dc.contributor.author | Choi, Changkyu | |
dc.contributor.author | Kampffmeyer, Michael | |
dc.contributor.author | Jenssen, Robert | |
dc.contributor.author | Handegard, Nils Olav | |
dc.contributor.author | Salberg, Arnt-Børre | |
dc.date.accessioned | 2023-04-17T12:33:49Z | |
dc.date.available | 2023-04-17T12:33:49Z | |
dc.date.issued | 2023-02-01 | |
dc.description.abstract | Multi-frequency echosounder data can provide a broad understanding of the underwater environment in a non-invasive manner. The analysis of echosounder data is, hence, a topic of great importance for the marine ecosystem. Semantic segmentation, a deep learning based analysis method predicting the class attribute of each acoustic intensity, has recently been in the spotlight of the fisheries and aquatic industry since its result can be used to estimate the abundance of the marine organisms. However, a fundamental problem with current methods is the massive reliance on the availability of large amounts of annotated training data, which can only be acquired through expensive handcrafted annotation processes, making such approaches unrealistic in practice. As a solution to this challenge, we propose a novel approach, where we leverage a small amount of annotated data (supervised deep learning) and a large amount of readily available unannotated data (unsupervised learning), yielding a new data-efficient and accurate semi-supervised semantic segmentation method, all embodied into a single end-to-end trainable convolutional neural networks architecture. Our method is evaluated on representative data from a sandeel survey in the North Sea conducted by the Norwegian Institute of Marine Research. The rigorous experiments validate that our method achieves comparable results utilizing only 40 percent of the annotated data on which the supervised method is trained, by leveraging unannotated data. The code is available at https://github.com/SFI-Visual-Intelligence/PredKlus-semisup-segmentation. | en_US |
dc.identifier.citation | Choi, Kampffmeyer, Jenssen, Handegard, Salberg. Deep Semi-Supervised Semantic Segmentation in Multi-Frequency Echosounder Data. IEEE Journal of Oceanic Engineering. 2023 | en_US |
dc.identifier.cristinID | FRIDAID 2121874 | |
dc.identifier.doi | 10.1109/JOE.2022.3226214 | |
dc.identifier.issn | 0364-9059 | |
dc.identifier.issn | 1558-1691 | |
dc.identifier.uri | https://hdl.handle.net/10037/29001 | |
dc.language.iso | eng | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | Choi, C. (2023). Advancing Deep Learning for Marine Environment Monitoring. (Doctoral thesis). <a href=https://hdl.handle.net/10037/29267>https://hdl.handle.net/10037/29267</a>. | |
dc.relation.journal | IEEE Journal of Oceanic Engineering | |
dc.relation.projectID | Norges forskningsråd: 270966 | en_US |
dc.relation.projectID | Norges forskningsråd: 309439 | en_US |
dc.relation.projectID | Norges forskningsråd: 309512 | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2023 The Author(s) | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | en_US |
dc.rights | Attribution 4.0 International (CC BY 4.0) | en_US |
dc.subject | VDP::Matematikk og naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420::Algoritmer og beregnbarhetsteori: 422 | en_US |
dc.subject | VDP::Mathematics and natural scienses: 400::Information and communication science: 420::Algorithms and computability theory: 422 | en_US |
dc.subject | VDP::Landbruks- og fiskerifag: 900::Fiskerifag: 920 | en_US |
dc.subject | VDP::Agriculture and fisheries science: 900::Fisheries science: 920 | en_US |
dc.subject | VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550 | en_US |
dc.subject | VDP::Technology: 500::Information and communication technology: 550 | en_US |
dc.subject | VDP::Teknologi: 500::Marin teknologi: 580 | en_US |
dc.subject | VDP::Technology: 500::Marine technology: 580 | en_US |
dc.subject | VDP::Matematikk og naturvitenskap: 400::Matematikk: 410::Statistikk: 412 | en_US |
dc.subject | VDP::Mathematics and natural scienses: 400::Mathematics: 410::Statistics: 412 | en_US |
dc.subject | Artificial Neural Networks / Artificial Neural Networks | en_US |
dc.subject | Datasyn / Computer Vision | en_US |
dc.subject | Deep learning / Deep learning | en_US |
dc.subject | Marine acoustic data analysis / Marine acoustic data analysis | en_US |
dc.subject | Marinteknologi / Marine Technology | en_US |
dc.subject | Nevrale nettverk / Neural networks | en_US |
dc.subject | Semi-supervised deep learning / Semi-supervised deep learning | en_US |
dc.title | Deep Semi-Supervised Semantic Segmentation in Multi-Frequency Echosounder Data | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |