Vis enkel innførsel

dc.contributor.advisorEltoft, Torbjørn
dc.contributor.advisorDoulgeris, Anthony Paul
dc.contributor.authorKvamme, Arja Beate
dc.date.accessioned2018-01-08T15:25:12Z
dc.date.available2018-01-08T15:25:12Z
dc.date.issued2017-08-18
dc.description.abstractIn integrated remote sensing, one of the objectives is to create reliable services by combining information from various data sources. The combination of multiple data sources is often denoted "data fusion", and is a topic that has high interest in remote sensing applications. In this thesis, we devise a classification strategy for multi-sensor remote sensing data, based on the strategy presented in the paper "On the Combination of Multisensor Data Using Meta- Gaussian Distributions" \cite{storvik}. The classification method uses data fusion through a transformation of variables into a multivariate Meta-Gaussian distribution, and correct assumptions or estimates of the marginal probability density functions is an important key in this transform. We found that using general parametric probability density functions, or kernel estimates were valid in a supervised classification setting, with no need to specify individual marginals based on the true underlying distribution. Further, we found that classification based on the Meta-Gaussian function, using transformed variables, surpassed that of a standard multivariate Gaussian function. Unsupervised classification based on the same strategy was implemented in a generalized mixture decomposition algorithmic scheme framework. Current results are positive, and indicate that this method has potential when it comes to combining multi-sensor remote sensing data.en_US
dc.identifier.urihttps://hdl.handle.net/10037/11924
dc.language.isoengen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.rights.holderCopyright 2017 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)en_US
dc.subject.courseIDFYS-3941
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Anvendt matematikk: 413en_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Applied mathematics: 413en_US
dc.subjectMeta-Gaussianen_US
dc.subjectClassificationen_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420::Simulering, visualisering, signalbehandling, bildeanalyse: 429en_US
dc.subjectVDP::Mathematics and natural science: 400::Information and communication science: 420::Simulation, visualization, signal processing, image processing: 429en_US
dc.subjectMulti-Sensoren_US
dc.subjectData Fusionen_US
dc.subjectRemote Sensingen_US
dc.titleA Classification Strategy for Multi-Sensor Remote Sensing Data. An analysis and implementation of Meta-Gaussian classification schemesen_US
dc.typeMaster thesisen_US
dc.typeMastergradsoppgaveen_US


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)