Show simple item record

dc.contributor.authorCastillo, Federico
dc.contributor.authorCid-Ruiz, Yairon
dc.contributor.authorMohammadi, Fatemeh
dc.contributor.authorMontaño, Jonathan
dc.date.accessioned2024-01-17T12:18:08Z
dc.date.available2024-01-17T12:18:08Z
dc.date.issued2023-11-03
dc.description.abstractWe prove that double Schubert polynomials have the saturated Newton polytope property. This settles a conjecture by Monical, Tokcan and Yong. Our ideas are motivated by the theory of multidegrees. We introduce a notion of standardization of ideals that enables us to study nonstandard multigradings. This allows us to show that the support of the multidegree polynomial of each Cohen–Macaulay prime ideal in a nonstandard multigrading, and in particular, that of each Schubert determinantal ideal is a discrete polymatroid.en_US
dc.identifier.citationCastillo, Cid-Ruiz, Mohammadi, Montaño. Double Schubert polynomials do have saturated Newton polytopes. Forum of Mathematics, Sigma. 2023;11en_US
dc.identifier.cristinIDFRIDAID 2212630
dc.identifier.doi10.1017/fms.2023.101
dc.identifier.issn2050-5094
dc.identifier.urihttps://hdl.handle.net/10037/32529
dc.language.isoengen_US
dc.publisherCambridge University Pressen_US
dc.relation.journalForum of Mathematics, Sigma
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleDouble Schubert polynomials do have saturated Newton polytopesen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)