dc.contributor.author | Nordli, Anders Samuelsen | |
dc.contributor.author | Aursand, Peder Kristian | |
dc.date.accessioned | 2023-12-12T12:30:58Z | |
dc.date.available | 2023-12-12T12:30:58Z | |
dc.date.issued | 2023-11-14 | |
dc.description.abstract | We derive a novel two-component generalization of the nonlinear variational wave equation as a model for the director field of a nematic liquid crystal with a variable order parameter. The equation admits classical solutions locally in time. We prove that a special semilinear case is globally well-posed. We show that a particular long time asymptotic expansion around a constant state in a moving frame satisfies the two-component Hunter–Saxton system. | en_US |
dc.identifier.citation | Nordli, Aursand. A two-component nonlinear variational wave system. Journal of Hyperbolic Differential Equations. 2023 | en_US |
dc.identifier.cristinID | FRIDAID 2197967 | |
dc.identifier.doi | 10.1142/S0219891623500182 | |
dc.identifier.issn | 0219-8916 | |
dc.identifier.uri | https://hdl.handle.net/10037/32022 | |
dc.language.iso | eng | en_US |
dc.publisher | World Scientific Publishing | en_US |
dc.relation.journal | Journal of Hyperbolic Differential Equations | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2023 The Author(s) | en_US |
dc.title | A two-component nonlinear variational wave system | en_US |
dc.type.version | acceptedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |