Show simple item record

dc.contributor.advisorEltoft, Torbjørn
dc.contributor.advisorGraversen, Rune
dc.contributor.advisorSaper, Ronald
dc.contributor.advisorDagestad, Knut-Frode
dc.contributor.authorBaadshaug, Ole
dc.date.accessioned2018-08-31T08:57:52Z
dc.date.available2018-08-31T08:57:52Z
dc.date.issued2018-06-29
dc.description.abstractMoving icebergs represent a major problem for shipping, as well as for oil and gas installations in ice infested waters. To be able to take actions against hazardous icebergs, it is necessary to develop models for prediction of iceberg drift trajectories. Many models have been developed in order to do so, using different approaches. These approaches can be divided into two main categories, dynamic models and statistical models. The main difference between the approaches is that dynamic models forecast drift relying on the Newtonian equations utilizing forcing data, while the statistical models are based on an optimum statistical prediction using prior velocities to forecast the drift. This thesis will present the general physical and statistical theory iceberg drift models rely upon, and review a selection of different iceberg models. The main goal of this thesis is to evaluate the forecasting capabilities of two different iceberg drift models, implemented in a software module called OpenBerg. A model making accurate drift predictions could be utilized both operationally, and for research purposes. One of the models is a deterministic model, relying on dynamic equations. The other is a hybrid model which utilizes dynamic forecasting of components considered predictable (such as winds and tides), while modelling the residual component using statistical methods. To evaluate the software module, sensitivity studies were utilized to determine the effect of certain parameter choices. An ensemble analysis was performed on a selected track section, and the results were used to create confidence bounds for the predictions.en_US
dc.identifier.urihttps://hdl.handle.net/10037/13617
dc.language.isoengen_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.rights.holderCopyright 2018 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)en_US
dc.subject.courseIDEOM-3901
dc.subjectVDP::Mathematics and natural science: 400::Geosciences: 450::Oceanography: 452en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Oseanografi: 452en_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Statistikk: 412en_US
dc.subjectVDP::Mathematics and natural science: 400::Information and communication science: 420::Mathematical modeling and numerical methods: 427en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420::Matematisk modellering og numeriske metoder: 427en_US
dc.subjectVDP::Mathematics and natural science: 400::Information and communication science: 420::Simulation, visualization, signal processing, image processing: 429en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420::Simulering, visualisering, signalbehandling, bildeanalyse: 429en_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Analysis: 411en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Analyse: 411en_US
dc.subjectVDP::Mathematics and natural science: 400::Geosciences: 450en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Geofag: 450en_US
dc.titleIceberg Drift-Trajectory Modelling and Probability Distributions of the Predictionsen_US
dc.typeMaster thesisen_US
dc.typeMastergradsoppgaveen_US


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)