Vis enkel innførsel

dc.contributor.authorPersson, Lars-Erik
dc.contributor.authorSamko, Natasha Gabatsuyevna
dc.contributor.authorTephnadze, George
dc.date.accessioned2024-01-19T11:17:46Z
dc.date.available2024-01-19T11:17:46Z
dc.date.issued2023-12-04
dc.description.abstractThe current status concerning Hardy-type inequalities with sharp constants is presented and described in a unified convexity way. In particular, it is then natural to replace the Lebesgue measure dx with the Haar measure . There are also derived some new two-sided Hardy-type inequalities for monotone functions, where not only the two constants are sharp but also the involved function spaces are (more) optimal. As applications, a number of both well-known and new Hardy-type inequalities are pointed out. And, in turn, these results are used to derive some new sharp information concerning sharpness in the relation between different quasi-norms in Lorentz spaces.en_US
dc.identifier.citationPersson, Samko, Tephnadze. Sharpness of some Hardy-type inequalities. Journal of Inequalities and Applications. 2023;2023(1)en_US
dc.identifier.cristinIDFRIDAID 2215233
dc.identifier.doi10.1186/s13660-023-03066-1
dc.identifier.issn1025-5834
dc.identifier.issn1029-242X
dc.identifier.urihttps://hdl.handle.net/10037/32643
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.relation.journalJournal of Inequalities and Applications
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleSharpness of some Hardy-type inequalitiesen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)