Show simple item record

dc.contributor.advisorBoström, Tobias
dc.contributor.authorHågbo, Trond-Ola
dc.date.accessioned2017-10-05T06:33:34Z
dc.date.available2017-10-05T06:33:34Z
dc.date.issued2017-06-01
dc.description.abstractMaking energy clean, reliable and readily available is essential for fighting climate change and to supply an ever-rising global power demand. The aim of the study is to identify optimal locations for a wind turbine to be joined to a small-scale hybrid system at the main campus of UiT – The Arctic University of Norway. To identify feasible areas for maximizing electric power production, techniques originating from two quite different disciplines are utilized: Geographical Information System and Computational Fluid Dynamics. Local weather data and detailed 3D-models are used as inputs to the wind simulations. Two optimal wind turbine locations are proposed with the following UTM-33N coordinates: (654053 – 7735418) at Realfagsbygget and (653410 - 7736185) at Grønnåsen. To further study the power production capability at Grønnåsen wind sensors were installed in the Avinor mast, 200 m east of the suggested optimal location. Here the average wind speed and power density at 21 m above ground level was calculated to be 4.22 m/s and 135.4 W/m^2 corresponding to the period of mid-February to mid-May 2017. For both the suggested optimal locations of a wind turbine, more weather data is necessary to accurately estimate the annual wind speed and power density averages.en_US
dc.identifier.urihttps://hdl.handle.net/10037/11620
dc.language.isoengen_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2017 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)en_US
dc.subject.courseIDEOM-3901
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430en_US
dc.subjectVDP::Mathematics and natural science: 400::Physics: 430en_US
dc.subjectVDP::Teknologi: 500::Miljøteknologi: 610en_US
dc.subjectVDP::Technology: 500::Environmental engineering: 610en_US
dc.subjectRenewable energyen_US
dc.subjectWind turbineen_US
dc.subjectComputational fluid dynamicsen_US
dc.subjectGeographical information systemen_US
dc.titleOptimization of wind turbine location in urban environmenten_US
dc.typeMaster thesisen_US
dc.typeMastergradsoppgaveen_US


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)