Show simple item record

dc.contributor.advisorSharma, Puneet
dc.contributor.authorDomben, Erik Seip
dc.date.accessioned2023-05-30T07:21:47Z
dc.date.available2023-05-30T07:21:47Z
dc.date.issued2023-04-26
dc.description.abstractPolar Mesospheric Summer Echoes (PMSE) are strong coherent radar echoes that occur in the 80 to 90 km altitude range of the mesosphere during the Arctic summer months. These echoes are of significant interest to the space physics community as they provide insight into changes that occur in the atmosphere. To better understand these changes, large datasets of PMSE echoes need to be analysed. In this study, we aimed to develop a deep learning model that could segment PMSE signal data for analysis on larger EISCAT VHF datasets. For the task, we employed a UNet and a UNet++ architecture and tested how pretrained weights from other source domains perform. Next, different loss functions were tested and last the novel object-level augmentation method ObjectAug was employed with other image-level augmentation methods to increase model performance and reduce potential overfitting due to a small training dataset. The results indicate that using randomly initialized weights was the better option for the PMSE target domain and that the use of different loss functions only had a small impact on model performance. When using image- and object-level augmentation the best performing model was reached. It was also seen that there exist inconsistencies in the PMSE signal groundtruth labels. Dividing the inconsistencies into two categories: Granular and Coarse, it was seen that using object-level augmentation had a significantly higher performance on the Granular labelled PMSE signal samples. Overall, our study indicates that the best performing model can be used to segment PMSE for larger datasets or as a supportive tool for further labelling of PMSE signal data.en_US
dc.identifier.urihttps://hdl.handle.net/10037/29272
dc.language.isoengen_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)en_US
dc.subject.courseIDTEK-3901
dc.subjectVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Datateknologi: 551en_US
dc.subjectVDP::Technology: 500::Information and communication technology: 550::Computer technology: 551en_US
dc.titleSegmentation of Polar Mesospheric Summer Echoes using Fully Convolutional Networken_US
dc.typeMaster thesisen_US
dc.typeMastergradsoppgaveen_US


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)