Show simple item record

dc.contributor.advisorBianchi, Filippo Maria
dc.contributor.advisorAnfinsen, Stian Normann
dc.contributor.authorHansen, Jonas Berg
dc.date.accessioned2021-09-15T14:38:51Z
dc.date.available2021-09-15T14:38:51Z
dc.date.issued2021-06-01en
dc.description.abstractPower flow analysis is an important tool in power engineering for planning and operating power systems. The standard power flow problem consists of a set of non-linear equations, which are traditionally solved using numerical optimization techniques, such as the Newton-Raphson method. However, these methods can become computationally expensive for larger systems, and convergence to the global optimum is usually not guaranteed. In recent years, several methods using Graph Neural Networks (GNNs) have been proposed to speed up the computation of the power flow solutions, without making large sacrifices in terms of accuracy. This class of models can learn localized features that are independent from a global graph structure. Therefore, by representing power systems as graphs these methods can, in principle, generalize to systems of different size and topology. However, most of the current approaches have only been applied to systems with a fixed topology and none of them were trained simultaneously on systems of different topology. Hence, these models are not fully shown to generalize to widely different systems or even to small perturbations of a given system. In this thesis, several supervised GNN models are proposed to solve the power flow problem, using established GNN blocks from the literature. These GNNs are trained on a set of different tasks, where the goal is to study the generalizability to both perturbations and completely different systems, as well as comparing performance to standard Multi-Layered Perceptron (MLP) models. The experimental results show that the GNNs are comparatively successful at generalizing to widely different topologies seen during training, but do not manage to generalize to unseen topologies and are not able to outperform an MLP on slight perturbations of the same energy system. The study presented in this thesis allowed to draw important insights about the applicability of GNN as power flow solvers. In the conclusion, several possible ways for improving the GNN-based solvers are discussed.en_US
dc.identifier.urihttps://hdl.handle.net/10037/22551
dc.language.isoengen_US
dc.publisherUiT Norges arktiske universitetno
dc.publisherUiT The Arctic University of Norwayen
dc.rights.holderCopyright 2021 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)en_US
dc.subject.courseIDSTA-3941
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Anvendt matematikk: 413en_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Applied mathematics: 413en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Statistikk: 412en_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412en_US
dc.subjectMachine Learningen_US
dc.subjectDeep Learningen_US
dc.subjectEnergy Analyticsen_US
dc.subjectGraph Neural Networken_US
dc.subjectPower Systemen_US
dc.subjectNumerical Optimizationen_US
dc.titlePower Flow Optimization with Graph Neural Networksen_US
dc.typeMastergradsoppgavenor
dc.typeMaster thesiseng


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)