Show simple item record

dc.contributor.authorKruglikov, Boris
dc.contributor.authorSteneker, Wijnand Sebastiaan
dc.date.accessioned2023-03-13T12:15:14Z
dc.date.available2023-03-13T12:15:14Z
dc.date.issued2022-11-03
dc.description.abstractThe Koutras–McIntosh family of metrics include conformally flat pp-waves and the Wils metric. It appeared in a paper of 1996 by Koutras–McIntosh as an example of a pure radiation spacetime without scalar curvature invariants or infinitesimal symmetries. Here we demonstrate that these metrics have no 'hidden symmetries', by which we mean Killing tensors of low degrees. For the particular case of Wils metrics we show the nonexistence of Killing tensors up to degree 6. The technique we use is the geometric theory of overdetermined PDEs and the Cartan prolongation–projection method. Application of those allows to prove the nonexistence of polynomial in momenta integrals for the equation of geodesics in a mathematical rigorous way. Using the same technique we can completely classify all lower degree Killing tensors and, in particular, prove that for generic conformally flat pp-waves all Killing tensors of degree 3 and 4 are reducible.en_US
dc.identifier.citationKruglikov, Steneker. Killing tensors in Koutras-McIntosh spacetimes. Classical and Quantum Gravity. 2022;39(22)en_US
dc.identifier.cristinIDFRIDAID 2082851
dc.identifier.doi10.1088/1361-6382/ac9509
dc.identifier.issn0264-9381
dc.identifier.issn1361-6382
dc.identifier.urihttps://hdl.handle.net/10037/28721
dc.language.isoengen_US
dc.publisherIOP Publishingen_US
dc.relation.journalClassical and Quantum Gravity
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleKilling tensors in Koutras-McIntosh spacetimesen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)