dc.contributor.author | Castillo, Federico | |
dc.contributor.author | Cid-Ruiz, Yairon | |
dc.contributor.author | Mohammadi, Fatemeh | |
dc.contributor.author | Montaño, Jonathan | |
dc.date.accessioned | 2024-01-17T12:18:08Z | |
dc.date.available | 2024-01-17T12:18:08Z | |
dc.date.issued | 2023-11-03 | |
dc.description.abstract | We prove that double Schubert polynomials have the saturated Newton polytope property. This settles a conjecture
by Monical, Tokcan and Yong. Our ideas are motivated by the theory of multidegrees. We introduce a notion
of standardization of ideals that enables us to study nonstandard multigradings. This allows us to show that the
support of the multidegree polynomial of each Cohen–Macaulay prime ideal in a nonstandard multigrading, and in
particular, that of each Schubert determinantal ideal is a discrete polymatroid. | en_US |
dc.identifier.citation | Castillo, Cid-Ruiz, Mohammadi, Montaño. Double Schubert polynomials do have saturated Newton polytopes. Forum of Mathematics, Sigma. 2023;11 | en_US |
dc.identifier.cristinID | FRIDAID 2212630 | |
dc.identifier.doi | 10.1017/fms.2023.101 | |
dc.identifier.issn | 2050-5094 | |
dc.identifier.uri | https://hdl.handle.net/10037/32529 | |
dc.language.iso | eng | en_US |
dc.publisher | Cambridge University Press | en_US |
dc.relation.journal | Forum of Mathematics, Sigma | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2023 The Author(s) | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | en_US |
dc.rights | Attribution 4.0 International (CC BY 4.0) | en_US |
dc.title | Double Schubert polynomials do have saturated Newton polytopes | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |