Vis enkel innførsel

dc.contributor.authorPogorelov, Konstantin
dc.contributor.authorOstroukhova, Olga
dc.contributor.authorJeppsson, Mattis
dc.contributor.authorEspeland, Håvard
dc.contributor.authorGriwodz, Carsten
dc.contributor.authorde Lange, Thomas
dc.contributor.authorRiegler, Michael
dc.contributor.authorHalvorsen, Pål
dc.date.accessioned2019-02-06T09:13:34Z
dc.date.available2019-02-06T09:13:34Z
dc.date.issued2018-07-23
dc.description.abstractVideo analysis including classification, segmentation or tagging is one of the most challenging but also interesting topics multimedia research currently try to tackle. This is often related to videos from surveillance cameras or social media. In the last years, also medical institutions produce more and more video and image content. Some areas of medical image analysis, like radiology or brain scans, are well covered, but there is a much broader potential of medical multimedia content analysis. For example, in colonoscopy, 20% of polyps are missed or incompletely removed on average. Thus, automatic detection to support medical experts can be useful. In this paper, we present and evaluate several machine learning-based approaches for real-time polyp detection for live colonoscopy. We propose pixel-wise localization and frame-wise detection methods which include both handcrafted and deep learning based approaches. The experimental results demonstrate the capability of analyzing multimedia content in real clinical settings, the possible improvements in the work flow and the potential improved detection rates for medical experts.en_US
dc.descriptionSource at <a href=https://doi.org/10.1109/CBMS.2018.00073>https://doi.org/10.1109/CBMS.2018.00073</a>en_US
dc.identifier.citationPogorelov, K., Ostroukhova, O., Jeppsson, M., Espeland, H., Griwodz, C., de Lange, T., ... Halvorsen, P. (2018). Deep learning and hand-crafted feature based approaches for polyp detection in medical videos. <i>IEEE International Symposium on Computer-Based Medical Systems, 2018</i>, 381-386. https://doi.org/10.1109/CBMS.2018.00073en_US
dc.identifier.cristinIDFRIDAID 1609349
dc.identifier.doi10.1109/CBMS.2018.00073
dc.identifier.issn2372-9198
dc.identifier.urihttps://hdl.handle.net/10037/14626
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.journalIEEE International Symposium on Computer-Based Medical Systems
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Medical disciplines: 700::Clinical medical disciplines: 750::Radiology and diagnostic imaging: 763en_US
dc.subjectVDP::Medisinske Fag: 700::Klinisk medisinske fag: 750::Radiologi og bildediagnostikk: 763en_US
dc.subjectVDP::Medical disciplines: 700::Clinical medical disciplines: 750::Gastroenterology: 773en_US
dc.subjectVDP::Medisinske Fag: 700::Klinisk medisinske fag: 750::Gasteroenterologi: 773en_US
dc.subjectBiomedical imagingen_US
dc.subjectMachine learningen_US
dc.subjectFeature extractionen_US
dc.subjectImage segmentationen_US
dc.subjectTrainingen_US
dc.subjectCanceren_US
dc.subjectGallium nitrideen_US
dc.subjectMedical video analysisen_US
dc.subjectDeep learningen_US
dc.subjectPerformanceen_US
dc.subjectImage featuresen_US
dc.titleDeep learning and hand-crafted feature based approaches for polyp detection in medical videosen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel