Vis enkel innførsel

dc.contributor.authorAngel, Tejedor H Miguel
dc.contributor.authorHjerde, Sigurd
dc.contributor.authorMyhre, Jonas Nordhaug
dc.contributor.authorGodtliebsen, Fred
dc.date.accessioned2023-12-04T08:21:59Z
dc.date.available2023-12-04T08:21:59Z
dc.date.issued2023-10-07
dc.description.abstractPatients with type 1 diabetes must continually decide how much insulin to inject before each meal to maintain blood glucose levels within a healthy range. Recent research has worked on a solution for this burden, showing the potential of reinforcement learning as an emerging approach for the task of controlling blood glucose levels. In this paper, we test and evaluate several deep Q-learning algorithms for automated and personalized blood glucose regulation in an in silico type 1 diabetes patient with the goal of estimating and delivering proper insulin doses. The proposed algorithms are model-free approaches with no prior information about the patient. We used the Hovorka model with meal variation and carbohydrate counting errors to simulate the patient included in this work. Our experiments compare different deep Q-learning extensions showing promising results controlling blood glucose levels, with some of the proposed algorithms outperforming standard baseline treatment.en_US
dc.identifier.citationAngel, Hjerde S, Myhre, Godtliebsen. Evaluating Deep Q-Learning Algorithms for Controlling Blood Glucose in In Silico Type 1 Diabetes. Diagnostics (Basel). 2023;13(19)en_US
dc.identifier.cristinIDFRIDAID 2182860
dc.identifier.doi10.3390/diagnostics13193150
dc.identifier.issn2075-4418
dc.identifier.urihttps://hdl.handle.net/10037/31914
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.journalDiagnostics (Basel)
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.subjectVDP::Medisinske fag: 700::Klinisk medisinske fag: 750en_US
dc.subjectVDP::Midical sciences: 700::Clinical medical sciences: 750en_US
dc.subjectDeep learning / Deep learningen_US
dc.subjectKunstig bukspyttkjertel / Artificial Pancreasen_US
dc.subjectType 1 diabetes / Type 1 diabetesen_US
dc.titleEvaluating Deep Q-Learning Algorithms for Controlling Blood Glucose in In Silico Type 1 Diabetesen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)