Show simple item record

dc.contributor.authorSingh, Harpal
dc.contributor.authorPersson, Lars-Erik
dc.contributor.authorAkishev, Gabdolla
dc.date.accessioned2022-03-08T11:59:10Z
dc.date.available2022-03-08T11:59:10Z
dc.date.issued2021-09-16
dc.description.abstractWe consider the generalized Lorentz space L_ψ,q defined via a continuous and concave function ψ and the Fourier series of a function with respect to an unbounded orthonormal system. Some new Fourier and Jackson-Nikol’skii type inequalities in this frame are stated, proved and discussed. In particular, the derived results generalize and unify several well-known results but also some new applications are pointed out.en_US
dc.identifier.citationSingh H, Persson LE, Akishev G. Some New Fourier and Jackson–Nikol’skii Type Inequalities in Unbounded Orthonormal Systems. Constructive Mathematical Analysis. 2021;4(3):291-304en_US
dc.identifier.cristinIDFRIDAID 2007548
dc.identifier.doihttps://doi.org/10.33205/cma.910173
dc.identifier.issn2651-2939
dc.identifier.urihttps://hdl.handle.net/10037/24325
dc.language.isoengen_US
dc.publisherConstructive Mathematical Analysisen_US
dc.relation.journalConstructive Mathematical Analysis
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
dc.titleSome New Fourier and Jackson–Nikol’skii Type Inequalities in Unbounded Orthonormal Systemsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record