Show simple item record

dc.contributor.authorPototschnig, Johann V.
dc.contributor.authorPapadopoulos, Anastasios
dc.contributor.authorLyakh, Dmitry I.
dc.contributor.authorRepisky, Michal
dc.contributor.authorHalbert, Loïc
dc.contributor.authorGomes, Andre Severo Pereira
dc.contributor.authorJensen, Hans Jørgen Aa.
dc.contributor.authorVisscher, Lucas
dc.date.accessioned2022-02-14T10:04:36Z
dc.date.available2022-02-14T10:04:36Z
dc.date.issued2021-08-09
dc.description.abstractIn this paper, we report reimplementation of the core algorithms of relativistic coupled cluster theory aimed at modern heterogeneous high-performance computational infrastructures. The code is designed for parallel execution on many compute nodes with optional GPU coprocessing, accomplished via the new ExaTENSOR back end. The resulting ExaCorr module is primarily intended for calculations of molecules with one or more heavy elements, as relativistic effects on the electronic structure are included from the outset. In the current work, we thereby focus on exact two-component methods and demonstrate the accuracy and performance of the software. The module can be used as a stand-alone program requiring a set of molecular orbital coefficients as the starting point, but it is also interfaced to the DIRAC program that can be used to generate these. We therefore also briefly discuss an improvement of the parallel computing aspects of the relativistic self-consistent field algorithm of the DIRAC program.en_US
dc.identifier.citationPototschnig, Papadopoulos A, Lyakh, Repisky M, Halbert L, Gomes ASP, Jensen HJA, Visscher L. Implementation of Relativistic Coupled Cluster Theory for Massively Parallel GPU-Accelerated Computing Architectures. Journal of Chemical Theory and Computation. 2021;17:5509-5529en_US
dc.identifier.cristinIDFRIDAID 2001010
dc.identifier.doi10.1021/acs.jctc.1c00260
dc.identifier.issn1549-9618
dc.identifier.issn1549-9626
dc.identifier.urihttps://hdl.handle.net/10037/24036
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.journalJournal of Chemical Theory and Computation
dc.relation.projectIDNorges forskningsråd: 262695en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/SFF/262695/Norway/Hylleraas Centre for Quantum Molecular Sciences//en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
dc.titleImplementation of Relativistic Coupled Cluster Theory for Massively Parallel GPU-Accelerated Computing Architecturesen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record