Vis enkel innførsel

dc.contributor.authorColey, Alan
dc.contributor.authorLandry, Alexandre
dc.contributor.authorvan den Hoogen, Robert
dc.contributor.authorMcNutt, David Duncan
dc.date.accessioned2023-11-14T07:24:56Z
dc.date.available2023-11-14T07:24:56Z
dc.date.issued2023-10-30
dc.description.abstractTheories of gravity based on teleparallel geometries are characterized by the torsion, which is a function of the coframe, derivatives of the coframe, and a zero curvature and metric compatible spin-connection. The appropriate notion of a symmetry in a teleparallel geometry is that of an affine symmetry. Due to the importance of the de Sitter geometry and Einstein spaces within General Relativity, we shall describe teleparallel de Sitter geometries and discuss their possible generalizations. In particular, we shall analyse a class of Einstein teleparallel geometries which have a 4- dimensional Lie algebra of affine symmetries, and display two one-parameter families of explicit exact solutions.en_US
dc.identifier.citationColey A, Landry, van den Hoogen R, McNutt DD. Generalized Teleparallel de Sitter geometries. European Physical Journal C. 2023;83(977)en_US
dc.identifier.cristinIDFRIDAID 2166431
dc.identifier.doi10.1140/epjc/s10052-023-12150-1
dc.identifier.issn1434-6044
dc.identifier.issn1434-6052
dc.identifier.urihttps://hdl.handle.net/10037/31737
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.relation.journalEuropean Physical Journal C
dc.relation.urihttps://arxiv.org/abs/2307.12930
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleGeneralized Teleparallel de Sitter geometriesen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)