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Sammendrag  

Et betydelig fokus på positive helseeffekter ved inntak av de langkjedede omega-3 fettsyrene 

eikosapentaensyre (EPA, 20:5n-3) og dokosaheksaensyre (DHA, 22:6n-3) har ført til økt 

etterspørsel av fiskeoljer. Tilgjengeligheten av marine oljer begrenses på grunn av strengere 

regulering av fiskeriene og en økt utnyttelse av pelagiske fiskearter direkte til human konsum. 

Det er ikke nok fiskeolje på verdensmarkedet for å dekke behovet til en økende befolkning og 

samtidig en økende akvakulturproduksjon. Dette har ført til et omfattende arbeid med å lete 

etter andre alternative, og ikke minst bærekraftige kilder som inneholder disse langkjedede 

omega-3 fettsyrene (n-3 LC-PUFA). Raudåte (Calanus finmarchicus) er det mest tallrike 

dyreplankton i Nord-atlanteren, og spiller en viktig rolle i energioverføringen oppover i 

næringskjeden. Raudåta er beskrevet som Norges største fornybare ressurs, med en 

årsproduksjon på mellom 100 og 200 millioner tonn. Nyutviklet industriell høstingsteknologi 

har gjort det mulig for bærekraftig utnyttelse av denne ressursen. 

Hensikten med doktorgradsarbeidet var å framskaffe kunnskap som kunne bidra til 

den kommersielle utnyttelsen av raudåte. Studier har vist at olje fra raudåte kan benyttes til 

fiskefôr i oppdrettsindustrien, hvor fisken utnytter næringsstoffene effektivt og vokser 

tilfredsstillende. Calanusolje kan også benyttes til humant konsum og finnes i dag tilgengelig 

som et kosttilskudd. Nylige prekliniske studier peker mot positive helseeffekter av 

Calanusolje utover det som vanligvis kan forklares ved inntak av omega-3 fettsyrer alene. I 

dette doktorgradsarbeidet ble det undersøkt om bruk av proteolytiske enzymer i fremstillingen 

kunne bedre oljeutbyttet og sammensetningen i oljeproduktet ble karakterisert. Resultatene 

viser at bruk av enzymteknologi frembringer et atskillig høyere oljeutbytte sammenlignet med 

tradisjonell fiskeoljeproduksjon. Oljen som utvinnes fra raudåta består hovedsakelig av 

monoestere som er satt sammen av langkjedede fettsyrer og fettalkoholer, også kjent som 

voksestere. Calanusolje har et høyt innhold av omega-3 fettsyrene stearidonsyre (SDA, 18:4n-

3), EPA og DHA, men også et betydelig innhold av enumettede fettsyrer, spesielt gadolensyre 

(20:1n-9) og cetolensyre (22:1n-11). Innholdet av den røde antioksidanten astaxanthin 

foreligger i all hovedsak som mono- og diestere, og det høye innholdet av astaxanthin bidrar 

formodentlig til den oksidative stabiliteten til Calanusoljen. Den siste delen av 

doktorgradsarbeidet bestod i å undersøke fordøyelse hos mus gitt en såkalt høyfettdiett tilsatt 

2% Calanusolje. Fettsyresammensetning i fettvev og lever bekreftet at musene kunne fordøye 

og absorbere voksesterene tilført via fôret og det ble registrert en reduksjon i vektøkning hos 

dyrene som var i samsvar med det som er sett i tidligere arbeider.  
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Summary 

The availability of the omega-3 fatty acids eicosapentaenoic acid (EPA, 20:5n-3) and 

docosahexaenoic acid (DHA, 22:6n-3) is limited due to tighter quotas, better fish management 

and more use of pelagic species directly as food. Furthermore, the production of fish oils 

cannot keep pace with the demands from the growing markets. This has led to an extensive 

search for alternative and sustainable sources of lipids containing omega-3 polyunsaturated 

fatty acids (n-3 LC-PUFA). In the pelagic system, phytoplankton are the main producers of n-

3 LC-PUFA and make up the foundation of the oceanic food web. Zooplankton, such as 

copepods and krill, are the most numerous primary consumers in the marine environment and 

have a central role in the energy transfer to higher trophic levels. The copepod Calanus 

finmarchicus is present in large amounts in the North Atlantic and has lipid-rich stages that 

can be harvested in a sustainable manner.  

The aim of this thesis was to provide knowledge which could contribute to the 

commercial utilization of Calanus finmarchicus. The wax ester-rich oil may be used as an 

alternative lipid source to fish oil in feeds for aquaculture, leading to good growth and 

efficient nutrient utilization. Moreover, the oil can be used as a health promoting nutraceutical 

as several recent publications indicate that oil from C. finmarchicus may have beneficial 

health effects beyond those which may be ascribed to the intake of EPA and DHA alone. In 

this work it was investigated if the use of commercial proteolytic enzymes could improve oil 

recovery from C. finmarchicus in an industrial-like process, and to characterize the oil 

obtained. The results showed a substantially higher oil yield with the use of proteolytic 

enzymes compared to standard fish oil production technology. The main components of the 

oil extracted from C. finmarchicus are monoesters of long-chain fatty acids and fatty alcohols, 

namely wax esters. In addition, the oil is rich in the deep red antioxidant astaxanthin present 

mostly as di- and monoesters. The fatty acid moiety of the wax esters consists of high 

quantities of stearidonic acid (SDA, 18:4n-3), EPA and DHA, but also a considerable amount 

of monounsaturated fatty acids, especially gondoic acid (20:1n-9) and cetoleic acid (22:1n-

11). The final part of the thesis was to study the digestion of wax esters in mice fed a high fat 

diet supplemented with 2% Calanus
®

 Oil.  The findings confirmed that the mice were able to 

digest and absorb the Calanus
®
 Oil, as the fatty acid composition of the adipose tissue and 

liver reflected the enrichment with the marine wax esters. Feeding mice a high fat diet 

supplemented with a small amount of wax ester-oil reduced the body weight gain, in line with 

recent published studies.   
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1. INTRODUCTION 
 

A continuously growing body of evidence has shown positive health effects from 

consumption of seafood and marine lipids (Bang et al., 1971; Bang et al., 1976; Virtanen et 

al., 2008; Schiepers et al., 2010; Larsen et al., 2011; Mozaffarian and Wu, 2011; Lund, 2013; 

Wójcik et al., 2013). The positive effects on conditions like atherosclerosis, thrombosis, and 

embolic phenomenon, hypertriglyceridemia, hypertension, and autoimmune disease are 

generally related the long chain polyunsaturated fatty acids (LC-PUFA) eicosapentaenoic acid 

(EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) (Uauy-Dagach and Valenzuela, 

1996; Connor, 2000; Riediger et al., 2009; Chang and Deckelbaum, 2013; Calder, 2015). 

Several health organizations such as FAO/WHO (2003), the American Heart Association 

(Lichtenstein et al., 2006), the International Society for the Study of Fatty Acids and Lipids 

(Cunnane et al., 2004) and several governmental agencies in France (Martin, 2001), United 

Kingdom (UK-SACN, 2004), USA and Canada (Kris-Etherton and Innis, 2007) have 

therefore made formal dietary recommendations for sufficient omega-3 fatty acid intake or to 

increase fish consumption. Even though the consumption of these fatty acids in foods now are 

strongly advised, the daily intake is generally far below the suggested quantities (Meyer et al., 

2003b; Ervin et al., 2004; Calder, 2013). Dietary changes are often difficult to implement, and 

dietary supplements may for that reason function as an alternative source of these fatty acids. 

There are many different types of dietary supplements containing EPA and DHA available on 

the market, such as cod liver oils, whole fish body oils and products containing concentrated 

amounts of these fatty acids, primarily in the form of ethyl esters (EE) or as triacylglycerols 

(TAG). 

The demand for marine lipids directly for human consumption and for fish oils for use 

in aquaculture feed have increased strongly in the last decade. The global use of fish oil 

during the past 50 years has changed considerably. From being mainly hydrogenated to 

margarines and used for industrial purposes, fish oil became the lipid source of choice for the 

growing aquaculture feed industry during the 1980’s. By 2010, aquaculture had become the 

major consumer, using 71% of the global fish oil supply. However, the amount of fish oil 

refined for human consumption has also grown readily from 5% in 1990 to 24% by 2010 

(Shepherd and Jackson, 2013). The traditional sources of the LC-PUFA through fish and fish 

oils are limited. The future sustainability of the global fisheries stocks is uncertain and there is 

evidence that many fisheries are already fully or over-exploited (FAO, 2014). Seafood supply 
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from aquaculture has risen over the past decades and depends on harvest of wild catch 

fisheries to meet the need for fish oil to be used in the feed (Naylor et al., 2009). There is also 

an increasing competition between users of small pelagic forage fish as more are being used 

directly for human consumption instead of processing to fish oil and fishmeal (Olsen and 

Hasan, 2012). Worldwide capture fisheries have plateaued at about 85-95 million tonnes per 

year, even though fishing efforts have intensified (Naylor et al., 2000). Consequently, the 

need for alternative sustainable LC-PUFA sources has led to extensive research in several 

fields.  Emerging sources of these fatty acids include large-scale culturing of microalgae 

(Khozin-Goldberg et al., 2011; Ratledge, 2011) and genetically modified oil seed plants 

(Venegas-Calerón et al., 2010) and yeast (Xue et al., 2013).  

Primary production of LC-PUFA in the marine environment occurs in photosynthetic 

microalgae, heterotrophic protists, and bacteria (Monroig et al., 2013). In the pelagic system, 

planktonic algae are the main producers of LC-PUFA (Dalsgaard et al., 2003). Higher trophic 

organisms do not have the ability to efficiently synthesize these fatty acids and has adapted to 

obtaining them through their diet (Sargent et al., 2002). Small crustaceans such as Antarctic 

krill (Euphasia superba) and copepods of the genus Calanus are the most numerous primary 

consumers in the marine environment and have a central role in the energy transfer to higher 

trophic levels (Garrison and Ellis, 2014). In the Nordic Seas, C. finmarchicus is the most 

important zooplankton by biomass, with an average annual standing stock of 70-80 million 

tonnes wet weight (Aksnes and Blindheim, 1996). This species accumulates large amounts of  

storage lipids in the form of wax esters, esters of long chain fatty acids and fatty alcohols, and 

is a central feed source for many of the commercially exploited fish species around the North 

Atlantic (Heath et al., 2000; Melle et al., 2004). However, only 10–20% of the energy is 

converted to biomass from one trophic level to the next (Parsons and Lalli, 1988). Therefore, 

harvest of such animals at lower trophic levels in a precautionary manner may provide a 

sustainable way to enhance marine supply of bioresources for fish feed, other industrial 

applications, as well as dietary supplements. Harvesting of zooplankton, E. superba and C. 

finmarchicus, is at present carried out predominantly for the production of oils rich in LC-

PUFA and these are available on the nutraceutical market. While most studies on health 

effects so far have been published on krill oils (reviewed by Kwantes and Grundmann, 2015), 

several preclinical studies have recently demonstrated possible beneficial health effects from 

Calanus
®
 Oil (Eilertsen et al., 2012; Höper et al., 2013; Höper et al., 2014). According to 

these studies, the possible health effects may not only be related to the presence of LC-PUFA. 
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2. AIMS  

 

The overall aim of this thesis was to provide knowledge which could contribute to 

commercial utilization of Calanus finmarchicus. The specific aims of the individual papers 

were: 

Paper I: Elucidate the current knowledge of the lipids present in Calanus 

finmarchicus and assess the potential use of the oil extracted from this copepod and to 

study the oxidative stability of LC-PUFA and astaxanthin in the oil during a long 

storage period. 

Paper II: Optimize the extraction process from the raw material by the use of 

proteolytic enzymes and further document the chemical composition of the oil 

produced.  

Paper III: Study the digestion of wax esters by determining the lipid profile in liver, 

adipose tissue and feces of mice fed a high fat diet supplemented with 2% Calanus
®

 

Oil.  
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3. BACKGROUND 

3.1 Biology of Calanus finmarchicus 

 

Calanus finmarchicus is a central organism in the Norwegian Sea constituting the major 

fraction of the zooplankton biomass present (Planque and Batten, 2000). It is a relatively 

small herbivorous crustacean with a size of 3-4 mm, and a life span of one year in boreal 

waters (Diel and Tande, 1992). The copepod grazes on microplankton and is an important 

prey for fish larvae and fish such as herring and mackerel (Bauermeister and Sargent, 1979; 

Dalpadado et al., 2000; Dommasnes et al., 2004; Utne et al., 2012) and also baleen whales 

and seabirds foraging at high latitudes (Place, 1992). During spring and summer C. 

finmarchicus spawns in the upper water layer where it feeds on the blooming phytoplankton. 

The new generation of copepods grow parallel to the blooming nutrients. They develop 

through twelve different stages, six naupliar (N1-N6), five copepodites (C1-C5) and finally a 

mature adult stage (C6) (Figure 1).  

 

 

Figure 1: Life cycle of Calanus finmarchicus. The adult female spawns eggs that hatch and 

develop through six naupliar stages (N1-N6) and five copepodite stages (C1-C5), before 

reaching the final adult stage (C6) after winter hibernation, diapause. Adapted from Lebour 

(1916) and Sars (1903) by Baumgartner (2009). 

 

By late summer and fall the copepods have reached C4-5 stages and have accumulated 

considerable lipid reserves in a membrane-bound oil sac that can extend the entire length of 

the prosome (Figure 2). These lipid reserves are composed entirely of wax esters (WE) 

C6 
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(Miller et al., 1998). Wax esters have high calorific value, hence being an efficient energy 

store (Kattner and Hagen, 1995). The degree of unsaturation in the WE molecules can affect 

the physical properties, making vertical migration possible (Visser and Jónasdóttir, 1999), and 

it has now been recognized that WE phase transitions have an effect on buoyancy (Pond and 

Tarling, 2011). The lipid rich stages descends to the depths of 500-2000 m in mid to late 

summer and go in to hibernation, so called diapause, during the winter months (Lee et al., 

2006). In late winter and spring Calanus finmarchicus will mature, produce gonads and 

resurface, doing so completing its one year cycle.    

 

 

Figure 2: Photography of Calanus spp. specimens containing; (A) a well filled lipid sac, and 

(B) a thin and elongated lipid sac (Vogedes et al., 2010). 
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3.2 Harvesting 

 

The potential of zooplankton as marine resources in feed production, and for human 

consumption in general, is still largely untapped. However, plankton fisheries utilizing 

crustaceans have existed for many years in various parts of the world (Omori, 1978), though 

at relatively modest levels. In Norway as well as several other countries, there has been a 

growing interest for exploitation of marine zooplankton such as copepods and Antarctic krill 

(Euphasia superba). Furthermore, marine ingredients are also in demand by the functional 

food and dietary supplement industries. Krill fisheries, being the most prominent harvest of 

small crustaceans since the 1980’s, are primarily taking place in the southern hemisphere 

around the Antarctic regions (Nicol and Endo, 1999) with annual landings of about 200.000 

tonnes (Naylor et al., 2009). Some commercial harvesting of Calanus finmarchicus has been 

conducted in Norwegian fjords since the late 1950’s, with annual catches increasing from a 

few tonnes to more than 50 tonnes by the mid 1970’s (Wiborg, 1976), limited by the lack of 

suitable harvesting technology and probably also market possibilities. However, sustainable 

harvesting technology has recently been developed and implemented for practical use (Angell 

et al., 2010). In 2006, a general prohibition against harvesting of zooplankton was introduced 

as a precautionary measure. At present, the Norwegian Ministry of Fisheries and Coastal 

Affairs (FKD) is endorsing an experimental harvesting of copepods in Norwegian waters. 

Norwegian Ministry of Fisheries and Coastal Affairs has opened for a trial quota for several 

vessels in order to gain knowledge to build a management and regulatory system for 

harvesting this resource. Consequently, a consensus has been obtained between central 

authorities, funding bodies, R&D institutions, and industry that zooplankton Calanus spp. 

both can and should be exploited.  

The harvesting areas are located along the Norwegian coast as well as in open waters 

off the coast of Norway. The zooplankton is harvested by trawling with fishing vessels using 

fine-meshed trawls in combination with so-called bubble flotation to vertically concentrate the 

copepods in the surface layer (Grimaldo et al., 2011). By-catch is generally low or absent due 

to the harvesting technique as well as knowledge of the location of adult Calanus 

finmarchicus where there are no fish larvae as they usually graze on smaller stages of the 

copepod (Klungsøyr et al., 1989; Heath and Lough, 2007).  
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Figure 3: Photographs (A) and (B) show a towing system for harvesting Calanus 

finmarchicus, the catch is pumped on board (C) and immediately frozen (D) (photographs by 

Snorre Angell and Trond Larsen, Calanus AS).  

 

The harvesting takes place in areas where the stocks of adult and juvenile 

planktivorous fish are low, and the scooping nets are being hauled at such low speed allowing 

adult fish and juveniles to escape. Immediately after each haul, the catch is frozen and stored 

in the standard freezing facilities on board (Figure 3). The raw material is brought ashore and 

freeze-stored until processing.   

 

A B 

C D 
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3.3 Processing 

 

There are a variety of methods that can be used to produce meal and oil from marine biomass. 

These include wet rendering, hydrolysis, silage production (autolysis), dry rendering, 

supercritical fluid extraction and solvent extraction. The wet rendering process is used in the 

majority of factories that produce fish oil and fishmeal worldwide (Bimbo, 2012). The 

principal operations are cooking, pressing, separation of the liquid phase with recovery of the 

oil, and drying of the residual protein material (FAO, 1986) (Figure 4).  

 

Figure 4: Simplified flow diagram of the wet rendering process for production of fish oil and 

fishmeal (Bimbo, 2012). 

 

Cooking denatures the protein and makes it possible to extract the lipids by pressing. 

As the proteins coagulate to a firm mass, it is capable to withstand the pressure required to 

press out the liquid consisting of stickwater and oil. Cooking will also rupture the fat cells, 
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releasing the oil into a more fluid state. The temperature of this step will lower the oil 

viscosity, allowing it to flow more readily through the press. During coagulation, a high 

proportion of the bound water is liberated and deposits of lipids are released from the tissues. 

Pressing mechanically expresses free liquid from the solids producing a press juice (liquor) 

and a press cake (Drying stage 1). The separation process is made up by three steps; decanters 

will separate fine solids (sludge) from the press juice, separators split the liquid fraction into 

crude fish oil and stickwater. The third part of the process involves polishing (water washing) 

and the removal of the last traces of moisture and impurities from the oil. Simultaneously, 

sludge from the press juice, press cake and concentrated stickwater are most often mixed 

together, dried and grinded to a meal. 

The use of enzymes in industrial processes may be utilized as a supplement to the 

traditional production methods in cases where the oil yield is low (Rubio-Rodríguez et al., 

2010). This extraction technology can be easily done and is less expensive regarding 

investment and energy cost as it requires neither organic solvents or high temperatures (Rolle, 

1998). Enzyme-assisted hydrolysis in fish oil production uses proteases to degrade the tissue 

structure, as proteins are the main components that prevent the release of oil from fish tissue. 

Several commercial proteases are available and studies have shown that enzymatic 

degradation of fish by-products can replace the cooking stage or minimize the cooking time or 

temperature (Xu et al., 2007) in addition rendering both a high quality oil and protein fraction 

(Rustad et al., 2011; Carvajal et al., 2015). It has also been claimed that gentle processing of 

salmon by-products using enzymatic hydrolysis may provide a better oil than thermal 

treatments and is comparable with solvent extraction when it comes to yield (Gbogouri et al., 

2006). 

At this point, the final product of the extraction process is unrefined (crude) oil that 

often contains unwanted compounds. Some of these impurities may affect the quality of the 

oil, such as free fatty acids (FFA) and oxidation products, but also potentially harmful 

substances such as polychlorinated biphenyls (PCB) and dioxins may be present in the crude 

oil. These are resistant to environmental degradation, and have shown to accumulate in the 

fatty tissues of organisms and biomagnify across trophic levels (Borgå and Di Guardo, 2005). 

For that reason, it is often necessary to include a refining process before obtaining an edible 

oil (Bimbo, 2012). However, the concentration of such contaminants are significantly lower in 

the more primary sources of marine oils, namely algae and zooplankton (AMAP, 2002). The 

short lifespan of C. finmarchicus also contributes to the low levels of contaminants.  
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3.4 Lipids in Calanus finmarchicus; Composition and synthesis 

 

In most fish oils, nearly all of the fatty acids are esterified in TAG. In krill oil (E. superba) 

they are esterified in phospholipids (PL) and TAG, reported at about 44% and 40%, 

respectively (Yurko-Mauro et al., 2015). In contrast, the lipids from C. finmarchicus occur 

mostly as WE where fatty acids are esterified to long chain fatty alcohols (Figure 5).  

 

Figure 5: A typical wax ester present in lipids of C. finmarchicus, consisting of the long-

chain fatty alcohol docosenol (22:1n-11), and the fatty acid stearidonic acid (18:4n-3).  

 

The WE content has been found to be as high as 80-90% of the total lipids, while 

TAG, PL, sterols and FFA are minor constituents (Table 1). Cholesterol is by far the 

predominant sterol as it is an indispensable structural component of cell membranes. Still, 

phytosterols such as brassicasterol, campesterol, stigmasterol and β-sitosterol are present in 

lower proportions as dietary precursors of cholesterol (Martin-Creuzburg and von Elert, 

2009). The total amount of lipids and wax esters in calanoid copepods are dependent on the 

latitude and the highest quantities are found in Arctic and Antarctic species. This is because 

the temperature in the ocean is low and the primary production occurs with a high intensity 

during a short period of time (Lee et al., 2006). Typical WE-rich polar species exist both 

among copepods and krill species, such as Calanus finmarchicus (Diel and Tande, 1992), 

Calanus hyperboreus (Lee, 1974) and Euphausia crystallorophias (Bottino, 1975).  

Table 1: Lipid class composition of late copepodite stages and adult C. 

finmarchicus sampled in different periods and presented as % total lipids.  

Lipid class % of total lipid  

  June
1
 October

1
 March

1
 March

2
 

Triacylglycerols 8,9 1,3 nd 3,1 

Sterols 1,2 2,6 3,2 1,4 

Free fatty acids 0,2 -- 1,7 nd 

Wax esters 85,4 88,1 84,9 73,8 

Phospholipids 4,2 7,3 10,3 21 

 Source: 
1
 Falk-Petersen et al. (1987), 

2
 Fraser et al. (1989). 
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The structure of WE and the amount of unsaturated fatty acids and alcohols result in 

physical properties different from that of TAG containing similar fatty acids (Lee and Patton, 

1989). Elevated levels of FFA have been reported in some publications to be present in 

zooplankton lipids, and based on the fatty acid composition, it has been suggested to be due to 

enzymatic breakdown of phospholipids (Sargent and Falk-Petersen, 1981; Parrish, 1988; Scott 

et al., 2000; Marker et al., 2003). This may occur post mortem, while others have suggested 

that certain development stages of zooplankton may have a high content of FFA due to 

intensive feeding activities (Scott et al., 2000; Marker et al., 2003).  

The WE in Calanus hyperboreus have even numbered chain lengths mainly in the 

range of 30-44 carbon atoms, with C36-C42 as the dominating lengths (Sargent et al., 1976). 

The WE in Calanus finmarchicus are of comparable size (F. Torres, personal communication, 

2013). This is quite similar to the chain lengths found in the WE in fillets of orange roughy 

(Hoplostethus atlanticus) and slightly longer than the waxes present in mullet roe and sperm 

whale head oil (Table 2). Beeswax and WE from jojoba oil have more long-chained forms.  

  

There is presumably an asymmetrical distribution of the fatty alcohols and fatty acids 

in calanoid WE (Sargent and Henderson, 1986). Long-chain monounsaturated fatty alcohols 

are esterified mostly to short-chain acids, and medium-chain saturated fatty alcohols are 

esterified mostly to PUFA, probably related to their phase transition temperatures (melting 

points). Fatty alcohols generally have higher transition temperatures than fatty acids, long-

chain moieties have higher transition temperatures than short chain moieties, and transition 

temperature decrease in the order saturated > monounsaturated > polyunsaturated 

(Scrimgeour and Harwood, 2007). Coupling long-chain units with short-chain units or 

saturated medium-chain units with polyunsaturated medium-chain units are mechanisms by 

which those units that have intrinsically high phase-transition temperatures are maintained in 

Table 2: Wax ester chain-length composition (wt %) in lipids from some marine and 

terrestrial sources 

Chain length 26 28 30 32 34 36 38 40 42 44 46 48 50 

C. hyperboreus
1
  -- -- 3 7 7 20 21 17 20 4 -- -- -- 

Mullet roe
1
 

 
-- -- 5 23 18 12 12 2 -- -- -- -- -- 

Sperm whale
1
  2 6 11 18 25 20 8 -- -- -- -- -- -- 

Orange roughy
2
  

 
-- -- -- 2,1 11,4 16,7 24,8 23,4 14,8 5,5 1,1 -- -- 

Jojoba oil
2
 

 
-- -- -- -- -- 1,6 6,2 30,6 49,5 8,1 1 -- -- 

Bees wax
3
 

 
-- -- -- -- -- -- -- 15 11 14,4 32,2 48 6,3 

Source: 
1
 Sargent et al.(1976) , 

2 
Buisson et al. (1982), 

3
 Hamilton (1995). 
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a liquid state at relatively low temperatures. In this way, C. finmarchicus is capable of 

accumulating saturated and long-chain monounsaturated fatty alcohols with high melting 

points at low ambient temperatures (about 2°C in high latitudes) by “fluidizing” high 

melting–point units such as 20:1 and 22:1 with low melting–point units such as 

polyunsaturated fatty acids (Sargent and Henderson, 1986).    

The wax esters of C. finmarchicus contain fatty alcohols that are mainly 

monounsaturated. The fatty alcohols eicosenol (20:1n-9) and docosenol (22:1n-11) may 

constitute 62-82% of the total fatty alcohols, while the saturated alcohols tetradecanol (14:0) 

and hexadecanol (16:0), may make up from 8-24% (Table 3). The fatty alcohols derive 

preferentially from de novo biosynthesis of the corresponding fatty acids and subsequently the 

reduction of the fatty acids to fatty alcohols (Dalsgaard et al., 2003; Graeve et al., 2005). The 

concentration of the monounsaturated fatty acids may be as high as 50%, with palmitoleic 

acid (16:1n-7), oleic acid (18:1n-9), gondoic acid (20:1n-9), and cetoleic acid (22:1n-11) as 

the major contributors. Erucic acid (22:1n-9) is present only in minor quantities. The saturated 

fatty acids, primarily myristic acid (14:0) and palmitic acid (16:0), amount to 20-35% of the 

total fatty acids present in the wax esters. The content of polyunsaturated n-3 fatty acids in the 

wax ester may account for 20-30% of the fatty acids, with stearidonic acid (18:4n-3) and 

eicosapentaenoic acid (20:5n-3) as the dominating species (Table 3). Phytoplankton fatty 

acids are incorporated unmodified into zooplankton storage lipids, therefore the fatty acids 

found in the wax esters of C. finmarchicus are largely reflected by the fatty acid composition 

of the phytoplankton (Lee et al., 1971; Kattner, 1989). 
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Table 3: Fatty acid and fatty alcohol composition (mass %) of wax esters in 

Calanus finmarchicus, late copepodite stages and adults.  

Location: Fram Strait Balsfjord 
Loch 

Thurnaig 

Fatty acids: 
June-

August
1
 

June
2
 October

2
 March

2
 March

3
 

14:0 26,3 18,4 8,5 6,7 12,4 

16:0 9,8 7,2 15,5 11,8 11,4 

16:1 n-7 6,7 12,2 11,9 9,5 8,4 

18:0 0,9 0,5 1,2 1,1 0,5 

18:1 n-9 5,3 4 6,1 7,3 2,4 

18:1 n-7 0,3 0,5 0,8 0,8 1,6 

18:2 n-6 1,2 2,2 1,7 1,4 2,8 

18:3 n-3 1,5 1,4 1,6 nd 2,7 

18:4 n-3 13,7 22,5 4,8 1,2 13,7 

20:1 n-9 7,8 8,9 9,6 14,2 8 

20:5 n-3 11,4 6,4 10,7 7,1 6,3 

22:1 n-11 7 11,8 13,6 19,4 15,1 

22:1 n-9 0,2 0,8 0,9 1,4 nd 

22:6 n-3 2,2 2,6 2,1 4,6 2,2 

Others 5,7 0,6 11,0 13,5 12,5 

∑ SFA 37.0 26,1 25,2 19,6 24,3 

∑ MUFA 20,6 38,2 42,9 52,6 35,5 

∑ n-3 PUFA 28,8 32,9 19,2 12,9 24,9 

Fatty alcohols: 
 

   14:0 3,9 6,4 1,3 0,5 1,2 

16:0 14,6 17,8 8,9 7,9 9,8 

16:1 n-7 3,4 2,5 2,6 1 1,5 

18:0 nd 1,1 0,6 nd 0,7 

18:1 n-9 nd 3,7 2,7 2,2 4,9 

18:1 n-7 nd 1,6 1,7 1,1 nd 

18:2 n-6 nd 4,7 1,4 0,9 nd 

18:3 n-3 nd 2,6 1,3 1 nd 

20:1 n-9 39,3 40,5 34,1 33,8 23,3 

22:1 n-11 38,8 17,7 40,6 48,6 45,3 

22:1 n-9 nd 1,2 1,4 1,1 nd 

Others nd 0,2 3,4 1,9 13,3 

nd = not detected, SFA= saturated fatty acids, MUFA= monounsaturated fatty 

acids, PUFA= polyunsaturated fatty acids. Source: 
1
Albers et al. (1996), 

2
Falk-

Petersen et al. (1987), 
3
 Fraser et al. (1989). 
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Only plants are capable of biosynthesising omega-3 and omega-6 de novo and 

consequently these fatty acids are essential nutrients for all higher species. Unlike animals, the 

primary producers possess the enzymes Δ12- and Δ15-desaturase, which enables them to 

introduce a double bond between the existing double bond in the Δ9 position and the terminal 

methyl group (Figure 6).  

 

Figure 6: Positions of fatty acyl chain desaturation by enzymes of animals including fish, 

terrestrial plants and algae (microalgae) modified from Cook and McMaster (2002).  

 

Double bonds are inserted to form linoleic acid (LA, 18:2n-6) and α-linolenic acid 

(ALA, 18:3n-3), the parent molecules for the longer chain omega-6 and omega-3 fatty acids 

(Figure 7). Through the combined actions of Δ6- and Δ5- desaturase and 2-carbon unit chain 

elongations, LA may be converted further to arachidonic acid (AA, 20:4n-6)  and ALA to 

SDA, EPA and DHA. Most carnivorous marine fish have lost the Δ6- desaturase activity, 

probably as an evolutionary adaptation due to the high accessibility of EPA and DHA through 

their diet (Tocher, 2003). In microalgae, the final steps to the formation of DHA is mainly via 

docosapentaenoic acid (DPA, 22:5n-3), and subsequently the introduction of the last double 

bond by a Δ4- desaturase (Meyer et al., 2003a). In mammals and fish, the conversion to DHA 

via DPA is the result of a more complicated series of reactions that involve the elongation to a 

C24 fatty acid, a second Δ6-desaturation, and the final chain shortening (β-oxidation) in the 

peroxisomes, the so-called Sprecher pathway (Sprecher et al., 1995; Tocher, 2003). However, 

the conversion of α-linolenic acid to LC-PUFA is rather inefficient in humans due to  the rate-

limiting Δ6- desaturase, with very limited conversion all the way to DHA (Arterburn et al., 

2006; Calder, 2013). Stearidonic acid (SDA, 18:3n-3), the first metabolite formed directly 

from ALA is present in considerable amounts in the oil from C. finmarchicus. This fatty acid 

is by far more efficiently converted to EPA than ALA and has been referred to as being a 

“pro-EPA” fatty acid (Whelan, 2009), therefore, the direct dietary intake of SDA has been 

proposed as another strategy to increase tissue EPA levels (Harris, 2012). Some plants, such 
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as the genus Echium and Primula have Δ6- desaturase activity, resulting in the presence of 

SDA in the seed oil (Sayanova et al., 1999; Guil-Guerrero, 2007). SDA may also be produced 

in genetically modified canola and soybean plants (Whelan, 2009). 

 

 

Figure 7: Simplified outline of the biosynthesis of omega-6 and omega-3 polyunsaturated 

fatty acids (Scrimgeour and Harwood, 2007). 

 

The omega-6 and omega-3 families are metabolically and functionally distinct, and 

often have important opposing physiological functions. In addition they compete for the same 

enzymes in the synthesis of LC-PUFA (Figure 7). Excess of one fatty acid family can 

interfere with the metabolism of the other, significantly reducing its conversion and thereby 

the biological actions of the metabolites (Simopoulos, 2002). Consequently, the high amounts 

of omega-6 fatty acids consumed through the so-called “Western diet”, the eicosanoid 

metabolic products from AA are formed in larger quantities than those formed from EPA 

(Simopoulos, 2006). In general, AA-derived eicosanoids are proinflammatory, but they have 

important homeostatic functions in regulating the promotion and resolution of inflammation 

in the immune response (Ricciotti and FitzGerald, 2011). In contrast, omega-3 PUFA and 

their long-chain derivatives mostly promote anti-inflammatory activities. The consumption of 

SDA, EPA and DHA may therefore be beneficial in different pathologies like cardiovascular 
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disease, rheumatoid arthritis, diabetes mellitus and neurological diseases, many of which are 

related to inflammation (Calder, 2006). Furthermore, resolvins, protectins and maresins are 

newly discovered families of highly potent mediators with inflammation-resolving properties 

derived from omega-3 PUFA, adding to the insights of the important, and diverse biological 

roles of LC-PUFA (Zhang and Spite, 2012). 

The common name “red feed” reflects the red colour of C. finmarchicus, which is due 

to the large quantity of the lipophilic carotenoid astaxanthin (Figure 8). In zooplankton, 

astaxanthin is the most commonly occurring carotenoid and may contribute to as much as 85–

90% of the total pigment (Funk and Hobson, 1991). Copepods utilize β-carotene, obtained 

from phytoplankton, as a precursor for astaxanthin synthesis (Andersson et al., 2003). The 

specific structure of the astaxanthin molecule provides its ability be esterified, a higher 

antioxidative capacity and a more polar configuration than other carotenoids (Guerin et al., 

2003). Free astaxanthin is particularly sensitive to oxidation and as a result, in nature, it is 

found either conjugated to proteins; as carotenoproteins, or esterified with one or two fatty 

acids, which stabilize the molecule (Matsuno, 2001).  It has been proposed that one of the 

central functions of astaxanthin (esters) in calanoid copepods is to improve antioxidant 

protection of storage lipids (Sommer et al., 2006). Also, astaxanthin in copepods have been 

suggested to take part in lipid metabolism and serve as both photoprotection and/or 

camouflage (Hairston, 1976; Hansson, 2000). Lipids extracted from C. finmarchicus may 

contain as much as 500-1600 ppm astaxanthin (Pedersen, 2007; Bergvik et al., 2012) and up 

to 90 % of the total pigment in the form of diesters and monoesters (Foss et al., 1987). 

Astaxanthin is widely used in cosmetics, as food colorants and feed additives in aquaculture 

to colour the flesh of salmonid fish, or to enhance the colour of egg yolk in the poultry 

industry (Akiba et al., 2000; Dufossé, 2006; Chimsung et al., 2014). Additionally there has 

been a growing interest in the use of astaxanthin as a dietary supplement (Ambati et al., 2014) 

owing to its possible health-promoting effects (reviewed by Hussein et al., 2006; Yuan et al., 

2011). 

 

Figure 8: A general structure of unesterified astaxanthin 3S, 3’S molecule  
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3.5 Oxidation 

 

Oxidation plays a fundamental role in the reduction of the quality of lipids. It deteriorates the 

sensory quality and nutritive value, and may ultimately lead to the production of toxic 

compounds (Min and Boff, 2002). Lipids may be oxidized during processing and storage via 

autooxidation or light induced oxidation (photooxidation), in which triplet oxygen (
3
O2) and 

singlet oxygen (
1
O2) react with the lipids, respectively (Choe and Min, 2006). Marine oils and 

products with a high content of long chain polyunsaturated fatty acids are particularly 

susceptible to oxidation (Van Dyck, 2007). Enzymatic oxidation is a third mechanism, where 

lipid oxidation is catalysed by enzymes (e.g. lipooxygenases) in the raw material, however, 

during oil processing, the high temperatures will efficiently inactivate any enzymes present 

(Oterhals and Vogt, 2013). 

 

Figure 9: Overview of the autooxidation process; the initial removal of hydrogen (Initiation) 

and the formation of an alkyl radical (L•) via a radical initiator (X•). Oxygen and fatty acids 

are added to the cycle and give hydroperoxides (LOOH) as the product via electron donation 

from the peroxyl radical (LOO•) (Propagation). The process ends (Termination) when 

either two radicals react and form a non-radical product, or an antioxidant (AH) reduces the 

peroxyl to hydroperoxide while being transformed to a stable radical (A•) without the 

formation of an alkyl radical (L•). Modified from Schneider (2009)  
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Autooxidation is the direct reaction of molecular oxygen with organic compounds 

(Frankel, 2005) and is considered the most important mechanism of the oxidation of omega-3 

LC-PUFA (VKM, 2011). It involves a chain reaction consisting of three distinctive steps: 

initiation, propagation and termination (Figure 9). At the initiation step, a hydrogen atom is 

removed from the molecule LH by a radical initiator (X•) and a free radical of a fatty acid, 

alkyl radical (L•) is formed. A hydrogen bound to the carbon atom separating two non-

conjugated C=C bonds is the easiest to remove, rendering the PUFA more vulnerable to 

oxidation compared to saturated and monounsaturated fatty acids. Alkyl radicals may also be 

formed by thermal cleavage or due to chemical oxidizers (reactive oxygen species, ROS), or 

by transition metals such as iron (Fe
3+

/ Fe
2+

) and copper (Cu
2+

/Cu
+
). These metals may 

influence the initiation by the direct reaction with a fatty acid (Equation 1).  

Fe
3+

 + LH → Fe
2+

 + L• + H
+  

(eq.1) 

In the propagation step, the alkyl radical will react with molecular oxygen to form 

peroxyl radical (LOO•), which again is capable to remove hydrogen from another fatty acid 

and form lipid hydroperoxides (LOOH) and at the same time a new alkyl radical (Figure 9). In 

the presence of light and oxygen can photosensitizers (e.g. chlorophyll) convert triplet oxygen 

to singlet oxygen, which is highly reactive, and will bind directly to the fatty acid (Equation 

2). The hydroperoxides formed by photooxidation  may serve as initiators of the 

autooxidation process (Knothe et al., 2007). 

LH + 
1
O2  → LOOH (eq. 2) 

Some oxidation will occur during processing of fats and oils, and consequently, lipid 

hydroperoxides are present in essentially all lipid-containing foods to a certain degree. With 

the presence of transition metals, LOOH will decompose, and give rise to a group of alkoxyl 

(LO•) and peroxyl (LOO•) radicals (Equations 3 and 4). Subsequently, these will be capable 

of re-initiating lipid oxidation by redox-cycling of the metal ions (McClements and Decker, 

2008).  

Fe
2+

 + LOOH  → Fe
3+

 + LO• + OH
 –  

(eq. 3) 

Fe
3+

 + LOOH → Fe
2+

 + LOO• + H
+    

(eq. 4) 

These transition metals may also catalyse the oxidation of hydrogen peroxide (HOOH) 

and form the highly reactive hydroxyl radical (OH•). The hydroxyl radical will immediately 

remove electrons from any molecule in its path, turning that molecule into a radical and so 
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propagating the chain reaction or act as an initiator forming a new alkyl radical. The 

termination phase occurs when two radicals react and form a non-radical, usually high 

molecular weight products such as dimeric and trimeric triacylglycerols (i.e. polymeric 

compounds) (Frankel, 2005). The reaction can also be inhibited if a peroxyl radical react with 

an antioxidant (AH)  to form an unreactive free radical (A•), which does not remove hydrogen 

from another fatty acid (Figure 9).  

The primary products of the autooxidation are taste- and odourless lipid 

hydroperoxides (LOOH), traditionally quantified by measuring the peroxide value (PV). 

These molecules will decompose further, giving rise to secondary oxidation products, such as 

aldehydes, ketones, alcohols, keto acids, hydroxyl acids, epidioxides, and other volatile 

compounds (Bartosz and Kolakowska, 2011). The decomposition of hydroperoxides to 

alkoxyl radicals (LO•) such as shown in equation 3, is generally followed by the β-scission 

reaction (Figure 10). This reaction breaks down the aliphatic chain of the fatty acid to produce 

shorter chain aldehydes and alkyl radicals. The alkyl radical can then react with a hydrogen 

radical to form a hydrocarbon, a hydroxyl radical to form an alcohol or oxygen to form a new 

hydroperoxide (McClements and Decker, 2008). Due to the several double bonds in the 

omega-3 LC-PUFAs, the decomposition of the omega-3 fatty acid hydroperoxides will lead to 

a highly complex mixture of secondary oxidation products (Jackobsen and Nielsen, 2007) and 

subsequently a decrease in the content of LC-PUFA. However, it is only the secondary, 

volatile oxidation products which are responsible for the changes in sensory properties 

causing the unpleasant odours and flavours from lipid oxidation (Jacobsen, 1999). The 

content of secondary oxidation products is traditionally expressed by the anisidine value 

(AV), which is given without any unit, but can give an impression of the oxidation status of 

oil at the time of analysis (VKM, 2011). The complexity of lipid oxidation is reflected by the 

array of oxidation products formed throughout the different stages of the oxidation process 

and furthermore, the variety of analytical methods developed to study lipid oxidation 

(reviewed by Barriuso et al., 2012).   
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Figure 10: Possible reaction pathways for the decomposition of an alkoxyl radical by β-

scission, forming an aldehyde and either a new hydrocarbon, alcohol or hydroperoxide. 

Modified from Frankel (2005) and McClements and Decker (2008). 

 

Access to oxygen and light, surface area, heating, and irradiation will affect the rate of 

lipid oxidation. Thus, oxidation can be inhibited to a certain extent by several actions; the 

removal of oxygen during storage, low storage temperatures, avoidance of light and contact 

with metals such as iron and copper. Secondly, to improve oxidative stability, natural or 

synthetic antioxidants such as butylated hydroxytoluene (BHT), butylated hydroxyanisole 

(BHA) or vitamin E (tocopherols and tocotrienols) may be added to crude and refined oils 

(Knothe et al., 2007). As mentioned previously, lipids extracted from C. finmarchicus contain 

high amounts of astaxanthin esters. Astaxanthin and similar carotenoids are known to possess 

several antioxidative abilities, such as lipid peroxyl radical-trapping, quenching of singlet 

oxygen and neutralizing of photo-sensitizers (Higuera-Ciapara et al., 2006). When exerting 

these effects, the carotenoids themselves will eventually oxidize, and for example 

concentrated astaxanthin will lose its ruby colour  (Halliwell and Gutteridge, 2007).  
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3.6 Lipid digestion  

 

Lipids are a major source of metabolic energy, a source of essential fatty acids and lipid-

soluble vitamins, and are vital components of biological membranes (Vance and Vance, 

2008). The lipids provided in the human diet consist primarily of TAG (90-95 %), with 

smaller contributions from phospholipids and cholesterol (Gurr et al., 2002). The complex 

mixture of dietary lipids needs to be broken down before absorption, and the human digestive 

system is very efficient, utilizing more than 95 % of the lipids provided (Carey et al., 1983; 

Mu and Høy, 2004). The average consumption rate of TAG is about 100-150 g daily, while 

the consumption of exogenous cholesterol and phospholipids are estimated to 300-600 mg 

and 2-8 g per day, respectively (Gropper et al., 2009; Cohn et al., 2010). There is no exact 

data on the amount of wax esters in the human diet; however, WE are present in several foods 

such as cereal grains, bran, and germ, along with leaves, seeds, nuts and unrefined oils 

(Hargrove et al., 2004). Wax esters in seafood are found in a number of caviar and fish roe 

products (Bledsoe et al., 2003; Kalogeropoulos et al., 2008), as well as in the fillets from the 

commercial fish species orange roughy and deep-sea oreo (Bakes et al., 1995). In addition 

beeswax, candelilla and carnauba wax are extensively used as food additives; such as glazing 

agents, surface treatment on fruit and as flavour and colour carriers (EFSA, 2007; 2012a; 

2012b). Outbreaks of so-called keriorrhea upon ingestion of large servings of WE-rich fish, 

have unfortunately led to the notion that WE is a poor substrate for digestion or even 

indigestible (Ling et al., 2009). Conversely, several publications demonstrate that mammals 

are capable of wax ester digestion, at least, when consumed in relatively moderate amounts 

(Hansen and Mead, 1965; Yaron et al., 1982; Gorreta et al., 2002).  

The digestive and absorptive processes primarily takes place in the small intestine, but 

lipid digestion is initiated by lingual (mouth) and gastric (stomach) lipases. Dietary lipids are 

dispersed to lipid droplets by the mechanical actions of chewing, and subsequently churning 

and peristaltic movements throughout the gastrointestinal system (Sherwood, 2006). 

Digestion occurs within an aqueous environment, and as most lipids are hydrophobic, it will 

require some facilitation to make them available for hydrolysis and transportable for 

absorption. Bile salts are amphipathic molecules, produced from cholesterol in the liver and 

are released from the gallbladder into the small intestine upon lipid digestion. They will exert 

a detergent action on fat droplets and emulsify them into smaller units. This provides a greater 

surface for the action of lipolytic enzymes (Figure 11). Wax esters are more hydrophobic than 
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TAG and therefore more difficult to emulsify, as a result, WE may exhibit a longer retention 

time to facilitate hydrolysis and absorption (Cowey and Sargent, 1977; Verschuren and 

Nugteren, 1989). The main digestive enzymes involved in breaking down dietary lipids are 

esterases that cleave the ester bonds in TAG (pancreatic lipase, EC 3.1.1.3), PL 

(phospholipase A2, EC 3.1.1.4) and cholesteryl esters (pancreatic cholesterol esterase; CES, 

EC 3.1.1.13/ carboxylesterase EC 3.1.1.1)(Enzyme Nomenclature,1992; Gropper et al., 2009). 

Human pancreatic cholesterol esterase is a non-specific lipase with activity against a variety 

of substrates. It acts on all sn-positions of TAG, as well as cleaving PL, ceramides, vitamin 

esters, WE and galactolipids (Hargrove et al., 2004; Whitcomb and Lowe, 2007).  

 

Figure 11: The process of dietary lipid digestion in the intestinal lumen. Bile salt (BS) 

emulsifies lipid droplets consisting of a TAG core and cholesterol (CL), PL, WE and FFA. 

The lipid droplets are exposed to the various lipases for hydrolysis. Monoacylglycerol 

(MAG), diacylglycerol (DAG), lysophosphospholipid (LP), FFA and fatty alcohols (FAOH) 

that are released by lipid hydrolysis join BS, CL and lipid-soluble vitamins to form micelles. 

Modified from Shi and Burn (2004).  

 

The cleaved lipid products are also hydrophobic, and have to be transported in a form 

that shields them from the aqueous content of the intestinal lumen. Monoacylglycerols 

(MAG), hydrolysed PL, cholesterol, FFA, and presumably also fatty alcohols (FAOH) 

combine with bile salts to form negatively charged aggregates called micelles (Figure11). The 

micelles are sufficiently water soluble to interact with the absorptive cells of the small 

intestine, the enterocytes. When a micelle reaches the epithelial surface, the lipolytic products 

will be absorbed across the brush border membrane of the enterocytes (Figure 12). The 
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molecular mechanisms of lipid absorption is not fully understood, however they include both 

passive diffusion and active transport, mediated by transporters such as intestinal FA-binding 

protein (IFABP), CD36 and FA-transport protein-4 (FATP4) (Werner et al., 2003; Schwenk 

et al., 2010). Bile salts are absorbed in the last segment of the small intestine and are returned 

to the liver, known as the enterohepatic circulation. After passing across the membrane of the 

enterocyte, the lipids migrate to the endoplasmic reticulum where the re-esterification of fatty 

acids into TAG takes place. There are different pathways involved in TAG resynthesis, of 

which the MAG-pathway is the most significant as long as dietary TAG is in excess (Porter et 

al., 2007). Via a series of acyltransferase enzymes, fatty acids are reattached to MAG to form 

diacylglycerols (DAG), and subsequently to TAG again. Lysophospholipids and cholesterol 

are re-esterified to fatty acids to generate PL and cholesteryl esters (CE), respectively (Brody, 

1994). The absorbed FAOHs are oxidized to the corresponding fatty acids by a NAD-

dependent process which in turn is coupled to a NADPH-dependent production of glycerol-

phosphate, the G3P-pathway , resulting in TAG (Bauermeister and Sargent, 1979; Hargrove et 

al., 2004). 

 

Figure 12: The micelles present the digested lipid products for absorption at the brush border 

membranes of the enterocytes. The hydrolysed lipids may enter the cell by passive diffusion 

or active transportation. The re-esterification of MAG to DAG and subsequently to TAG 

again, occurs inside the endoplasmatic reticulum. Lysophospholipids and dietary CL are 

esterified to fatty acids to form PL and cholesteryl esters (CE), respectively. The newly 

formed lipid products come together with apolipoprotein B (ApoB) to form chylomicrons that 

enter circulation through the lymph. Modified from Shi and Burn (2004).  
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The lipid products are further processed in the Golgi apparatus in which TAG 

molecules are combined with CE and PL, and coated with lipoproteins (ApoB) to form water 

soluble chylomicrons (Phan and Tso, 2001). Short chain fatty acids (< 12C) may to some 

extent remain unesterified, only bound to albumin, and can pass directly into the portal blood 

and be metabolized (Gropper et al., 2009). However, chylomicrons are the main route for the 

transport of dietary long-chain fatty acids and these large lipoproteins are released by the 

enterocyte through exocytosis (Tso and Balint, 1986). The chylomicrons will not enter the 

blood stream directly; instead they are secreted into the lymph vessels outside the enterocytes. 

From there they will move in to the main branch of the lymphatic system and enter the blood 

circulation for distribution around the body. The role of chylomicrons is to deliver dietary 

lipids mostly to peripheral tissues other than the liver, such as muscles and adipose tissue, for 

energy and storage (Vance and Vance, 2008; Gropper et al., 2009).  

While transported by the blood throughout the body, the chylomicrons undergo 

hydrolysis at different tissue sites and the lipolytic products are quickly absorbed by the 

endothelial cells. As much as 85 % of the lipids in the chylomicrons are delivered before 

reaching the liver in the form of chylomicron remnants and are rapidly removed from the 

blood stream by liver cell endocytosis (Cooper, 1997). The remnant lipids can be metabolized 

for energy, or modified by chain elongation and resynthesized along with endogenous fatty 

acids to new lipid molecules, such as PL, TAG and CE. These are subsequently released in to 

circulation again as very low density lipoproteins (VLDL) and high density lipoproteins 

(HDL). The circulating VLDL will release TAG molecules in the same manner as 

chylomicrons. Additionally, when the VLDL donates TAG, they will rapidly convert to 

intermediate-density lipoprotein (IDL) and subsequently to low density lipoprotein (LDL). 

The LDL molecules in turn, bind cholesterol from the serum and transport it to the various 

tissues to be utilized for membrane construction, or conversion to cholesterol derived 

molecules, such as steroid hormones (Nelson and Cox, 2000). In contrast, HDL has an 

opposite function; it removes cholesterol from cells and returns it to the liver. The cholesterol 

from the liver may be secreted in bile again, either converted to bile salts or as a neutral sterol 

(Gropper et al., 2009).   
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4. METHODOLOGICAL CONSIDERATIONS 

4.1 Raw material and oil  

 

Harvest and storing of the raw material used in paper II were conducted as described in 

chapter 3.2. Calanus
®
 Oil used in experiments in paper I and III was commercially produced 

and provided by Calanus AS.  

4.2 Production of oil from Calanus finmarchicus  

 

Prior to the pilot scale production presented in paper II, optimization of the different process 

requirements was conducted at laboratory scale. The type of enzymes applied, sufficient 

enzyme concentrations, optimal pH and hydrolysis time were determined. The enzymes 

chosen, Alcalase
®
 and Flavourzyme

®
, are widely used and commercially available 

(www.novozyme.com).  Alcalase
®
 is a non-specific endoprotease responsible for the overall 

protein disruption, while Flavourzyme
®
 contains both endo – and exopeptidases responsible 

for hydrolysing bitter peptides into smaller fragments to reduce the bitterness of the 

hydrolysate produced.  

 

Figure 13: Production of oil following the general steps of mincing, heating, removal of 

solids via a decanter and finally separating oil and stickwater by a centrifuge. A: traditional 

thermal treatment or B and C enzymatic hydrolysis at 55°C, and subsequently heating to 85 

°C for enzyme inactivation.  

 

Three experiments were carried out as outlined in Figure 13, each using 350-400 kg of 

partially thawed and grinded C. finmarchicus. Experiment A was carried out as a control, 

similar to that of traditional fish oil production. For experiments B and C, enzymatic 

hydrolysis was applied after the initial grinding step. In experiment B, only Alcalase
®
 was 

added for the hydrolysis step. In experiment C the enzymes were applied to function 

sequentially, adding Flavourzyme
®
 to the reaction mixture after an initial hydrolysis (15 min) 
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with Alcalase
®
. To ensure inactivation of the enzymes, the reaction mixtures were 

subsequently heated to 85 °C. The heated materials were transferred to a decanter separating 

the solids (press cake), and lastly separating the oil from the stickwater by a centrifuge. 

Samples from all the fractions were collected and frozen prior to analysis.  

4.3 Oxidative stability 

 

The oxidative stability of Calanus
®
 Oil presented in paper I was obtained from a long term 

storage study; Calanus
®
 Oil was distributed in glass bottles (50 ml), both airtight and flushed 

with N2, or perforated caps exposing the oil to air. The bottles were divided to three storage 

areas; refrigerated (dark, 4 °C), and at room temperature (20-22 °C), in darkness or exposed to 

light. Samples were taken at the beginning and then every three months until 425 days of 

storage. Each sample was flushed with N2 and stored at – 55 °C until analysis.  

Sensory analyses are the most closely related methods to evaluate the quality of food 

lipids; however, the usefulness is limited due to high costs and requirement of a properly 

trained sensory panel (Frankel, 2005). Peroxide value, as previously mentioned, is the most 

commonly used measurement of the extent of primary oxidation in oils. It can be performed 

using iodometric titration methods or spectrophotometric ferrothiocyanate methods (VKM, 

2011). Additionally, the AV-value is obtained by spectrophotometric analysis of a colour 

reaction between aldehydes and p-anisidine. Other methods for measuring oxidation products, 

such as conjugated dienes and trienes and carbonyl compounds also depend on 

spectrophotometrically methods. In summary, most methods commonly used to evaluate the 

oxidation in edible oils rely either on the visual inspection of colour change (e.g. titration) or 

absorbance measured spectrophotometrically in UV-areas. The oil extracted from Calanus 

finmarchicus has such a high content of astaxanthin leading to colour interferences with all 

previously mentioned methods. The content of astaxanthin in itself was therefore used as an 

indirect measurement of the degree of oxidation of Calanus
®
 Oil, as the astaxanthin molecules 

oxidize when exerting its antioxidative effects upon the oil product. The content of 

astaxanthin was measured directly by dissolving oil in acetone and determining absorbance 

spectrophotometrically at 470 nm as described by Foss et al. (1984).  

Non-colorimetric measuring of oxidation products can also be accomplished. A 

common method is the measurement of the volatile secondary oxidation products by gas 

chromatography (GC) head-space and subsequent identification by mass spectrometry 
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(Jackobsen and Nielsen, 2007). Measuring the apparent loss of LC-PUFA during storage is an 

alternative GC-method applicable for evaluating oxidative stability (Dulavik et al., 1998). It is 

however a relatively insensitive method, as formation of primary oxidation products can occur 

before a decrease in LC-PUFA can be detected. Nonetheless, the latter was chosen for this 

study.  

4.4 Digestion of Calanus
®
 Oil in mice 

 

The use of animals in science is of great ethical concern. Moreover, standardization is often 

difficult to achieve. Ethical guidelines are established and regulations are implemented to 

control animal experiments. The most important principles were introduced by Russell and 

Burch (1959) to ensure animal welfare without comprising the research. These principles are 

known as the three R’s: replacing animal experiments with non-animal alternatives whenever 

possible, reducing the number of animals to a minimum and refining the experimental 

protocol, making sure animals suffers as little as possible. The animals used in paper III were 

part of a larger experiment (Salma, 2014), as such in compliance with the principles stated 

above. However, this led to some limitations of this study, such as the possibility to include 

indigestible markers or radiolabelling of the dietary lipids to measure efficiency of digestion 

and the absorption of the wax ester constituents.  The quantification of lipid classes, together 

with analysis of fatty alcohols presented in paper III was performed by a commercial 

laboratory.    
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5. MAIN RESULTS AND GENERAL DISCUSSION 
 

Based on the aims presented in chapter 2, the work was carried out in three parts; I) The 

compilation of current knowledge on the lipids from Calanus finmarchicus, together with an 

assessment of the possible use of Calanus
®
 Oil. In addition the study of the oxidative stability 

of LC-PUFA and astaxanthin present in the oil. II) Optimizing the industrial process 

requirements for the extraction of Calanus
®
 Oil with the intention of increasing yield, and 

extend the current work on characterizing the oil obtained. III) Study lipid digestion and 

absorption in mice models relevant for human physiology, carried out by a feeding trial where 

the mice were give a high fat diet with 2% Calanus
®
 Oil. Each part was presented in papers I, 

II and III, respectively.  

5.1. Review and possible use 

 

Based on the large number of biological studies published, Calanus finmarchicus might be 

one of the most thoroughly investigated marine planktonic animals. The copepod has a life 

strategy adapted to low temperatures and short periods of feeding; taking full advantage of the 

concentrated spring and summer algal blooms. The accumulation of large lipid stores allows 

them to migrate to great depths, survive during the winter months in the dormant phase, and 

resurface to mature and spawn in early spring. As such, the lipid content and composition of 

C. finmarchicus depends greatly on development stages, season, diet and location of harvest, 

as compiled in paper I.    

Over the last years, the share of fishmeal and oil in aquaculture feed are restricted and 

are to a large degree replaced with products of vegetable origin (Naylor et al., 2009; Ytrestøyl 

et al., 2015). The vegetable sources will probably be the major component in feed due to 

accessibility and low cost. The relevant plant oils are often rich in monounsaturated FA and 

C18 PUFAs, but lack the LC-PUFA (Turchini and Francis, 2009). As a result, several 

investigations have focused on the inclusion of alternative omega-3 containing lipids to 

farmed fish. Studies aiming at utilizing oil from Calanus finmarchicus in aquaculture feeds 

have been performed, and results show that Atlantic salmon (Salmo salar) tolerate well a 30% 

substitution, while higher inclusion results in reduced digestibility and growth (Reviewed by 

Bogevik, 2011). The salmon is apparently able to adapt to increased dietary intake of WE by 

increasing bile production and lipolytic activity (Bogevik et al., 2009). Similar adaptions have 
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also been reported in Atlantic halibut (Hippoglossus hippoglossus )(Colombo-Hixson et al., 

2011).  The cost of obtaining zooplankton lipids is currently much higher than producing fish 

oils and most plant oils. Therefore, it is more realistic to use Calanus
®
 Oil as an ingredient, 

rather than as the bulk lipid in aquaculture feed. This may also be applicable where other 

components, such as astaxanthin, in addition to the fatty acids are in demand. Astaxanthin is 

the most effective carotenoid used for salmonid pigmentation, and is also proposed to be of 

importance to maintain the health of the fish (Nakano et al., 1995; Bjerkeng, 2008). In this 

respect Calanus
®
 Oil may be valuable as a natural source of flesh pigmentation in Atlantic 

salmon (Hynes et al., 2009). 

 The high content of n-3 LC-PUFA and astaxanthin makes Calanus
®

 Oil very 

interesting as a nutraceutical. Studies on rodents indicate that dietary inclusion of low levels 

of Calanus
®
 Oil might have beneficial effects beyond those which may be ascribed to intake 

of EPA and DHA alone. The reported effects are reduced abdominal obesity and adipose 

tissue inflammation, improvement in systemic glucose and attenuation of atherosclerotic 

lesions (Eilertsen et al., 2012; Höper et al., 2013; Höper et al., 2014). In addition, a recent 

study also report anti-hypertensive action of Calanus
®
 Oil in a mouse model of obesity 

(Salma, 2014). 

Wax esters have gained a rather negative reputation due to occurrences of so-called 

keriorrhea following ingestion of WE-rich fish (Ling et al., 2009). This has led to the 

assumption that mammals cannot digest wax esters. However, there is good evidence that 

mammals are capable of WE digestion when consumed in relatively moderate amounts 

(Hansen and Mead, 1965; Yaron et al., 1982; Gorreta et al., 2002). This is also supported by 

the presence of WE in several recommended foods such as cereal grains, seeds, nuts and 

unrefined oils (Hargrove et al., 2004). In addition to the natural content of WE in foods, 

terrestrial waxes are used as food additives; for example adding wax esters to edible oils to 

change viscosity, as such  producing healthier spreads without trans fatty acids (Yılmaz and 

Öğütcü, 2014) 
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5.2. Oxidative stability of astaxanthin and LC-PUFA 

 

In paper I, the content of astaxanthin and LC-PUFA in Calanus
®
 Oil was monitored during a 

long term storage period and depicted in Figure 14 and Table 4, respectively. The results in 

Figure 14 indicated that exposure to light in the presence of air at room temperature did not 

have any major negative effects on the oxidative stability of the astaxanthin content compared 

to dark storage under the same conditions. This might suggest that any singlet oxygen formed 

due to light exposure is not quenched by astaxanthin. The exposure to air in combination with 

ambient storage temperature (22 °C) led to a rapid decline of astaxanthin during the first 

months of storage and continued until total depletion of the pigments present. The best 

protective effect was seen in the samples stored at inert atmosphere, and especially in 

combination with low storage temperature (4 °C), where the content of astaxanthin was 

almost unchanged throughout the entire storage period. A second oil sample stored in 

darkness at 4 °C was exposed to air. This sample exhibited the same stability of astaxanthin 

content as the samples protected by N2. However, after 300 days of storage, a steep fall of the 

astaxanthin content was seen, and an almost complete consumption of astaxanthin was seen at 

the end of the study. 

 

Figure 14: Stability of Calanus
®
 Oil stored for a period of 425 days. The oil was stored with 

an inert atmosphere (N2; closed symbols) or exposed to air (open symbols), and in the dark at 

4°C (-■-/-□-) or at room temperature, 22°C, exposed to light (-●-/-○-) or in darkness (-Δ-) 
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While chain breaking antioxidants, such as tocopherols, trap radicals by donating a 

hydrogen atom, the carotenoids can exert its antioxidative effect by a mechanism in which the 

peroxyl radical (LOO•), or alkoxyl radical (LO•), is added to the conjugated polyene system 

of the carotenoid molecule (Equation 5). An important factor for the antioxidative effect of 

carotenoids is the relative stability of the carotenoid radical formed (LOO-Car•). This is 

known as resonance stabilization, which is the delocalization of the unpaired electron over the 

conjugated backbone of the astaxanthin molecule. Addition of a second peroxyl radical to the 

carotenoid radical will produce a non-radical product, resulting in an overall trapping of two 

peroxyl radicals per carotenoid consumed (Jørgensen and Skibsted, 1993). 

LOO• + Car → LOO-Car• (eq 5) 

Conversely, in the presence of O2, the carotenoid radical can add oxygen, which gives 

an unstable peroxyl radical (Equation 6). This may lead to further degradation, and form new 

radicals with no net inhibition of oxidation (Jørgensen and Skibsted, 1993). The rapid fall of 

astaxanthin content for the oxygen exposed oils may be explained by this mechanism.  

LOO-Car• + O2 → LOO-Car-OO• (eq 6) 

At low O2 concentrations, the radical trapping mechanism predominates over the 

formation of carotenoid peroxyl radical (Eq 6), and the overall stability of the samples stored 

at inert atmosphere might have been supported by this. Likewise, others have reported a 

pronounced antioxidative effect of carotenoids at low O2 concentrations, reducing the amount 

and rate of oxidation (Burton and Ingold, 1984; Kennedy and Liebler, 1992)  

The fatty acid composition of the oil samples was only measured at start and endpoint 

of the storage period (Table 4). The content of SDA, EPA and DHA, followed the same 

overall pattern as for the astaxanthin measurements. The samples stored in air at room 

temperature showed a substantial decrease of SDA, EPA and DHA. This is to be expected 

when stored at less optimal conditions and may also have been amplified by the rapid 

oxidation of astaxanthin and subsequently the formation of astaxanthin oxidation products. 

The samples stored at inert atmosphere, on the other hand, exhibited only a modest loss of the 

LC-PUFA. A similar stability of LC-PUFA content was observed for the refrigerated oil 

exposed to oxygen. This might be due to the physiochemical properties of the wax ester 

molecules; at low temperatures the wax esters are solid or semisolid, reducing the 

susceptibility to oxidation, since oxygen reactions are confined to the surface (Gorreta et al., 
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2002). Moreover, all biological reactions have a slower rate at low temperatures, thus such 

storage will provide a certain delay in oxidation reactions.    

Table 4: Concentration (% of total) of the major n-3 fatty acids in oil from C. 

finmarchicus at time 0 of storage and after 425 days.  

  Time 0 4 ºC (dark) 22 ºC (light)  22 ºC (dark) 

  - N2 air N2 air air 

SDA, 18:4 n-3 15,8 11,9 12,9 13,1 8,9 7,7 

EPA, 20:5 n-3 12,3 8,4 7,9 9,5 5 4,5 

DHA, 22:6 n-3 6,9 4 4 4,6 2,3 1,8 

 

The fatty acid composition from each time point as analysed of astaxanthin contents 

should clearly have been conducted, in the attempt to provide a more comprehensive 

overview to the oxidative stability of Calanus
®
 Oil.  The long term storage of Calanus

®
 Oil 

indicates an overall high stability of both astaxanthin and LC-PUFA content when stored at 

optimal conditions that is at low temperature and inert atmosphere. 

5.3. Pilot scale production of oil from Calanus finmarchicus  

 

In paper II, it was investigated if the use of commercial proteolytic enzyme could improve 

oil recovery from Calanus finmarchicus in an industrial-like process. The outcome of the 

productions of oil by experiments A, B and C is given in Figure 15. The results showed that 

the oil recovery increased profoundly with the employment of proteolytic enzymes compared 

to the traditional fish oil processing. The dried C. finmarchicus contained 32,5 % lipids. By 

the means of thermal treatment alone, only 4,5% of the lipids present in the raw material were 

recovered as oil, whereas most of the lipids were retained in the press cake and the protein 

concentrate. When adding the enzymatic hydrolysis step to the oil processing, 76% lipid was 

recovered after the treatment with Alcalase
®
, and 83% lipid was recovered after the sequential 

treatment with Alcalase
®
 and thereafter Flavourzyme

®
. As described in the background 

section, Calanus finmarchicus accumulates most of the lipids in a separate membrane bound 

sack. A sufficient disruption of the membrane sack is accordingly necessary for the release of 

lipids during oil processing, and a likely explanation for the high oil recovery in experiments 

B and C. An increase in oil yield by the use of similar enzymatic hydrolysis have been 

demonstrated by several studies on marine raw materials, reviewed by Rubio-Rodríguez et al. 

(2010).  
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Figure 15: Press cake, protein concentrate (hydrolysate) and oil recovered in experiment A 

(control) and in the experiments using proteolytic enzymes; experiment B (Alcalase
®
) and 

experiment C (Alcalase
®
 and Flavourzyme

®
). Expressed as % of dry weight starting material.   

 

The employment of enzyme hydrolysis also affected the output and proximate 

composition of the press cakes and protein concentrates (hydrolysate) as given in paper II. 

The press cakes obtained after experiment B and C accounted for 15% and 18% of the dry 

weight, respectively, compared with the standard fish oil process, where the press cake 

amounted to 35%. The combined use of Alcalase
®

 and Flavourzyme
®
 in experiment C 

increased the amount of protein concentrate, and at the same time less lipids were retained in 

the protein concentrate, compared to the use of Alcalase
®
 alone.  

Using the titration method described in paper II, the oil from experiment A was 

estimated to contain 7,5% FFA, while the values for the oils from experiment B and C both 

were 8,5% FFA. Only the oil obtained by traditional fish oil processing was analysed further 

in regard to composition. The oil was fractionated and assessed qualitatively by thin layer 

chromatography (TLC). These results showed a substantial amount of WE present in the 

crude oil, and while not quantified, this was in line with results from biological studies 

(reviewed by Lee et al., 2006). Free fatty acids could also be seen clearly, but only trace 

amounts of phospholipids were observed.  Subsequently, the fatty acid composition was 



34 

 

determined for the FFA and WE fractions, and as well as the crude oil (Table 5). Considerable 

quantities of the n-3 fatty acids SDA, EPA and DHA were present, constituting as much as 

34,5% of the fatty acid moiety of the oil. The overall composition of the fatty acids in the WE 

fraction was similar to the composition of the oil in total. The composition of the FFA fraction 

differed from the oil sample and the WE fraction, and was dominated by the fatty acids 16:0, 

EPA and DHA, resembling the composition of the fatty acids in the phospholipids of Calanus 

finmarchicus, as compiled in paper I. 

Table 5: Concentration (% of total) of relevant fatty acids in oil extracted from 

C.finmarchicus, FFA and WE fractions obtained by solid phase extraction. 

  Oil WE FFA 

16:0 9,3 7,6 21,2 

18:0 1,0 0,8 7,9 

20:1 n-9 5,9 6,0 1,3 

22:1 n-11 9,0 8,8 1,7 

18:4 n-3 12,4 11,4 8,0 

20:5 n-3 14,4 11,6 17,0 

22:6 n-3 7,7 4,1 18,3 

Σ SFA 10,3 8,4 29,1 

Σ MUFA 14,9 14,8 3,0 

Σ n-3 PUFA 34,5 27,1 43,3 

WE: wax esters, FFA: free fatty acids. 

Increased levels of FFA has been reported in other studies regarding zooplankton 

lipids (Overrein, 2010; Bergvik et al., 2012), and it has been suggested that the rapid 

degradation of phospholipids compared to neutral lipids is a result of a higher phospholipase 

activity compared to other lipolytic activities (Sikorski and Kolakowski, 2000).  The raw 

material used in paper II was harvested in May, and according to biological studies, the lipids 

from C. finmarchicus may contain as much as 10-20 % phospholipids in early spring (Table 1, 

chapter 3.4). High phospholipase activity may therefore be a reasonable explanation to the 

high content of FFA, as well as the minor amounts of phospholipids detected when assessing 

the lipid classes in the oil produced.  
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5.4. Digestion and absorption of Calanus
®
 Oil 

 

In paper III, a more extensive characterization of Calanus
®
 Oil was undertaken prior to the 

feeding trial, where Calanus
®
 Oil was given as a 2% supplement in a high fat diet (HFD) to 

mice. The Calanus
®

 Oil was quantitatively analysed to determine lipid class distribution, as 

well as both fatty acid, and fatty alcohol composition. The analysis of fatty acid composition 

of Calanus
®

 Oil showed that the oil contained 180 mg n-3 fatty acids/g lipid with SDA, EPA 

and DHA, contributing with 70, 55 and 39 mg/g lipid, respectively (Table 6). The major fatty 

alcohols present in Calanus
®
 Oil were gondoic acid (20:1n-9) and cetoleic acid (22:1n-11). 

The results presented in Table 7 showed that WE was the dominating lipid class present in 

Calanus
®
 Oil, with minor contributions from TAG, FFA and sterols (cholesterol, C).  

Lipids extracted from the experimental diets were also analysed with regard to fatty 

acid composition (Table 6). The overall fatty acid composition of the experimental diets were 

similar, with palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1n-9) and linoleic acid 

(18:2n-6) as the major fatty acids present in both diets. The inclusion of Calanus
®

 Oil to the 

diet (HFD+Cal) was verified by the presence of SDA, EPA and DHA, as well as the fatty 

alcohols 20:1n-9 and 22:1n-11, neither detected in the HFD. The n-6/n-3 ratio for the HFD 

was calculated to 10,94 and the ratio for HFD+Cal was 5,36.  Triacylglycerol was the only 

lipid class detected in the lipids from the HFD, whereas the inclusion of Calanus
®

 Oil to the 

diet were confirmed by the detection of 63 mg WE /g lipid and TAG constituting the 

remaining part of the lipids (Table 7). 

As shown in paper III, the supplementation of HFD with 2% Calanus
®

 Oil resulted in 

reduced body weight gain compared to the HFD group during the 11 week feeding trial. A 

reduced body weight gain has also been reported by other studies when including marine oils 

in diets for rodents (Ruzickova et al., 2004; Arai et al., 2009; Sato et al., 2010), this have also 

been reported when small amounts of wax esters from Calanus finmarchicus have been 

included (Höper et al., 2014). No adverse effects were observed, and no other significant 

differences in the recorded biometric data were seen between the two diet groups. 

 The lipid class analysis showed that FFA was a major lipid class in feces from both 

groups (Table7). The feces from the HFD+Cal group contained 115 mg cholesterol (or 

sterols)/g extracted lipids, while for the HFD group were 240 mg cholesterol (or sterols)/g 

lipids. The discrepancy of excreted cholesterol between the diet groups may be explained by  
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Table 6. Fatty acid and fatty alcohol content (mg/g lipid) of Calanus
®
 Oil and 

experimental diets 

 

Fatty acids Calanus
®
 Oil  High fat diet High fat diet + Cal 

      14:0 64,42 

 

10,41 

 

11,95 

16:0 45,05 

 

173,65 

 

149,83 

18:0 2,42 

 

106,63 

 

92,16 

20:0 0,40 

 

1,70 

 

1,37 

Σ SFA 112,29 

 

292,39 

 

255,31 

16:1n-7 17,17 

 

10,95 

 

9,98 

18:1n-7 1,53 

 

15,84 

 

13,52 

18:1n-9 15,54 

 

243,82 

 

208,42 

20:1n-9 24,01 

 

4,74 

 

5,64 

20:1n-11 3,90 

 

nd 

 

nd 

22:1n-9 2,63 

 

nd 

 

nd 

22:1n-11 43,33 

 

nd 

 

2,20 

24:1n-9 2,81 

 

nd 

 

nd 

Σ MUFA 110,92 

 

275,36 

 

239,76 

18:2n-6 6,64 

 

133,04 

 

116,06 

18:3n-3 13,72 

 

12,49 

 

11,67 

18:4n-3 69,58 

 

nd 

 

4,54 

20:2n-6 0,71 

 

3,15 

 

2,69 

20:4n-6 1,39 

 

0,48 

 

1,15 

20:5n-3 54,73 

 

nd 

 

3,35 

22:5n-3 2,96 

 

nd 

 

nd 

22:6n-3 39,35 

 

nd 

 

2,81 

Σ PUFA 189,08 

 

149,16 

 

142,27 

Σ n-6 8,74 

 

136,67 

 

119,90 

Σ n-3 180,34 

 

12,49 

 

22,37 

Σ n-6/n-3 0,05 

 

10,94 

 

5,36 

Σ Fatty acids 412,29  716,91  637,34 

      

Fatty alcohols Calanus
®
 Oil High fat diet High fat diet + Cal 

14:0  4,50  nd  nd 

16:1n-7 5,80  nd  nd 

18:1n-9 10,40  nd  nd 

20:1n-9 128,80  nd  9,65 

22:1n-9 10,40  nd  nd 

22:1n-11 188,10  nd  9,93 

Σ Fatty alcohols 348,00  -  19,58 
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the argument that high-fat feeding may increase cholesterol synthesis in mice, whereas the 

enrichment of n-3 LC-PUFA to HFD has shown to reduce the rate of cholesterol synthesis 

(Oosterveer et al., 2009). Neutral lipid classes such as TAG and wax ester/cholesteryl ester 

(WE/CE) could also be detected in the feces from both diet groups, unfortunately, it was not 

possible to quantify WE separately from CE. In evaluating the results it should be 

remembered that the fecal lipids will include a fraction of the secreted bile lipids as well as 

bacterial lipids, and lipids from excreted intestinal cells.  Thus, it is likely to assume that the 

presence of cardiolipid (CL), cholesterol and, at least in part, WE/CE in the feces were of 

endogenous origin. Fatty alcohols were present in the feces lipids from the HFD+Cal group, 

but were not detected in the HFD group (Table 7). The analysis of fatty alcohol composition 

presented in paper III showed that 20:1n-9 and 22:1n-11 was the major fatty alcohols in the 

feces from the HFD+Cal fed mice. The relative amount of free fatty alcohols and FFA in the 

feces suggests that the absorption process may be the limiting step when fed a high fat diet. 

 

The fatty acid composition of adipose tissue has been considered a gold standard for 

the representation of dietary fatty acids, due to the slow turnover time in (weight stable) 

individuals (Hodson et al., 2008). Therefore, within the limitations of this study, the 

compositional data of the adipose tissues was a valuable tool for assessing the absorption of 

Calanus
®
 Oil. Phospholipids are the major class of lipids in animal membranes and small 

lipoproteins. The majority of PL synthesis occurs in the endoplasmic reticulum of the liver,  

Table 7. Lipid class composition (mg/g lipid) of Calanus
®
 Oil, diets and feces.  

 

Calanus
®
 Oil   Diet   Feces 

      HF  HF + Cal   HFD HFD + Cal 

WE/ CE* 857,70 

 

nd 63,06 

 

33,59 53,93 

TAG 16,96 

 

970,33 936,04 

 

105,95 42,88 

FAOH nd 

 

nd nd 

 

nd 126,90 

C 41,91 

 

nd nd 

 

240,36 115,65 

FFA 16,59 

 

nd nd 

 

223,79 332,55 

CL  nd 

 

nd nd 

 

19,42 18,02 

PC nd 

 

nd nd 

 

24,61 nd 

∑ lipid class 933,16   970,33 999,10   647,72 689,92 
nd: not detected, WE: wax ester, CE: cholesteryl ester, TAG: triacylglycerol, FAOH: fatty alcohol, C (sterols, cholesterol), FFA: 

free fatty acids, CL: cardiolipid, PC: phophatidylcholine. * WE and CE coelute. 
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where PL associates with other lipids and proteins as lipoproteins released into the 

bloodstream. Hence, the fatty acid composition of the liver lipids from the diet groups was 

important information to obtain in this study. The fatty acid composition of the adipose tissues 

(pWat and eWat) and liver lipids reflected to a large extent the enrichment of HFD with 

Calanus
®
 Oil (Table 8). The content of the n-3 fatty acids in pWat and eWat was generally 

related, with the exception of EPA in pWat, to the amount present in the feed. Probably, some 

elongation and desaturation have occurred, resulting in the presence of docosapentaenoic acid 

(DPA) and an increased amount of DHA compared to the fatty acid composition in the 

HFD+Cal feed. It was also noted that the amount of the more pro-inflammatory AA (20:4n-6) 

was lower in the liver tissue, and significantly reduced in the adipose tissues of the mice fed 

HFD+Cal. This may be due to the competition in interconversion of C18 n-6 and n-3 fatty 

acids to the longer chain acids.  

The results in our study demonstrated a significantly higher content of the C16-18 

monounsaturated fatty acids in the liver lipids from the HFD mice, compared to the HFD+Cal 

group. Oosterveer et al. (2009) showed that high-fat feeding induced hepatic fatty acid 

synthesis and chain elongation in mice, and led to an increase of medium chain 

monounsaturated fatty acids in the liver lipids. This was shown to be efficiently counteracted 

by the inclusion of fish oil in the high fat diet. The effect was explained by an adaptive 

remodelling of the hepatic fatty acids in the HFD + fish oil fed mice, in contrast to de novo 

fatty acid synthesis and elongation in the high-fat fed mice. The analysis of the liver lipids 

showed a pronounced elongation and desaturation of the C18 n-3 fatty acids from the feed and 

accumulation of the longer chain n-3 fatty acids. A significant higher amount of EPA, DPA 

and DHA were found in the livers of the HFD+Cal fed mice, and probably not only reflecting 

the content of these fatty acids in the feed, but also the conversion of dietary SDA to EPA 

(James et al., 2003; Arterburn et al., 2006).  Most of the n-3 fatty acids in Calanus
®
 Oil are 

esterified to long chain alcohols, and the results demonstrate that the wax esters provided in 

the feed were hydrolysed and the fatty acids absorbed, reesterified and transported to the 

tissues examined. 
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6. CONCLUSIONS  
 

The role of wax esters in the marine food web is considerable, as zooplankton is the major 

step between phytoplankton and the higher consumers. It has been claimed that because of 

this step, that nearly half of the earth’s photosynthetic production is for a time converted to 

wax esters. Calanus finmarchicus is a zooplankton which can be harvested with modern 

technology and processed to astaxanthin-rich oil.  

  As elucidated in paper I the oil extracted from Calanus finmarchicus has an important 

feature distinguishing it from other marine oils; it contains mainly wax esters, consisting of 

equal portions of fatty acids and fatty alcohols. The oil may be used as an alternative lipid 

source to fish oil in feeds for aquaculture, leading to good growth and efficient nutrient 

utilization. Moreover, Calanus
®
 Oil can be used as a health promoting nutraceutical, as the oil 

provides the highly sought after EPA and DHA, and additionally the n-3 fatty acid SDA. The 

Global Organisation for EPA and DHA n-3s (GOED) has recognized oil from Calanus 

finmarchicus as a so-called third generation n-3 product, that is new sources or n-3 

formulations with high potential market opportunity. Additionally, in paper I, the oxidative 

stability of the oil was investigated. The long term storage of Calanus
®
 Oil indicated an 

overall high stability of both astaxanthin and LC-PUFA content when stored at optimal 

conditions, that is, at low temperature and inert atmosphere. 

The results in paper II showed that including an enzyme hydrolysis step to 

conventional oil processing greatly improved oil recovery compared to thermal treatment as a 

control. Analysis of the lipids obtained through traditional oil production was in line with that 

reported of biological studies, that oil extracted from Calanus finmarchicus has a high content 

of wax esters and the fatty acid moiety contributes with a high amount of medium and long 

chain n-3 fatty acids. The fatty acid composition of the free fatty acid-fraction of the oil 

produced, revealed a close similarity to that reported of phospholipids from C. finmarchicus. 

The content of FFA in the oil was probably a result of high phospholipase activity in the raw 

material.  

The study presented in paper III demonstrates that wax esters are far from 

metabolically inert. When feeding mice a high fat diet supplemented with a small amount 

(2%) of Calanus
®
 Oil, the wax esters were hydrolysed during digestion and the fatty acids 

influenced the lipid profile of the animals. The medium chain n-3 fatty acids present in 
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Calanus
®
 Oil, were efficiently absorbed and metabolized further to long chain n-3 fatty acids 

in the liver. The study confirmed that feeding mice a high fat diet supplemented with a small 

amount of wax esters reduced the body weight gain. Elevated levels of free fatty acids and 

alcohols in the feces suggest that the absorption process, not the hydrolysis, could be a rate 

limiting step in utilizing small amounts of wax esters included in high fat diet to mice.  

 

7. FUTURE PERSPECTIVES 

 

On the basis of existing literature and the results obtained throughout these studies, there are 

several aspects which should be further investigated.  

To elucidate the mechanisms of the beneficial health effects of the supplementation of 

Calanus
®
 Oil, as reported from biomedical studies. Additionally, a more thorough explanation 

of the fate of the dietary wax esters, herein to study the possible differential utilization of 

lipids assimilated through the MAG- or G3P-pathway from the enterocytes, and the “hot 

topic” of GPR 120 activation by long chain fatty acids in the distal part of the small intestine. 

 During the production of Calanus
®
 Oil, two side streams are obtained; a protein 

hydrolysate and a sludge (press cake). These need to be further characterized to help the 

commercialization process.        
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