungi. However, after approximately 100 

years of marine mycology since Cotton (1907) and Sutherland (1915), people still do not 

know much about marine fungi. Even many marine biologists are unaware of fungi dwelling 

in every marine habitat. It is true that marine fungi are more inconspicuous and fewer in 

number than their terrestrial relatives (O'Brien et al. 2005, Jones and Pang 2012). However, 

this does not mean that they are unimportant and can be overlooked. On the contrary, re-

cent studies have shown that marine fungi are abundant actors in marine habitats and in-

volved in various biogeochemical processes (Stoeck et al. 2007, Alexander et al. 2009, Stoeck 

et al. 2009, Edgcomb et al. 2011). Their home, the oceans, cover approximately 70% of 

world’s surface with an average depth of almost 3,700 meters (Charette and Smith 2010). 

The oceans host an estimated 1.5 million species of organisms (Bouchet 2006). The marine 

environment seems to be of crucial importance in fungal evolutionary history, since the 

emergence and early diversification of fungi likely took place in the oceans (Le Calvez et al. 

2009). Many marine organisms (if not nearly all) can be expected to support several species 

of fungi. When alive, they may be supported by endophytes or other symbiotic fungi includ-

ing also host-specialists (Sakayaroj et al. 2012, Suryanarayanan 2012), or they may be 

plagued by parasites (Jones et al. 2012) and threatened by pathogens (Geiser et al. 1998, 
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Hatai 2012). Post-mortem the material is decayed and recycled by saprotrophs (Jones et al. 

2012), until the energy available and nutrients are used to support new life with new fungal 

partners and enemies. However, these ecological processes are poorly studied and insuffi-

ciently understood. More research on marine fungi is needed, since they can give us addi-

tional insights into the evolution of eukaryotes or prove to be of indispensable importance 

for humans. 

Fungal diversity surveys (I, II, III, IV, V) 

Biodiversity runs this world and sustains the excessive human population. That is one of the 

reasons why we need to study and conserve it. To optimize the study efforts, biodiversity 

surveys should be designed so that it is made clear why the survey is conducted, what is be-

ing monitored and how this is done (Yoccoz et al. 2001). Without taking time to answer 

these questions and sticking to the answers, researchers conducting surveys can easily end 

up trying to answer appropriate study questions with inappropriate methods or vice versa. In 

an optimal biodiversity survey, all species (or other taxa or entities surveyed) present in 

samples are detected and the distribution of samples in time and space is representative for 

the whole study area. In such a situation both the detection error and survey error are 

avoided, and solid conclusions can be drawn from the results (Yoccoz et al. 2001). It is well 

known that in most diversity surveys both sources of error are present – even if the target of 

the survey was some of the more easily detected and best known groups of organisms. Fungi 

are difficult to detect, their fruit bodies occur unpredictably and last usually for only a short 

time. Thus, most (if not all) fruit body surveys for monitoring fungal diversity are suboptimal. 

A second dimension of undetectability is brought in by non-fruiting fungi, the ones present 

in the studied substrates at the time of sampling only in their vegetative form. In fruit body 

surveys, all of the non-fruiting species, which represent the majority of the total diversity 

(e.g. Ovaskainen et al. 2013), are missed. With modern molecular environmental sequencing 

methods it is possible to survey also the non-fruiting fungi. With deep enough sequencing, 

all species present in a sample can be detected, but we are still lacking a lot of information 

to identify all this diversity. Given ca. 20,000 of the 100,000 described fungi are currently 

represented in public reference sequence databases, we are lacking molecular reference 

data for 99.6% of the estimated 5.1 million fungi (O'Brien et al. 2005, Nilsson et al. 2009). For 

many researchers, naming the entities of diversity is irrelevant, but as soon as the scientific 
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data are used, for example in conservation management, (identified) species most often 

become the unit of diversity people focus on.  

Identifying biodiversity has been vital in the survival of humans and that is why taxonomy 

is said to be the oldest profession of the world (Manktelow 2010). Biodiversity covers all 

levels of variation of life from genes through species to ecosystems. Undoubtedly, the spe-

cies level is the most natural one for humans to deal with, and it was already used in 3000 

BC when emperor Shen Nung in China wrote his pharmacopoeias (Manktelow 2010). The 

earliest proofs from the western world date back to ca. 1500 BC when medical plants were 

illustrated in Egyptian wall paintings. Since these times, studies based on morphological spe-

cies identification have dominated the biodiversity studies, especially after Carl von Linné’s 

stabilization of the naming system (Linnaeus 1753, Linnaeus 1758). The first molecular 

revolution in the late eighties with PCR and Sanger sequencing and the second with the im-

plementation of high throughput sequencing approaches have resulted in increasing number 

of biodiversity studies being molecular based. These can be used to identify fungi to the spe-

cies level, if one works with a well-sequenced and morphologically well-known group of 

fungi within a well-studied area. However, this is usually not the case, and most molecular 

diversity studies of fungi suffer from low resolution in species identification. The poor mo-

lecular species identification is due to a lack of molecular reference data. High throughput 

sequencing approaches are needed to explore the vast unknown diversity, including non-

culturable fungi. But at the same time, morphological work and sequencing of voucher 

specimens should be continued, since this is the only way to provide reference material and 

improve species identification in molecular surveys. This is why molecular surveys targeting 

even the best-known groups of fungi should preferably be coupled with morphological 

studies, possibly culturing and barcoding of taxa.  

After obtaining the results, one should not start collecting more samples before the data 

are curated and appropriately stored. Careful curating, storage and sharing of the published 

data with the scientific community are too often neglected. Physical samples should be 

stored in maintained scientific collections, molecular data and preferably also data on study 

samples and sites in public databases such as GenBank, EMBL, UNITE, DataDryad.org or 

Figshare (Kanz et al. 2005, Kõljalg et al. 2013, Benson et al. 2014). Storage forms that are 

public or at least accessible by other researchers should be preferred in order to enable 

other researchers to check control data or conduct meta-analyses. If not stored properly, 
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data might be lost due to unintentional reasons such as breakdown of a hard drive, before 

they were even properly used by the scientific community. Just as studies should be repeat-

able, data should be accessible. 

Marine fungi (II, III, IV, V) 

Marine fungi live in marine, intertidal and estuarine habitats. Obligate species are restricted 

to marine habitats in every stage of their life cycle, whereas facultative marine fungi can 

grow (and possibly also sporulate) in marine habitats, but are also encountered in terrestrial 

or freshwater habitats (Kohlmeyer 1974). The habitat is the main ecological feature defining 

marine fungi which, on the other hand, include species with highly differing ecological niches 

(Kohlmeyer and Kohlmeyer 1979). The most studied phylum containing marine species is 

Ascomycota. Together with Basidiomycota, it forms the Dikarya, fungi which possess dikary-

otic hyphae in parts of their life-cycle (Hibbett et al. 2007). Dikaryan marine species are sec-

ondary colonizers of the marine environment, whereas the more basal groups such as 

Chytridiomycota and Cryptomycota have likely diversified in the marine realm (Spatafora et 

al. 1998, Kohlmeyer et al. 2000, Le Calvez et al. 2009, Jones et al. 2011). Dikarya has also 

been called the ‘higher fungi’ and is the main target group of this thesis. The term ‘marine 

fungi’ is used hereafter to refer to dikaryan fungi, excluding species occurring predominantly 

as yeast forms, unless otherwise specified. Currently, only 530 species of obligate marine 

fungi are known world-wide (Jones et al. 2009). However, it is estimated that the true num-

ber (including yeast, non-culturable and marine-derived species, and a small number of 

other than higher fungi) is 12,000 (Jones and Pang 2012). Most of the yet undiscovered 

diversity is suspected to be found among algicolous fungi and among the Chytridiomycota 

(Jones and Pang 2012, Richards et al. 2012).  

Marine fungi are typically small. Most species form perithecial ascomata (fruit bodies) 

that are ≤0.5 mm in diameter (Jones et al. 2009). Typical microscopic features include 

unitunicate and deliquescent asci and a diversity of different kinds of spore appendages 

(Jones and Moss 1978, Kohlmeyer and Kohlmeyer 1979). These characteristic features are 

evolutionary adaptations arisen in response to the environmental conditions of the marine 

milieu, such as mechanical stress caused by waves, sand scour, and water as dispersion ma-

trix for propagules. The small size and perithecial fruit bodies, often fully or partially seated 

inside the substrate, enable the fruit bodies to stay attached without being washed away. 
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The spores are passively dispersed, washed out from the ascomatal cavity by sea water. 

Sheaths and appendages on spores help them to float enabling longer dispersal distances 

and efficient attachment to surfaces (Hyde et al. 1993). The marine environment also pos-

sesses several physiological stress factors, including high salinity, sodium levels and pH, as 

well as low water potential.  Marine fungi cope with these challenges by, for example, main-

taining a suitable internal potassium concentration important for growth in a saline envi-

ronment (Jennings 1983). The toxic effects of sodium are avoided by sequestering it into 

vacuoles or pumping it out (Jennings 1983, Benito et al. 2002). Osmolytes, such as glycerol 

and mannitol, are accumulated to make the water potential in the fungal cells lower than in 

the surrounding sea water enabling water uptake (Blomberg and Adler 1992). However, it 

should be kept in mind that obligate marine and terrestrial fungi also share many physiologi-

cal features. For example, based on in vitro experiments it seems that marine fungi have 

similar carbon, nitrogen and vitamin nutrition with their terrestrial counterparts (Jennings 

1983). In addition, some fungi occurring in the terrestrial environment also seem to tolerate 

salinity during their vegetative growth, with the exception of species belonging to 

Basidiomycotina which are sensitive to salinity (Jennings 1983, Blomberg and Adler 1992). 

Despite their interesting ecophysiological adaptations, the focus of marine mycological 

studies has been on the taxonomy of these organisms. Wood-inhabiting species are among 

the best studied group, but the environmental factors influencing these communities are 

insufficiently studied. It has been shown that temperature and salinity are the main drivers 

behind biogeographical patterns of marine fungi (Hughes 1974, Booth and Kenkel 1986). 

Communities are also structured by habitat, substrate, vertical zonation and length of sub-

mersion (Kohlmeyer and Kohlmeyer 1979, Tan et al. 1989, Petersen and Koch 1997, Jones 

2000). However, earlier studies have mainly focused on the morphologically identified fruit-

ing community and few environmental factors influencing their structure. Hence, the com-

munity ecology of these fungi is poorly understood. Molecular tools have been applied since 

the 1990s, but the number of studies is relatively low due to few researchers operating in 

the field. Many aspects remain unknown. For example, the first phylogeographic study of a 

marine fungus using molecular tools was just published (Pang et al. 2013). On the other 

hand, many recent publications about marine fungi, perhaps even the majority, focus on 

applied science aspects and bioprospecting. Marine fungi are considered to be an excellent 
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source of novel substances with more than 1,100 new natural substances discovered from 

them (Ebel 2012). 

Applying high throughput sequencing on fungi (III, IV) 

Until the 1990s, mycological diversity studies were largely based on fruit bodies. The wide 

application of first-generation sequencing techniques based on Sanger sequencing intro-

duced new possibilities. By pairing Sanger sequencing with cloning, it became possible to 

survey the non-fruiting and even non-culturable members of the communities under scru-

tiny (Rondon et al. 2000). However, this method is very laborious and time-consuming and a 

large part of the diversity remained undiscovered due to a shallow sequencing depth. The 

second molecular revolution in fungal ecology took place during the mid-2000s, when new 

high throughput sequencing techniques were introduced. High throughput sequencing may 

produce thousands of sequences (reads) per sample in a single run. How this is done de-

pends on the sequencing platform and the approach chosen.  

The first available platform used the 454 pyrosequencing (Margulies et al. 2005), which 

for several years produced the longest sequence reads, long enough to cover, for example, 

the fungal ITS1 or ITS2 region. The two main approaches applying the 454 pyrosequencing 

are shotgun sequencing and amplicon sequencing. Using the former, the extracted DNA (or 

RNA) pool is chopped into shorter templates, sequenced and the resulting sequences as-

sembled into contigs using bioinformatic tools. This approach is often applied in functional 

profiling of communities or genome sequencing (Tringe et al. 2005, Bushley et al. 2013). In 

amplicon sequencing, a certain marker region is chosen, amplified within and across the 

samples using PCR, and the amplicons are sequenced. Hence, each of the derived sequences 

belongs to a certain species in the sample. If amplicons were tagged and samples multi-

plexed prior to the sequencing event, sequences can be traced to original samples. This is a 

cost-efficient way of studying fungal communities, despite the high one-off cost of the se-

quencing. If samples are handled correctly, they may give a good representation of the 

communities in situ. Depending on the study set up, amplicon sequencing data can be used 

to answer different types of questions. Typically, the resulting sequences are clustered into 

operational taxonomic units (OTUs) using a certain cut-off value, with the idea that each 

OTU represents a certain species. However, this is often not the case (Blaalid et al. 2013). 
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Sequencing phylogenetic marker genes allows phylogenetic profiling and taxonomic annota-

tion of the OTUs. This is often referred to as DNA metabarcoding (Taberlet et al. 2012).  

In 454 amplicon pyrosequencing, DNA samples are first subjected to multiple parallel 

emulsion PCRs, in which millions of copies of each template are produced, all attached to the 

same microscopic bead. The sequencing takes place on a picotiter plate, where single nucle-

otides are flown in a specific order over the wells of the plate, where each well includes one 

bead with a specific template. Each new nucleotide is incorporated only if a complementary 

base is the next available on the template strand. Pyrophosphates are released at every suc-

cessful incorporation of nucleotides and these are converted to light signals by the luciferase 

enzyme. If the same bases follow each other in the template (=homopolymer), the light sig-

nal becomes stronger. The plate is photographed following every addition of nucleotides and 

these so-called flowgrams are used to create the sequence files.  

The DNA extraction, initial amplification of the target locus in the PCR and the sequencing 

are the critical steps of the amplicon pyrosequencing approach (Huse et al. 2007, Lindahl et 

al. 2013). During extraction, samples may be contaminated if not handled under sterile 

conditions. Different types of fungi may yield different amounts of DNA during DNA extrac-

tion which may result in quantitative biases. During PCR, various fungi may be amplified to 

different extents due to primer mismatches (Bellemain et al. 2010). Moreover, during PCR, 

artificial mutations (roughly 1 per 1000 base pairs) are introduced because the polymerase 

enzyme does not work perfectly and chimeric sequences may also be produced, merging 

two original templates into one sequence. When it comes to the sequencing itself, most 

errors in 454 sequencing are related to homopolymer overcalls or undercalls, for example, 

the sequence “…TCAAATC…” including the homopolymer “AAA” is sequenced as 

“…TCAAAATC…” or “…TCAATC…”. Biases should be evaluated and minimized when planning 

the study, and taken into account in the bioinformatics and data analyses. The above men-

tioned errors, introducing noise in the raw sequence data, can be corrected to a certain ex-

tent. In other words, the raw sequence data needs to be filtered, trimmed, denoised and 

chimera checked before analysing it further. In the filtering steps, individual reads are in-

spected whether they correspond to a certain read length range and quality parameter set-

ting. If not, they are removed. In trimming, error-prone regions, typically at the terminal 

ends of reads (Balzer et al. 2010), are removed. In the denoising step, flowgrams created 

during the sequencing are used to correct noisy reads against tentative high quality reads. 



17 

Typically, a relatively small number of reads contain the majority of errors (Huse et al. 2007, 

Quince et al. 2011), so quality checking the raw data means getting a slightly smaller, but 

better quality dataset with which to work. 

The aims of the study 

The main aim of this thesis was to explore the diversity of marine wood-inhabiting fungi in 

cold, northern waters. In order to gain as comprehensive view as possible, different meth-

odological approaches were applied on the same study substrates, and the recovered fungal 

communities were analysed for taxonomic, phylogenetic and ecological aspects of diversity. 

The specific aims were: 

1. To evaluate the tradition of data collection and storage and share new methodologi-

cal ideas for fungal biodiversity surveys (I) 

2. To study the community structure and ecology of fungi on driftwood (II, III) 

3. To assess the pros and cons of high throughput sequencing vs. culturing studies for 

studying fungal diversity (IV) 

4. To summarize the marine mycological efforts made in Norway and compile their re-

sults in the form of a checklist (V)  
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Material and methods 

Study area and sampling (II, III, IV, V) 

North Norwegian mainland coast and the archipelago of Svalbard forms a large area cover-

ing 15 degrees in latitude (ca. 65°30’–80°50’ N) and 25 in longitude (ca. 11°50’–36°47’ E) 

(Figure 1). The highly indented coastlines with diverse marine habitats and rich flora and 

fauna (Narayanaswamy et al. 2010) is a captivating study area for any biologist interested in 

arctic biodiversity. The terrestrial vegetation in the mainland is boreal, except for the alpine 

mountain areas and easternmost part of the outer coast which are arctic (Moen 1998, 

Walker et al. 2005). The marine environment belongs to the Arctic biogeographical zone of 

marine fungi with surface temperatures of the warmest calendar month <10° (Hughes 1974, 

Locarnini et al. 2010). Salinity is <35‰ (Antonov et al. 2010). These waters are characterized 

by two sea currents: Norwegian Atlantic Current (NWAC) which is the northeastern branch 

of the North Atlantic Current (the Gulf Stream) transporting warm and saline water 

northwards, and the Norwegian Coastal Current having its origin in the Baltic Sea (Sætre and 

Mork 1981) (Figure 1). The variation in regional hydrography is influenced mostly by 

fluctuations in temperature and salinity of NWAC and large-scale wind fields (Sætre and 

Mork 1981, Wassmann et al. 1996). In the truly arctic Svalbard, warmest waters are found in 

the West Spitsbergen Current (WSC) which is the northwestern extension of the NWAC and 

carries relatively warm and salty water along the west coast of Svalbard. There it meets and 

mixes with less saline and cold water masses coming from the North Pole. 

Samples for this thesis were mostly collected in Troms and Finnmark counties along the 

Norwegian mainland coast (Figure 1). The main source of drift wood along this coastline is in 

central parts of Siberia (Johansen and Hytteborn 2001, Hellmann et al. 2013), but in the 

western parts mostly local wood can be found in the marine environment. Substrate units 

(hereafter logs) showing signs of long-term and recent submersion in the sea, as indicated by 

the presence of marine organisms (Kohlmeyer and Kohlmeyer 1979), were looked for in the 

intertidal zone. If no logs were found there, logs in the breaker zone were included. Some 

sea-bottom logs were also examined. Position, site and substrate level parameters were 

systematically measured in the field for each log. For chapters II (IV, V) and III (IV, V) 50 and 

49 logs were sampled, respectively. In order to get rid of inactive propagules resting on the 

wood surface, as thin as possible a slice was removed with a sterilized knife at each sampling 
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point, and sterilized instruments were used to obtain samples: wooden cubes for incubating 

on Agar plates (II, IV, V) and drilled wood samples for next generation sequencing (III, IV, V). 

For chapter V, logs were inspected in the field with an illuminated hand lens and samples 

with fungal structures collected for later examination and DNA barcoding. Smaller pieces of 

wood were collected entirely. Approximately 150 samples of the 800 collected were exam-

ined morphologically with a dissecting and light microscope. The remaining samples are still 

unexamined. 

 

 

Figure 1. The study sites in North Norway. Samples included in the different chapters are marked 

with the symbols: red dot=II–V, black square= II and IV, and blue triangle=V. A simplified presenta-

tion of the sea currents is drawn after Asplin and Dahl (2003): NWAC=Norwegian Atlantic Current, 

WSC=West Spitsbergen Current and NCC=Norwegian Coastal Current. 
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Molecular methods (II, III, IV, V) 

For the chapters II, IV and V, DNA was extracted using a cetyltrimethyl ammonium bromide 

extraction protocol (Murray and Thompson 1980, Mysterud et al. 2007). Natural markers of 

choice were the barcoding locus, internal transcribed spacer (ITS) and large subunit (LSU) of 

the nuclear rDNA which has been the standard phylogenetic marker in recent phylogenetic 

studies of marine fungi (Suetrong et al. 2009, Sakayaroj et al. 2011, Schoch et al. 2012). 

These loci were amplified using the primer pairs ITS5-ITS4 (White et al. 1990) and LR0R-LR5 

(Vilgalys and Hester 1990, Rehner and Samuels 1994). PCR products were cleaned and se-

quencing reactions performed on an Applied Biosystems 3730 DNA analyzer using PCR pri-

mers as sequencing primers and the BigDye Cycle Sequencing kit v3.1 (Applied Biosystems, 

Foster City, California, USA). 

For the chapters III and IV, sub-samples of approximately 25 ml were taken from grinded 

wood samples, and one ml of each was used for DNA extraction performed using Nucleospin 

Soil DNA extraction kit (Macherey-Nagel, Düren, Germany) according to the manufacturer’s 

instructions. Samples were prepared for 454 pyrosequencing using a nested PCR approach, 

in which primer dimerization due to long primer constructions is avoided (Wallander et al. 

2010). The nested PCR produces amplicons having the same orientation, and the work-load 

and costs are decreased compared to approaches where tags and/or sequencing adaptors 

are ligated to the amplicons after the PCR (Lindahl et al. 2013). In the first PCR the primer 

pair ITS1F-ITS4 (White et al. 1990, Gardes and Bruns 1993) was used. The second PCR was 

performed using fusion primers including ITS3 and ITS4 (White et al. 1990) and eight unique 

10 base pair tags. The 454 pyrosequencing was performed on a Genome Sequencer FLX 

(Roche, Basel, Switzerland).  

Data handling and analyses (II, III, IV, V) 

Sanger sequenced forward and reverse strands (II, IV, V) were assembled and manually 

checked in Geneious (Biomatters Ltd.). Consensus sequences were used in OTU clustering 

and alignments (II) built with MUSCLE and/or MAFFT (Edgar 2004, Katoh and Standley 2013) 

and corrected by eye. The 454 pyrosequencing raw data (III, IV) consisting of ca. 180,000 

reads was quality checked in the Qiime pipeline (Caporaso et al. 2010), and clustered into 

OTUs based on 97% ITS2 sequence similarity. The most abundant reads were picked as rep-
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resentative sequences of the OTUs. Single read OTUs (singletons) were removed and the 

dataset checked for chimeric sequences (Schloss et al. 2009). 

OTU accumulation curves, total diversity estimate and extrapolation were calculated in 

EstimateS and Qiime (Raaijmakers 1987, Colwell et al. 2004, Colwell 2009, Caporaso et al. 

2010, Colwell et al. 2012, Colwell 2013). The taxonomy of the OTUs was annotated manually 

based on ITS and LSU BLAST matches and constructed phylogenies. In the conservative ecol-

ogy annotation, the World Register of Marine Species (Appeltans et al. 2012) and marine 

mycological literature was utilized. An OTU was considered marine if the taxon (II) or genus 

(III) had been reported from the marine environment. Phylogenies based on maximum like-

lihood were constructed in RAxML with the rapid hill climbing algorithm (Stamatakis 2006, 

Stamatakis et al. 2007), whereas Bayesian analyses were run with MrBayes (Ronquist et al. 

2012), preceded by substitution model selection in Mrmodeltest (Nylander 2004).  

Multivariate analyses exploring the community structure against geographical and eco-

logical variables was studied with non-metric multidimensional scaling (NMDS; II, III, IV). The 

effect of rare OTUs (occurring on a single log) on the ordination was evaluated (cf. Poos and 

Jackson 2012, III), or they were directly excluded from the analyses (II). Dissimilarity indices 

were compared, and the most suitable was used in the community matrix. NMDS is an un-

constrained ordination method which does not assume a specified form of regression and is 

not dependent on the Gaussian distribution. Thus it is appropriate for non-linear species 

responses to multiple environmental variables and detecting underlying ecological gradients 

(Manjarrés-Martínez et al. 2012). It is a robust method working with rank-order relations 

between community dissimilarity and distance in the ordination space. For these reasons, it 

was a natural choice to use for the multivariate datasets. MEtaGenome ANalyzer (MEGAN) 

was used to compare the taxonomic profiles between marine and terrestrial wood-

inhabiting communities (III), or communities derived with culturing and pyrosequencing (IV). 

The advantages of this method are that it enables quantitative comparison at each node of 

the backbone phylogeny and provides simple visualization of the results.  

In this thesis, the OTUs are generalized to represent species. The author is well aware that 

some fungi have >3% intraspecific variation of the ITS region, meaning one species would 

consist of two or more OTUs as defined here. However, for all fungi and for the phylum 

Ascomycota the average intraspecific variation of the ITS is ≤3% which most likely results in 

underestimating species richness based on our OTUs (Nilsson et al. 2008). 
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Results and discussion 

Fungal richness in driftwood (II, III, IV, V) 

Altogether 925 OTUs and species were found in the wooden substrates in North Norway, 

and different study methods detected different levels of diversity (Figure 2). In the morpho-

logical examinations, 26 wood-inhabiting species were identified. Sixteen of these repre-

sented new records to Norway. Seven have so far been DNA barcoded and were detectable 

with other methods. The culturing combined with molecular characterization of the isolates 

revealed 143 OTUs, while the amplicon pyrosequencing revealed 807 OTUs. 

Species or OTU counts are often hard to understand, unless they are placed in a broader 

context. Twenty-six morphologically identified species represent almost half of the 61 spe-

cies recorded in Norway since 1895 (V). The number of recovered OTUs is higher than that of 

obligate marine fungi world-wide (Jones et al. 2009, Jones and Pang 2012). Although the 899 

molecularly identified OTUs likely include some genuinely terrestrial taxa, the recovered 

total richness strongly supports the estimate of at least 12,000 marine fungal species (Jones 

and Pang 2012). The OTUs found represent 7% of the estimated number of marine fungi 

(Jones and Pang 2012). It is hard to believe that almost one tenth of the global diversity 

would be found on wood in North Norway, especially if one takes into account that the 

wood samples originate from relatively few logs, which were not sampled intensively (cf. 

Ovaskainen et al. 2010). Consequently, it seems that Jones and Pang (2012) underestimate 

the number of marine fungi. Based on their estimate, only 0.2% of the total fungal diversity 

of 5.1 million species would be living in marine habitats (O'Brien et al. 2005).  

In chapter III, we compare the wood-inhabiting fungal diversity detected with amplicon 

pyrosequencing on land and in the sea. Using conifer logs sampled in both habitats, we 

demonstrate that approximately one and a half times as many OTUs are found in the terres-

trial milieu. A similar ratio is found when comparing the marine data with logs sampled in 

Sweden  (Kubartová et al. 2012). These rough ratio estimates also signal for the existence of 

a more species-rich mycota in marine wooden substrates than currently estimated. 

However, it needs to be kept in mind that 454 pyrosequencing can also detect dormant and 

dead undegraded DNA (Baldrian et al. 2012, van der Linde and Haller 2013), which both can 

inflate the number of marine-derived terrestrial species detected.  
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Amplicon pyrosequencing clearly detected most OTUs, and approximately 5% of the OTUs 

between it and the culturing method are shared (Figure 2). The low frequency of shared 

OTUs was expected, since it is known that different methods have different biases and de-

tect different fungi  (Ovaskainen et al. 2010, Lindner et al. 2011). In chapter IV, the method 

biases between culturing studies and high throughput sequencing studies of fungi are scruti-

nized for the first time using multiple datasets. It is shown that the approaches are comple-

mentary and target different parts of the fungal community. For marine wood-inhabiting 

fungi the number of shared OTUs is relatively low, but the taxonomic profiles are compara-

ble between the study approaches at higher taxonomic levels. However, the correspondence 

between the approaches might be method or context dependent, and does not necessarily 

apply to wood-inhabiting marine fungi elsewhere or marine fungi on other substrates. 

 

 

Figure 2. Numbers of fungal OTUs and species detected with different study methods and combina-

tions of these. The number of species that are not sequenced, and could not be identified with the 

other methods, is given in parentheses. Three culturing OTUs were assimilated to other OTUs as 

identical, and the corrected OTU number for II is presented here. Data for the figure were produced 

by extracting ITS2 of all sequences using the ITS extractor of Nilsson et al. (2010) and clustering the 

reads with BLASTclust (http://toolkit.tuebingen.mpg.de/blastclust). 
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Taxonomic and phylogenetic diversity (II, III, IV, V) 

Ascomycota ruled the fungal communities in the marine wooden substrates with 83% of the 

culturing OTUs and 74% of the pyrosequencing OTUs belonging to this phylum. This was ex-

pected, but the taxonomic profile detected at the class level was partly different from the 

profile of obligatory marine fungi (Figure 3). For example, Leotiomycetes taxa were much 

more frequent in North Norwegian driftwood based on both culturing and pyrosequencing. 

It seems that traditional survey methods based on morphological identification have over-

looked Leotiomycetes taxa, which perhaps rarely sporulate on wood. Sordariomycetes is the 

most species-rich class based on fruiting body surveys, and it also proved a common taxon in 

the North Norwegian driftwood, although relatively less frequent than globally. The taxo-

nomic profile of the culturing survey corresponds better to the taxonomic profile of obligate 

species than the culture independent survey. This was expected, since with the latter non-

fruiting and inactive species can also be detected. With pyrosequencing unique classes of 

dikaryan fungi, for examples Neolectomycetes, were observed for the first time in the ma-

rine environment.  

More differences in taxonomic profiles were observed at lower taxonomic levels. The 

most striking was the high frequency of Helotiales (Leotiomycetes) taxa detected both with 

culturing and culture independent approaches. One of the genera explaining the high fre-

quency of Helotiales was Cadophora, which represents a new dominant group of wood-

inhabiting marine fungi. Other novelties detected with the two main methods include rare 

OTUs belonging to novel environmental fungal clusters, and more explicitly to the 

Pezizomycotina clone group and the hydrothermal and/or anaerobic fungal group (Manohar 

and Raghukumar 2013). These sequences have been found in marine sponges and deep-sea 

habitats (Lai et al. 2007, Gao et al. 2008, Nagano et al. 2010). The same clusters have also 

been detected at hydrothermal vents along the mid-Atlantic ridge in the North Atlantic 

Ocean (López-García et al. 2003, López-García et al. 2007, Le Calvez et al. 2009), but not 

along the Norwegian coast. 

It is obvious that high throughput sequencing enables deeper sampling of fungal commu-

nities on marine wooden substrates than culturing (IV). However, the taxonomic profiles are 

comparable at a higher level. It is desirable to sample the total fungal community, or at least 

as many of its members as possible, in order to draw sound conclusions about the commu-

nity. If only one study method is selected, the high throughput sequencing approach should 



25 

be used. On the other hand, reference sequence data is lacking for marine fungi and fungi in 

general, and in vitro experiments on cultures are needed. Combining high throughput se-

quencing with culturing (and also morphological studies) is of paramount importance, if we 

intend to develop better sequence databases and get better insights into, for example, eco-

physiological responses of fungi to environmental factors. 

 

 

Figure 3. Classes of filamentous fungi in Ascomycota and Basidiomycota and their relative frequen-

cies (%) within different studies. Results gained with the two main methods are compared with the 

current taxonomic profile of obligate marine fungi (Jones and Pang 2012). 
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A relatively modest effort was put into the morphological work in this study. Despite this, 

a previously unknown Lulworthiales taxon was detected in the cold waters of Svalbard (V). 

Other Lulworthiales taxa and especially the Lulworthia spp. complex was well represented 

among the studied specimens and in the culturing dataset, and clearly contains several spe-

cies based on ITS phylogenies (II, Rämä et al. unpublished). Additionally, many determina-

tions of other obligate marine fungi remained slightly uncertain (cf.), since often some spe-

cies characteristics observed did not match with the reference literature. It might be that 

some of these species actually represent undescribed taxa. This applies especially for speci-

mens collected in Svalbard, where new and undescribed taxa have recently been reported 

(Pang et al. 2008, Pang et al. 2009, Pang et al. 2011).  

Ecology and adaptations of fungi to the marine environment (II, III, IV)  

Approximately one half of the OTUs detected using culturing and amplicon pyrosequencing 

represented non-marine taxa. This is a very common result in marine mycological studies 

from early on (Elliott 1930, Siepmann and Johnson 1960, Johnson 1967, Shearer 1972). 

Physiological definitions for marine fungi were proposed, but failed to define this group 

(Johnson and Sparrow 1961, Tubaki 1969, Kohlmeyer 1974, Hughes 1975). The most com-

monly used practical division to obligate and facultative marine fungi (Kohlmeyer 1974) is 

still difficult to apply. Many taxa isolated from or molecularly detected in marine mycological 

studies cannot be put under the two categories due to i) lack of information on whether a 

taxon grew and sporulated in the sea or not, and ii) lack of reference sequences enabling 

accurate species identification. The ecological role of putatively non-marine (terrestrial or 

freshwater) taxa detected from the sea has been debated in the past. The more frequent 

than by chance isolation of non-marine taxa in the marine realm has been seen as proof that 

non-marine fungi are active and do have a role in the sea (Raghukumar and Raghukumar 

1999). On the other hand, in order to prove morphologically that a fungus fruits, sporulates 

or actively grows in the sea, corresponding structures (fruit bodies, mycelium) should be 

directly observed in fresh material (Kohlmeyer and Kohlmeyer 1979, Shearer et al. 2007). 

The development and use of molecular techniques has improved the discussion about the 

role of putatively non-marine taxa in the sea, although the question has not been thoroughly 

addressed. It has been shown that the ecological adaptation to the marine environment has 

happened multiple times and that marine taxa are spread across the fungal tree of life 
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(Richards et al. 2012). RNA sequencing of deep-sea subsurface sediments suggests that some 

putatively terrestrial species are active in this marine habitat (Edgcomb et al. 2011). Moreo-

ver, Aspergillus flavus has been demonstrated to possess no phylogeographic structure 

between terrestrial and marine strains (Ramírez-Camejo et al. 2012). This fungus is obviously 

active in the sea, since it is the most common one isolated from sea fan (Gorgonia ventalina) 

tissues (Zuluaga-Montero et al. 2010) and can grow in 6% salt concentrations (Bayman et al. 

2002). To conclude, it has been confirmed with molecular methods that a single fungus can 

be ecologically active both in a terrestrial and marine habitat and many other fungi may 

show similar environmental plasticity.  

The marine environment is a stressful habitat for fungi. The multivariate analyses showed 

that the number of fungi is decreasing with the duration of submersion in the marine realm. 

The comparison between marine and terrestrial communities confirmed that the marine 

environment favours more stress-tolerant Ascomycota over wood-inhabiting Basidiomycota 

dominant in terrestrial logs. The multivariate analyses also showed that tree type (coniferous 

or broadleaved) and attachment type in the intertidal zone (fixed or loose) structures the 

communities, as do geography and correlated geographical gradients. Also, other substrate 

and site level factors, partly different for culturing and culture independent approaches, 

proved to be important in the analyses. The geographical variables likely reflect different 

biogeographical background of the logs and/or changes in environmental factors (such as 

tree type), as coniferous logs with Siberian origin were much more common in the east, 

whereas local broadleaved wood was better represented in the west of the study area. Due 

to the explorative sampling design, general conclusions about the main drivers cannot be 

drawn. However, it seems that factors previously found to be important for fungi in terres-

trial logs, such as log diameter (Nordén et al. 2013), are also important for marine wood-

inhabiting mycota. 

In general, relatively few ecological and physical adaptations of marine fungi have been 

demonstrated. The morphological adaptations of marine Ascomycota with appendaged 

spores and deliquescing asci, are classical examples, but many of the OTUs found in the 

marine logs have affinities to fungi not possessing these characteristics in fruiting structures. 

Additionally, some of the physical adaptations (discussed in the Introduction) are not unique 

for marine fungi. So, what are the main adaptations of fungi to the marine environment? 

Recently, Jones and Choeyklin (2008) suggested that the soft-rot strategy of many micro-
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scopic Ascomycota is advantageous over the rot strategies of terrestrial Basidiomycota 

(white and brown rot), which cause leaching of lignocellulolytic enzymes and their loss into 

the surroundings. The adaptations of marine Basidiomycota include highly reduced fruit 

bodies (Hibbett and Binder 2001), and likely also a yeast-like growth form, which is pos-

sessed by a high number of marine species (Fell 2012). These adaptations seem to fit for the 

majority of taxa found in this study, but likely there are many more to be discovered and 

scrutinized, especially at the cell level. For example, genomic analyses have shown that a 

marine ascomycete has much more diversity in particular transmembrane proteins than 

terrestrial ascomycetes (Derek Johnson unpubl.). RNA sequencing is the next step to be 

taken to better understand the ecophysiological adaptations of fungi to the marine milieu. 

Genome-enabled mycology will be of great help here (Hibbett et al. 2013), since it can be 

used to reveal mechanisms and previously unrecognized adaptations coded in genomes of 

fungi thriving on land and in the sea. If molecular results are translated for traditional marine 

mycologists to understand, we will soon have a more accurate definition for marine fungi.  

Conclusions and future perspectives 

This thesis focuses on exploring the largely unknown diversity of marine wood-inhabiting 

fungi in northern waters. A rich and diverse mycota was found, and the thesis greatly con-

tributed to the global and national knowledge of marine fungi. Previously unrecognized, 

frequent and abundant taxa were detected both at the first nodes of Dikarya and at the ter-

minal branches. However, many OTUs remained unidentified to the species level due to poor 

resolution in molecular species identification. Consequently, it is important that more effort 

be made in morphological identification and culturing coupled with sequencing of marker 

genes, as this is fundamental in building up a representative reference library for marine 

fungi in the northern waters. For the marine order Lulworthiales, this kind of work was al-

ready launched during the doctoral studies: in an ongoing collaborative project the system-

atics of this order is revised world-wide using a multi-locus dataset and new taxa will be de-

scribed for science. A good reference library for all marine fungi would really enable better 

insights into the taxonomic diversity of fungi found in marine habitats, especially when com-

bined with high throughput sequencing of environmental samples.  
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It was demonstrated that an integrated approach combining different study methods is 

needed in holistic diversity assessment of fungi, as the two main methods that were used 

detected different parts of the fungal community. However, culturing-based or culture inde-

pendent methods can be separately applied for rough taxonomic profiling of marine wood-

inhabiting fungi. Similarly, both methods revealed consistent results for the frequency of pu-

tatively terrestrial OTUs. It seems obvious that many more terrestrial fungi are able to live in 

the marine environment than currently acknowledged in marine mycology. RNA sequencing 

of environmental samples should be applied to these communities in order to reveal the 

fungi that are active in driftwood. This would also give clues about currently unrecognized 

adaptations of fungi to the marine milieu and the evolutionary history of fungi.  

The implementation of the integrated approach in community ecology analyses of marine 

wood-inhabiting fungi showed that the fungal communities are structured along geograph-

ical and environmental factors and gradients, which are partly different for the culturable 

and the total fungal community. Unfortunately, two factors that are shown to have a major 

influence on the distribution of marine fungi, sea water temperature and salinity, were in-

completely scrutinized in this study. These variables are difficult to measure due to high sea-

sonal and annual fluctuations, and a paucity of hydrographical stations along the studied 

coastline. Hence, only rough values for temperature and salinity, taken as close as possible 

to the sampling site and day, could be used. A better approach would have been to measure 

these variables in the field when sampling the logs. The next step is to study the community 

ecology of marine fungi in permanent stations. Temperature and salinity will be recorded at 

each sampling occurrence throughout more than one year. Moreover, these studies will be 

carefully designed and aimed at testing a priori defined hypothesis. 

With the results from this thesis included, 61 species of obligatory marine fungi have 

been recorded in Norway since 1895. This low number of species reflects the small study 

efforts made to map them, not the true number of marine fungal species occurring in 

Norway. The long-term objective rising from this doctoral thesis work is to establish a re-

search group focusing on marine fungi in polar areas and base it in Tromsø. Many areas in 

the biology of these fungi need to be further studied and many more marine mycologists are 

needed to assist in this, as well as in applied science research projects gaining momentum 

world-wide.  
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